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ture correlations, in subsequent chapters both recursive and nonrecur-
sive models are treated from a different and more fundamental point of
view.

FURTHER READING

The classic exposition of the causal structures that may underlie the
correlations among three variables is that of Simon (1954). A didactic
presentation of four-variable models much in the spirit of this chapter
is given by Blalock (1962-1963). Both papers are reprinted in Blalock
(1971).

™

Recursive Models

A model is said to be recursive if all the causal linkages run “one
way,” that is, if no two variables are reciprocally related in such a way
that each affects and depends on the other, and no variable “feeds
back ” upon itself through any-indirect concatenation of causal link-
ages, however circuitous. However, recursive models do cover the case
in which the “same” variable occurs at two distinct points in time, for,
in that event, we would regard the two measurements as defining two
different variables. For example, a dynamic model like the following:
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where t and ¢ + 1 are two points in time, is recursive (even though x
appears to feed back upon itself). The definition also subsumes the
case in which there are two or more ostensibly contemporaneous
dependent variables where none of them has a direct or indirect causal
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26 INTRODUCTION TO STRUCTURAL EQUATION MODELS

linkage to any other. This situation is illustrated by Models II and II'
in Chapter 2 (assuming that p,, in Model II' does not implicitly arise
from either a path y — z or a path z — y). In this case, we have to
consider whether or not to specify p,, = 0. If so, we might term the
model “fully recursive ”; if not, it is merely “recursive.”

With the exception of this last kind of situation—which offers no
difficulty in principle, though it requires careful handling in practice—
we can state that all the dependent variables in a recursive model (those
whose causes are explicitly represented in the model) are arrayed in an
unambiguous causal ordering. Moreover, all exogenous variables
(those whose causes are not explicitly represented in the model) are, as
a set, causally prior to all the dependent variables. There is, however,
no causal ordering of the exogenous variables (if there are two or
more) with respect to each other. (In some other model, of course,
these variables might be treated as dependent variables.)

It simplifies matters greatly and results in a more powerful model if
we can assume there is only one exogenous variable. This may not
always be a reasonable assumption. We will consider models of this
kind first and then see what modifications are entailed if we have to
assume the contrary.

All our exposition of recursive models will rest on illustrations in
which there are just four variables. Throughout this book we rely on
relatively simple examples, and it is expected that the reader will come
to see how the principles pertaining to these examples can be gener-
alized to other models. There is some risk in this procedure, but it is
hopefully outweighed by the advantages of making the discussion both
concrete and compact—virtues difficult to attain if all principles and
theorems must be stated in a perfectly general form.

With four variables, one of them exogenous, the causal ordering will
involve a unique arrangement. Any one of the four might be the
exogenous variable, any of the remaining three might be the first
dependent variable, and either of the remaining two might follow it.
Hence, there are 4- 3 -2 - 1 = 24 possible causal orderings of four
variables. To build a recursive model means that we must choose one
and only one of these 24 as the “true” ordering. That choice, it should
be clear from the discussion in the previous chapter, cannot be based
on the correlations among the variables, because any correlation
matrix will be consistent with any causal ordering one may propose.
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The information in regard to causal ordering is, logically, a priori.
Such information is derived from theory, broadly construed, and no
amount of study of the formal properties of models can teach one how
to come up with a true theory. We can, however, prescribe the task of
theory—to provide a causal ordering of the variables. Another way to
put it is that the theory must tell us that at least six of the twelve
possible causal linkages among four variables are not present, and
these missing links, moreover, must fall into a triangular pattern. For,
if four variables are put into a causal order and then numbered in
sequence, we will have a pattern like the following:

Caused by
Effect Xy Xy X3 X4
AXHV e O O O
X, x ... 0 0
X3 X X 0
X4 X X X

It is immaterial whether one or more of the crosses is replaced by a
nought. But all the noughts must be present, to stand for the assump-
tion that x, does not cause x; (though x, may cause x,), and so on. If
one enters six noughts in such a matrix (ignoring diagonal cells) before
the variables are numbered, it may or may not be possible to triangu-
late the matrix. If it is, then the matrix defines a recursive causal
ordering. If not, one or more nonrecursive relationships is present.
Thus, the indispensable contribution of theory is to put noughts into
the matrix. It is an odd way to put it, but the decisive criterion of the
utility of a theory is that it can tell us definitely what causal relation-
ships do not obtain, not that it can suggest (however evocatively) what
relationships may well be present. (This remark will seem even more
poignant when, in a later chapter, we discuss the problem of
identification for a nonrecursive model.)

