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tests of overidentifying restrictions. (Perhaps we should note that such
a test will not always involve the ¢-statistic for a single coefficient but
may lead to the F-test for a whole set of coefficients.) This rule does not
cover all cases, as will become apparent when we consider models for
which OLS is not the appropriate method of estimation.

It is vital to keep the matter of tests of overidentifying restrictions in
perspective. Valuable as such tests may be, they do not really bear
upon what may be the most problematical issue in the specification of
a recursive model, that is, the causal ordering of the variables. It is the
gravest kind of fallacy to suppose that, from a number of competing
models involving different causal orderings, one can select the true
model by finding the one that comes closest to satisfying a particular
test of overidentifying restrictions. (Examples of such a gross misun-
derstanding of the Simon-Blalock technique can be found, among
other places, in the political science literature of the mid-1960s.) In fact,
a test of the causal ordering of variables is beyond the capacity of any
statistical method; or, in the words of Sir Ronald Fisher (1946), “if . . .
we choose a group of social phenomena with no antecedent knowledge
of the causation or absence of causation among them, then the calcula-
tion of correlation coefficients, total or partial, will not advance us a
step toward evaluating the importance of the causes at work [p. 191}

Exercise. Show how to express all the correlations in terms of path
coefficients in the model on page 44, using Sewall Wright's multiplication
rule for reading a path diagram.

Exercise. Change the model on page 28 so that p,s is specified to be
zero. Draw the revised path diagram. Obtain an expression for the over-
identifying restriction. Indicate how one would estimate the coefficients in
the revised model, supposing the overidentifying restriction was not called
seriously into question.

FURTHER READING

See Walker and Lev (1953, Chapter 13) for a treatment of multiple
regression with standardized variables. Sociological studies using re-
cursive models are numerous ; for examples, see Blalock (1971, Chapter
7) and Duncan, Featherman, and Duncan (1972).

Structural Coefficients
in Recursive Models

In Chapter 3 a four-variable recursive model was formulated in
terms of standardized variables. That procedure has some advantages.

(1) Certain algebraic steps are simplified.

(2) Sewall Wright’s rule for expressing correlations in terms of path
coefficients can be applied without modification.

(3) Continuity is maintained with the earlier literature on path
analysis and causal models in sociology.

(4) It shows how an investigator whose data are available only in
the form of a correlation matrix can, nevertheless, make use of a
clearly specified model in interpreting those correlations.

Despite these advantages (see also Wright, 1960), it would probably
be salutary if research workers relinquished the habit of expressing
variables in standard form. The main reason for this recommendation
is that standardization tends to obscure the distinction between the
structural coefficients of the model and the several variances and co-
variances that describe the joint distribution of the variables in a certain
population.
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Although it will involve some repetition of ideas, we will present the
four-variable recursive model again, this time avoiding the stipulation
that all variables have unit variance. The model is

(x, exogenous)

X, =by X, +u

X3 =ba,x; + b3y xy + v

X4 =bazxz + bsyX; + bayx; +w

We continue to assume that all variables have zero expectation; unlike
standardization, this achieves a useful simplification without
significant loss of generality or confusion of issues. (Only in special
cases, where “regression through the origin” is involved, does this
stipulation require modification.)

The specification on the disturbances is that the disturbance in each
equation has zero covariance with the predetermined variables in that
equation and all “earlier” equations. The one strictly exogenous var-
iable x, is predetermined in each equation. In addition, x, is a
predetermined variable in the x;-equation and the x,-equation, while
x5 is a predetermined variable in the x,-equation. Thus we specify
E(x,u) = E(xyv) = E(x; w) = E(x,v) = E(x,w) = E(x3w) =0. We
find, as a consequence of this specification, that it also is the case that
E(uv) = E(uw) = E(uvw) = 0.

(We note, for future reference, that in both recursive and nonrecur-
sive models, the usual specification is zero covariance of predetermined
variables in an equation with the disturbance of that equation. In the
case of recursive models this generally implies zero covariances among
the disturbances of different equations. This does not, however, hold
true for nonrecursive models.)

