
STA312H5S Tutorial 2

Matthew C. Scicluna

University of Toronto Mississauga

January 26, 2015



What We Are Going to Cover
A bit more information about this

Today we are going to go over assignment 1 and talk about the tm
package



Firstly we are going to talk about installing packages in R

To install packages into R type this into the R console

>install.packages(’tm’)

To use the objects in the package, at the beginning of each R
session type

>library(’tm’)

Isnt this so much easier than with Python?



The TM Package

A short introduction to tm

http://cran.r-project.org/web/packages/tm/vignettes/

tm.pdfl

And a longer one, if you’re into that kind of thing

http://cran.r-project.org/web/packages/tm/tm.pdf

Always read the source documentation of a package before you use
it!

http://cran.r-project.org/web/packages/tm/vignettes/tm.pdfl
http://cran.r-project.org/web/packages/tm/vignettes/tm.pdfl
http://cran.r-project.org/web/packages/tm/tm.pdf


Some Terminology Before We Begin

Corpus
a large and structured set of texts (nowadays usually electronically
stored and processed). They are used to do statistical analysis and
hypothesis testing, checking occurrences or validating linguistic
rules within a specific language territory. via wikipedia

Text Mining
The process of deriving high-quality information from text,
typically through the devising of patterns and trends through
means such as statistical pattern learning. via wikipedia



Data Entry into R

We need to create a corpus object so we can manipulate it using
this package.

1. Firstly lets read in the data. We use the command:

DataframeSource(dataset)

DirSource(dataset)

VectorSource(dataset)

#dataset is some dataset read into R

2. An example bit of code that would work is:

dataset=read.csv("Death Row Data.csv") #stores the

data as a dataframe

data=DataframeSource(dataset) #Tells R that dataset is

a dataframe and each entry is a seperate document



Building the Corpus object

Now we need to actually build the corpus object.

1. We can use the corpus constructor for this:

mycorpus<-Corpus(data,

readerControl=list(language="eng", reader=readPlain))

Notice readerControl is a list that specifies the language of
the text using and the reader you are using

2. Other readers available are:

readPlain()

readDOC()

readPDF() #need pdfinfo and pdftotext to be installed

and accessible on your system

Depending on the type of files you are reading from. In our
case our source is interpreted as text anyways, so readPlain
will suffice.



Whats so great about a corpus anyways?

ALOT



Whats so great about a corpus anyways?

We can now clean up the data.
So we use some functions to perform transformations on the
documents in the corpus

mycorpus <- tm_map(mycorpus, removePunctuation)

mycorpus <- tm_map(mycorpus, removeNumbers)

mycorpus <- tm_map(mycorpus, stemDocument)

stopwordseng=stopwords(kind = "en")

mycorpus <- tm_map(mycorpus, removeWords, stopwordseng)

mycorpus <- tm_map(mycorpus, content_transformer(tolower))



Whats so great about a corpus anyways?

#For the corpus containing prisoners last statements

from assignment 1...

> print(mycorpus)

<<VCorpus (documents: 495, metadata (corpus/indexed): 0/0)

>Inspect(mycorpus)

<<PlainTextDocument (metadata: 7)>>

To the victims family, I want you to know that I hope

you let go of all of the hate because of all my actions.

I came in as a lion and I come as peaceful as a lamb.

Im at peace.



Whats so great about a corpus anyways?

We can see before and after data transformation...

>Inspect(mycorpus) #before tm_map...

<<PlainTextDocument (metadata: 7)>>

To the victims family, I want you to know that I hope

you let go of all of the hate because of all my actions.

I came in as a lion and I come as peaceful as a lamb.

Im at peace.

>Inspect(mycorpus) #after tm_map...

to victim famili i want know i hope let go hate

becaus action i came lion i come peac lamb

im peac

#less reader friendly but easier to analyze!



Finally, lets build a term document matrix

>TDM=TermDocumentMatrix(mycorpus)

>TDM

<<TermDocumentMatrix (terms: 2339, documents: 495)>>

Non-/sparse entries: 13683/1144122

Sparsity : 99%

Maximal term length: 14

Weighting : term frequency (tf)

#Very sparse matrix, i.e. a lot of terms appear

infrequently... Lets fix this!

>TDM2=removeSparseTerms(TDM, 0.9)

>TDM2

<<TermDocumentMatrix (terms: 53, documents: 495)>>

Non-/sparse entries: 4738/21497

Sparsity : 82%

Maximal term length: 9

Weighting : term frequency (tf)



Lets analyze this term document matrix

Docs

Terms 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

and 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

ask 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

can 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

caus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

come 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0

death 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 2 0 0

declin 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

done 0 2 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

dont 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 3 1 1 0 0 0

famili 2 1 0 0 5 0 0 2 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0

forgiv 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



Lets analyze this term document matrix

#Can also build a document term matrix (transpose of term

document matrix)

>DTM=DocumentTermMatrix(mycorpus,list(dictionary = c("god",

"jesus", "death")))

> inspect(DTM)

Terms

Docs death god jesus

1 0 0 0

2 0 2 0

3 0 0 0

4 0 0 0

5 0 5 0

6 0 0 0

7 0 0 0

8 0 1 1

9 0 0 0

10 0 0 0

11 0 0 0

12 0 1 0

13 0 0 0

14 0 0 0



Lets analyze the term document matrix for word freuqencies and
associations!

>head(findFreqTerms(TDM, 30))

[1] "all" "alway" "and" "ani" "apolog" "ask"

> head(findAssocs(TDM, "jesus", 0.3))

jesus

christ 0.70

ask 0.57

johnson 0.56

margi 0.56

mchenri 0.56

resurrect 0.56

#What did you expect?



Assignment 2

Assignment 2 will involve anaylzing some words in this way. I will
post the assignment soon!