There is still another way to describe a recursive model. We may say
that all exogenous variables in the model are predetermined with re-
spect to all dependent variables. Moreover, each dependent variable is
predetermined with respect to any other dependent variable that

-



28 INTRODUCTION TO STRUCTURAL EQUATION MODELS

occurs later in a causal ordering. We take this to mean that all
exogenous variables are uncorrelated with the disturbances in all equa-
tions of the model. (If one cannot assume this, the remedy is to build a
better model) Moreover, we shall similarly assume that the
predetermined variables occurring in any equation are uncorrelated
with the disturbance of that equation. (This is virtually a definition of
“ predetermined.” It does leave open the possibility that of two depen-
dent variables in a recursive model, neither is predetermined with re-
spect to the other, while the disturbances of their equations are
correlated, as is the case for Model II' in the previous chapter.) Again,
this assumption has to be evaluated on its theoretical or substantive
merits and, if it must be faulted, the recourse is to propose a better
model.

The four-variable model, already described by a matrix of crosses
and noughts, is more explicitly represented by this set of equations:

(x; exogenous)

X2 = P21X1 t P2uXu

X3 = P3aXs t+ P31 X1 T D3, %,

X4 = Pa3X3 + PazXz + Par X1 t PawXw

or by the path diagram:

We continue to assume that E(x,) = 0-and E(x7) =1, h = 1,234,
u,u,w (the variables are in standard form). Hence, E(x,X;) = py;, the
correlation (in the population) between x, and x;. The specifications
on the disturbance terms are as follows:

(a) The exogenous variable is uncorrelated with the disturbances:

E(x,x,) = E(x;x,) = E(x;x,) =0
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(b) Disturbances are also uncorrelated with any other
predetermined variables in an equation:

E(x,x,) = E(x;x,) = E(x3x,) =0

A standard manipulation is to “multiply through” one equation of
the model by a variable in the model, take expected values, and express
in terms of path coefficients (the p’s) and correlations (p’s). Following
this procedure with the x,-equation, making use of (a) and (b), we
deduce that the disturbance in each equation is uncorrelated with the
disturbance in any other equation; for example,

mA.XNXcv = ﬁNmmAXHXeV + VN:NA.X:X.NV

so that p,, = 0; similarly, p,,, = p,,, = 0. But note that the disturbance
in each equation has a nonzero correlation with the dependent var-
iable in that equation and (in general) with the dependent variable in
each “later” equation. To take another example, if we multiply
through the equation for x; by x,, we obtain

E(x;x3) = ENMAXWV + P31 E(x;x;5) + P3.E(x3x,)

or
P23 = P32 + Pa1P12

[since E(x3)= 1 and E(x,x,) = 0]. Proceeding systematically, we
obtain
P12 = P21 (from the x,-equation)

P13 = P31 + P32P12 .
(from the x;-equation)
P23 = P31P12 + P32

P1a = Pa1r + Pa2P12 + Pa3zPi3

P24 = Pa1P12 + Paz + Paspss | (from the x,-equation)
P34 = Pa1P13 + Paz2P23 t+ Pas
We may study this set of “normal equations” in two ways:
(i) Solve for the p’s in terms of the p’s
We obtain, for the first equation of the model,
P21 = P12
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for the second equation,
P31 = (P13 — P12p23)/(1 — p12)
P32 = (P23 — P12p13)/(1 — pi2)

and for the third equation,

Pia P12 Pi3

Par =75 |P2a 1 P23

p3a P2z 1

1 P1a P13

Paz = D P12 P24 P23

P13 P3a 1

1 P12 Pia

Da3z = P12 1 P2a

ol -

P13 P23 P3a

where

1 P12 P13
p12 1 P23
P13 P2z 1

Thus, if we knew the correlations we could solve for the coefficients of
the model. In practice, we have only estimates (from a sample) of the
correlations. If these estimates are inserted into the foregoing formulas
(in place of the population correlations), the formulas will yield esti-
mates of the p’s. These are, in fact, the same estimates that one obtains
from the ordinary least squares (OLS) regression of