To deduce properties of the model from the specifications regarding
its functional form and its disturbances, we multiply through equations
of the model by variables in the model, and take expectations. For
convenience, we denote the variance E(x}) by g;;, using the double
subscript in place of the exponent of the usual notation, ¢2. Similarly, a
covariance is denoted by o,; = E(x,x;), h # j.
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The normal equations are obtained by multiplying through each
equation by its predetermined variables:

015 =by104, (from the x,-equation)

613 = b31611 + b30q; .
(from the x;-equation)
033 = b3,01, + b3,0,;

014 =bay0yy + byy0y5 + by304;
O34 = @#H 012 + @#N (%) + @A.WQ.Nw Q.HOB HUQ Xhl@@ﬂ”ﬂmﬁvbv
634 =b41013 + by3023 + byy03;

Clearly, it is possible to solve uniquely for the b’s, which we shall term
the structural coefficients, in terms of the population variances and
covariances. In practice, of course, the latter are unknown. Hence, we
can only estimate the structural coefficients. If, in the normal equa-
tions, the ¢’s are replaced by sample moments, the estimates obtained
are equivalent to those of ordinary least-squares (OLS) regression of
X, on X;; x3 on x, and x;; and x, on x3, x,, and x;. By sample
moments we mean the quantities

_ 2
my; =Y. X}
ny; = M XpXj (h#j)
where the summation is over all the observations in the sample and

each observation on x; is expressed as a deviation from the mean of x;
in the sample. .

Along with the preceding normal equations, we will find it useful to
obtain expressions for the variances of the dependent variables by
multiplying through each equation of the model by its dependent
variable:

63; = by 104, + 0y,
633 = b3,0,3 + b3 043 + 03,
G4a = by3034 + byr0,4 + by1 014 + 04,

These may be simplified slightly by noting that o,, = 0,,, 03, = 0,
and o,,, = o,,,, which facts are deduced by multiplying through each
equation of the model by its disturbance.
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It is instructive to rewrite the expressions for the variances and
covariances 11 the form given below (the algebra involves only
mﬁmwms:oﬂi»wp though tedious, substitutions in the equations already
given). The variances May be written:

G,y EXOZENOUS
__h2
6,2 = b31011 + Ouu
_ 2
033 = .\Amo.uu + @uNQ_E + Oy

. 2
O.b.n. = \A@O.nw + \ﬁOQ:: + TbuO.cc + O.SE

and the covariances:

012 = b21011
013 = 41011
6,3 = A3011 T b320uu
614 = A2011
Gya = Aa011 T AsGuu
634 = A7011 + AgOuu ¥ bsz0ww
where
A, =ba + bsz2bai
A, =ba T bazbai + ba3As
Ay = by (b3 + bs,b21)
Ay =barbas bazb3 + bazAs
As=bar T basbaz
Ag = b Az T by1 A1
A, =ba AL T bsrAs t+ basAs
Ag = bya(baz + basbsz)
Ag = baz A7+ by As t+ b1 A2
Ao = by, As + bazAs
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The A’s have been introduced merely to abbreviate the presentation
and have no particular interpretation in themselves. It is important to
note, however, that all the A’s are nonlinear combinations of the struc-
EB_ coefficients (the b’s)and involve no other terms. Thus, we can draw
an important conclusion. The variances and covariances are all func-
tions of (at most) three Kkinds of quantities: (1) the variance of the
exogenous variable; (2) the variance(s) of one or more disturbances;
and (3) a nonlinear combination of structural coefficients. Table A.H,

Table 4.1 Sources of Observable Variances and Covariances

Is a function of

Variance or

covariance 641 Ow  Ow O by bax by, ba by, bas

X X
X X
X
X
X

X

X

X

X

X

612 X
X

X

X

X

X

XXXXXXXXX
X
X
X

X
X
X
x X X X X
X X X X X

\
;
:

X
X
X

makes this explicit in each instance. The first component (01,) is in-
volved in all the variances and covariances. One or more of the distur-
bance variances (> Guv> G o) ATE involved in the variances of all the
ﬁo@o:&oﬁ variables in the model and in the covariances of these var-
S,Eo.w A.SE each other. Some combination of structural coefficients (the
b’s) is involved in all variances (except o, ,) and covariances. Thus, itis
womm&_o to regard the variances and covariances of the observed var-
iables as having arisen entirely from these three sources. Moreover, we
can describe these components as separable, in the following sense. We
can suppose without contradiction (that is, without violating any other
E.ovonw of the model) that one of these components may change
without either of the others having to change. If any of them changes,
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however, the observable variances and covariances will, in general,
change.

This remarkable property of the model should be considered care-
fully by the investigator, for it has some far-reaching implications.

Suppose we had two populations under study and we specified our
three-equation model as holding in each. It could happen that the
structural coefficients are the same in the two populations and the
variances of the several disturbances are likewise the same. But if only
g,, differs between the two populations, we will observe differences in
all the other variances and all the covariances. Incidentally, we will
also observe differences (in general) in all the correlations in the two
populations and also (in general) in all the standardized path
coefficients, not to mention other purported measures of “relative
importance ” or “unique contribution” of variables. Thus the observ-
able facts about the two populations (as reflected in sample estimates
of variances, covariances, and correlations) will suggest that they differ
in many ways. But the premise of the illustration is that they differ in
only one way: with respect to the variance of the exogenous variable.
The model is invariant across populations with respect to the struc-
tural coefficients and the variances of the disturbances.

Another possibility is that both ¢, and the disturbance variances
differ as between two populations, but the structural coefficients are
the same. Again we would observe entirely different variance-
covariance (or correlation) matrices in the two populations, even
though only four of the ten quantities in the column headings of the
table actually differ.

The possibilities just described are only hypothetical. But there
would not be much purpose in devising a model to use in interpreting
data if we did not have some hope that at least some features of our
model would be invariant with respect to some changes in the circum-
stances under which it is applied. If all the model is good for is to
describe a particular set of data—if with any new set of data we will be
obliged to change all the quantities listed in the column headings of the
table, even though we continue to specify the same mathematical form
of the model—then we might as well forego the effort of devising and
estimating the model. It offers no economy of description, since there
are as many parameters across the top of the table (neglecting the
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possibility that some b’s may be zero and therefore may be omitted) as
there are variances and covariances listed in the stub. We can trans-
form the variances and covariances into the parameters, or vice versa,
by mathematical operations already described in these pages. Hence,
from a purely descriptive standpoint, we might as well let stand the
first set of estimates we compute—the variances and covariances, or
correlations—and not bother with the structural coefficients.

Another line of reflection is suggested by this analysis. It could
happen that a macrosociological model proposed for a given society
gave rise to (nearly) invariant estimates of structural coefficients over a
period of time (for example, for several successive birth cohorts), even
though the variances of the exogenous variable and the disturbances
were changing. One would then observe “social change” with respect
to variances and covariances of the dependent variables. But in
another sense, no “social change” would be occurring, since the struc-
tural coefficients were staying constant. If, on the other hand, the latter
should change, one would really be dealing with social change, in a
deeper sense of the term. The first kind of social change would, in a
sense, be “explained ” by the model (though, of course, the model does
not speak to the sources of change in the exogenous variable and
disturbances themselves). The second kind of social change—
modification of structural coefficients (or “structural change,” if one
likes)—cannot be explained in any sense by the model. Even so, one
might argue, the model—if one held to it with good reason, despite
changes in structural coefficients—would at least make clear what it is
about the social changes occurring that requires explanation. But
surely our scientific aspirations and efforts should be directed toward
the construction of models which are themselves “ explanatory” in a
proper scientific sense of the word, and not merely in the sense of
providing some parametrization of the descriptive statistics which
serves merely as a clue to the task of scientific explanation.

We gain still another perspective on the concept of structural
coefficients in learning how to transform the model into a different set
of equations. We continue with the model presented at the beginning
of this chapter. By straightforward substitution we eliminate x, from
the x;-equation and both x, and x3 from the x,-equation; the
Xy-equation is repeated as it stands. These manipulations yield the
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following three equations as the reduced form of the model:
(x, exogenous)
X, =byx, +u
x3 = (b3y + bashyy)x; + bju+ v
X4 = [bay + basbyy + baz(bsy + bazbyi)lxy + (baz + bazbsa)u
+ b0+ w

To obtain a compact notation for the coefficients and disturbances of
the reduced form, we rewrite the foregoing equations, making use of
the following definitions:

ayy = by
asy = b3y + b3y by
Ay = by + basbyy + bas(bsy + bazbyy)
W =u
v'=bju+v
W = (bay + basbs)u + byzv+w
This yields
X, =ayx; + U
X3 =4z xy + 0
X4 =0ag1X; + W

We find that the exogenous variable is uncorrelated with the reduced-
form disturbances, since

E(x,u') = E(x;u) =0

E(x,v') = by, E(x;u) + E(x;0) = 0

E(x,w') = (baz + basbs2)E(x u) + by3 E(x,v) + E(x,w) =0
making use of the initial specification on the disturbances in the model.

However, in the reduced form (unlike the structural form in which the
model was originally specified), it is no longer true that disturbances
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are uncorrelated among themselves. In fact, we can derive explicit
expressions for the covariances among reduced-form disturbances (re-
calling that the covariances among structural-form disturbances are
zero):

Oypr = mﬁ\c\v = @wNmASNv + mA:Qv = @unQ::
Ouw = (baz + bazb3;)0,,
Oy = @unﬁuhw + @#u@wuvc._.: + @#wqg

The reduced-form disturbance variances likewise are functions of
structural coefficients and variances of structural-form disturbances:

Oy = Oy
— h2
Opry = @uNQ.E + Opp

Croryr = QV&N + @#w WquNQ‘.E + Nvw_vu Oy + Oow

Suppose we regard the expressions for the variances and covariances
of the reduced-form disturbances, taking these quantities as known, as
six equations in the six unknowns, a,,, 6,,, 6,.., bs3, b4z, and bs,.
Although the equations involve nonlinear combinations of the un-
knowns, they are readily solved by a sequence of simple substitutions.
Having solved for these parameters, we could return to the three equa-
tions defining the a’s (taking them as known) and solve for the remain-
ing unknown structural coefficients, b,,, b3;, and b,,.

Thus, if the reduced-form coefficients (the a’s) and the variance-
covariance matrix of the reduced-form disturbances were known, we
could solve for structural coefficients (the b’s) and the variances of
structural disturbances. From a computational point of view, this
result is of no great practical value. Because of its conceptual interest,
however, we indicate how one might proceed. Multiplying each
reduced-form equation through by the exogenous variable and taking
expectations, we obtain:

G132 = 43101,

013 = 043101,

G14a = Q47073
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Least squares estimates of the a’s are, therefore,

A _ My
Ay = ——
myy
.~ M3
azy = ——
myy
. Mg
sy = ——
my,

Multiplying through each reduced-form equation by each dependent
variable and each reduced-form disturbance yields (after a little alge-
braic manipulation, which may serve as an exercise for the interested
reader):

Oyw = 022 — 421012

Opy = 033 — 331013

Oww = 044 — 041014

Oyy = 023 — 043,013

Oww = 024 — 421014

Opw = 034 — 031014

Thus, if we combine sample estimates of the variances and covariances
of our observed variables with the least-squares estimates of the a’s, we
will generate estimates of the reduced-form disturbance variances and
covariances. Putting these through the solution routine outlined ear-
lier will yield estimates of structural coefficients and structural-form
disturbance variances precisely the same as the estimates obtained by
direct least-squares estimation of the structural equations themselves.

Comparing the path diagrams of the structural and reduced forms of
the model may put some of these results in perspective:

:/Yx»

T~
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The diagrams are equivalent in one sense for, as we have shown, given
the parameters (coefficients, variances, and covariances of distur-
bances) of one form, we may solve for the parameters of the other.
Each diagram depicts a model with ten parameters. In the structural
form we have:

one variance of the exogenous variable
six structural coefficients
three variances of disturbances

In the reduced form we have:

one variance of the exogenous variable

three reduced-form coefficients

three variances of reduced-form disturbances

three covariances among reduced form disturbances

The paths in the reduced-form diagram represent (typically) some
combination of compound paths in the structural-form diagram. This
fact is an instructive implication of our definitions of the a’s (see Figure
4.1).

Thus, the reduced-form coefficients sum up the several direct and
indirect paths through which the exogenous variable exerts its effects
on each dependent variable. If one cared to know only the total effect
of the exogenous variable on a dependent variable, the reduced-form
coefficient tells the whole story. But if one is interested in how that
effect comes about, the greater detail of the structural model is inform-
ative. After all, in the reduced form, a great deal of the “structure” is
buried in the rather uninformative variances and covariances of the
reduced-form disturbances.

Exercise. Derive the reduced form for a two-equation model consisting
only of the x;-equation and the x,-equation in the model just discussed.
Both x, and x, are exogenous, so that the variances of both and their
covariance as well must be assumed to arise from exogenous sources.
Express the variances and covariances of the reduced-form disturbances
in terms of structural coefficients and structural-form disturbance var-
iances. Show how the direct and indirect effects of exogenous variables
(insofar as these are explicit in the model) are summed up in reduced-form
coefficients. Compare the number of parameters in the structural and
reduced forms.
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by + byybay =431

bay + bgybay +ba3ba +v»uvu~vn_ =da

i i i form
Fic. 4.1. How structural coefficients combine into reduced

coefficients in 2 fully recursive model
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We have managed to postpone to this point a matter that many
sociologists consider—erroneously, we believe—to be the single most
important feature of a model, the proportion of variation in each
dependent variable that is “explained.” Although this emphasis upon
the misnamed “ explanatory power " of a model is mistaken, there isa
limited utility in the multiple-correlation statistic. We proceed to indi-
cate how it fits into the account of recursive models offered here.

Suppose the structural coefficients of the model (page 52) have
been estimated by OLS. This method minimizes the sum of squares of
the sample residuals and thereby insures that the residual from an
estimated regression equation is uncorrelated with the regressors in
that equation. Hence we have Y oxgie=3, X0 = Y oxy b= XaW=
Y xaW = Y x W= 0, where the summation is over the entire sample
and 1, D, and W are the sample residuals that estimate the correspond-
ing disturbances. This allows us to operate on the equations of the
model, when the structural coefficients therein are replaced by their
OLS estimates, in much the same way that we have hitherto worked
with the model itself. Thus, in the sample, we have

.XN = mN 1 X 1 + m,.s

Xw = mwN.XN + Mwmvﬁu + @

X4 = bazxs + bazx, + bayxy + W
(These are, in effect, the formulas for computing i, , and w, respec-
tively.) Each variable will have been expressed as a deviation from its

sample mean. Multiplying each equation through by the residual and
the dependent variable, we find

Y xolt = My
Y x3b = mg,
Y xaW =My,
My = byymyy + My
M3 = bymys + byymys + Mg,

§¥> = @#w‘-aw# + NVA,NNSN# + @PMSHA + 5&«0
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The respective coefficients of determination for the three equations
are

M.
2 — _ i
NNNAMV = H

mya

m..

R? =1-—
21

My

m. .

R? =1-—"
(321)

Mys

(The multiple correlation is the square root of R2.) If we wished to put
our results in the framework of standardized variables and path
coefficients, we would proceed to note that

P2u = 1= WWA:

D3 = v 1- Wwﬁc

Paw =/ 1- Ww:un:
which are the so-called residual paths.

It will be seen that the definition of R? rests on the distinction
between variation « explained ” by an equation in the model and the
«unexplained ” variation of that equation’s dependent variable. It 18
sometimes suggested that the formula defining R? be used to effect 2
partitioning of the explained variation into portions due uniquely to
the several determining causes. Thus, according to this suggestion,
R34 (for example) would be allocated between Xy and x, in propor-
tion to by my3 and by ma3s respectively (or, in the framework of path
coefficients, P31713 and P32723)- But the suggestion 1s mistaken. It is
true that by, estimates the direct effect of x, on X3, but m, 5 reflects a
mixture of effects arising from diverse sources. If we multiply through
our estimate of the x;-equation by x;, We find

myy = baamiz ¥ bsymiy
Hence
- N .
byymy3 = byabsimyz + b3 mys

and the first term on the right is certainly not an unalloyed indicator of
the role of x, alone in producing variation in X3 .
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Indeed the “problem” of partitioning R? bears no essential relation-
ship to estimating of testing a model, and it really does not add any-
thing to our understanding of how a model works. The simplest
recommendation—one which saves both work and worry—is to
eschew altogether the task of dividing up R? into unique causal com-
ponents. In a strict sense, it just cannot be done, even though many
sociologists, psychologists, and other quixotic persons cannot be per-
suaded to forego the attempt.

Indeed the whole issue of what to make of a multiple correlation is
clarified by noting that 'R2? does not estimate any parameter of the
model as such, but rather a parameter that depends upon both the
model and the population in which the model applies. We have no
reason to expect R2 to be invariant across populations. If either o, OF
g, (and, therefore, 044) changes in going to a new population, while
the structural coefficients remain fixed, R? will be changed. This is a
matter of special concern in the event that the value of 6,4 is essentially
under the investigator’s control, according to whether he (for example)
puts greater or lesser variance into the distribution of his experimental
stimulus x,, or samples &mvaocoao:mﬁoq from different parts of the
«patural” range of x;. As we have seen, such a modification of 631 will
change all variances and covariances, as well as R?, even though there
is no change in structural coefficients—and there is no reason to expect
them to be affected by either of these aspects of study design.

The real utility of R2 is that it tells us something about the precision
of our estimates of coefficients, since the standard error of a coefficient
s a function, among other things, of R.

It is a mistake—the kind of mistake easily made by the novice—t0
focus too much attention on the magnitude of R2. Other things being
equal, it is, of course, true that one prefers a model yielding a high R* to
one yielding a lower value. But the ceteris paribus clause is terribly
important. Merely increasing R? by lengthening the list of regressors 18
no great achievement unless the role of those variables in an extended
causal model is properly understood and correctly represented.

Suppose, for example, that in using the four-variable recursive
model we have been studying, the investigator became dissatisfied with
the low value of R3¢ 1y- It would be quite easy to get a higher value of
R?, for example, by running the regression of x5 0n x4, X2, and x,,and
reporting the value of R3421)- But this regression does not correspond
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to the causal ordering of the variables, which was required to be
specified at the outset. It is, therefore, an exceedingly misleading statis-
tic. (One does not often see the mistake in quite this crude a form. But
naively regressing causes on effects is far from being unknown in the
literature.)

Another way to raise R3(,,, would be to introduce another variable,
say x4, that is essentially an alternative measure of x5, though giving
slightly different results. The regression of x5 on x4, x,, and x, is then
guaranteed to yield a high value of R?.

Indeed, the best-known examples of very high correlations are those
selected to convey the notion of “spurious correlation,” “nonsense
correlation in time series,” or other kinds of artifact. This shows us that
high values of R?, in themselves, are not sufficient to evaluate a model
as successful.

Before worrying too much about his R?, therefore, the investigator
does well to reconsider the entire specification of the model. If that
specification cannot be faulted on other grounds, the R? as such is not
sufficient reason to call it into question.

Exercise. To conclude, for the time being, your study of fully recursive
models, review the material on estimation and testing in Chapter 3 and
restate the essential points so that they apply to the recursive model as
expressed without standardization of variables (page 52).

FURTHER READING

An example of a recursive sociological model presented in terms of
both standardized and nonstandardized coefficients appears in
Duncan (1969). Note that the more interesting conclusions were
developed on the basis of the latter. On the questionable value of
commonly used measures of “relative importance” or “unique
contribution” of the several variables in an equation, see Ward (1969),
Cain and Watts (1970), and Duncan (1970).

A Just-Identified
Nonrecursive Model

The model considered throughout this chapter is
.Xu = WwH.XH + Tu#kh +u
.XA. = T#N.NN + @&u.&w +v

For convenience, E(x)=0, j=1, ..., 4, and E(u) = E(v) = 0.
However, we do not put the variables in standard form. Variables X,
and x, are exogenous; their variances and their covariance are not
explained within the model. Variables x5 and x, are jointly dependent
or endogenous; the purpose of the model is to explain the behavior of
these variables. Variables u and v are, respectively, the disturbances in
the x;-equation and the x,-equation. Their presence accounts for the
fact that x, and x, are not fully explained by their explicit determining
F.Qoa. The model will be operational only if we can assume that
a_mﬁngcoom are uncorrelated with exogenous variables: hence the
specification E(x; u) = E(x, v) = E(x,u) = E(x,v) = 0. This is a ser-
tous assumption. The research worker must carefully consider what
Circumstances would violate it and whether his theoretical understand-
Ing of the situation under study permits him to rule out such violations.

In contrast to the case of a fully recursive model, in the nonrecursive
model the specification of zero covariances between disturbances and
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