D

X, ON Xy
x3 on x; and x;
X4 OD X3, X5, and x;

if the variables are in standard form.
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(it) Solve for the p’s in terms of the p’s

HE.m may be done quite simply, making substitutions in the “ normal
equations.” We obtain
P12 = P21
P13 = P31 + P32P21
P23 = P32 + P31P21
P1a = Pa1 + PazP21 + Pa3(P31 + P32P21)
P24 = Paz + Pa3P32 + Pa1P2y + Pa3P31P21
P3a = Paz + Paz(P32 + P31P21) + Par(P31 + P32P21)
These expressions are instructive in that they show how the model

generates the (observable) correlations. It is worthwhile to study them
with some care.

(1) We see that the entirety of the correlation between x, and x, is
generated by the direct effect, p,,

(2) The correlation between x; and x; is generated by two distinct
paths, so that p,; equals the direct effect, ps;

™ Xa
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plus the indirect effect, p;, p,;

(3) The situation is different in regard to x, and x; , for here we have
the total correlation (p,;) generated as the sum of the direct effect, ps,

)
//

\‘Rm

plus correlation due to a common cause, p;, p,;

I'RN

N
//

(4) The correlation between x; and x, is generated by four distinct
causal links; p,, equals the direct effect, p,,

/'.XN

T\

X3
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plus indirect effect via x,, py, p,;

.Yxn

N
~\

_» X3

plus indirect effect via x5, py3 p3;

Ay
//

\‘.Xu

plus indirect effect via x5 and x,, py3 P32 Pas

(5) Both an indirect effect and correlation due to common causes
are involved in generating the correlation between x, and x,; p,,

equals the direct effect, p,,

’.X)

\V.xu
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plus indirect effect via x5, ps; 3z

plus correlation due to x; operating as a common cause, directly,
Da1 D21

)

AT

and indirectly (via x3), pa3 P31 P2y

(6) There are no indirect effects in the model producing correlation
between x; and x,; but there are two common causes. Hence, p;,

equals the direct effect, p,4

RECURSIVE MODELS

plus correlation due to common causes, working directly, p,, p;,

- //W

)

\ //(
// \

or indirectly, py, p3; P2,

and py, p3,

and p,y p3; pay

35
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In all six of these cases, the correlation may be read off the path
diagram using Wright’s (1921) multiplication rule: To find the correla-
tion between x, and x;, where x; appears “later” in the model, begin at
x; and read back to x, along each distinct direct and indirect
(compound) path, forming the product of the coefficients along that
path. After reading back, read forward (if necessary), but only one
reversal from back to forward is permitted. Sum the products obtained

for all the linkages between x; and x,.
We consider next a modification of the model. Suppose both x, and

x, are exogenous, that is, the model cannot explain how they are
generated. Since we do not know anything about this, we cannot make
any strong assumption about their correlation. Hence, we shall have to
suppose, in general, that p,, # 0. The model now has but two

equations,
X3 = P32Xy + P31 X1 + P3Xy
X4 = Pa3X3 T Pa2X2 + Par Xy + PawXw

Disturbances are uncorrelated with predetermined (including

exogenous) variables. Hence, p;, = p1,, = P2, = P2 = P3 = 0; and,
as a consequence, p,,, = 0. Normal equations are obtained as before,

except, of course, that there is no normal equation with p,, on the
left-hand side. Also, except for the fact that no p,, occurs in the model,
the solution for the p’s is the same as before and has the same

interpretation.
In studying the model from standpoint ii (solution for p’s in terms of

p’s), however, we must reconsider the situation. Algebraic substitutions
yield,

P13 = P31 T P32P12

P23 = P32 + P31P12

Pra = Pa1 + PasPs1 + (Paz + PasP32)P12

P24 = Paz + PasPsz + (Par + PasP31)P1z

P34 = Paz + PazP3z + ParP31 + (PazPsr + Pa1P32)P12

We cannot eliminate p,, from the right-hand side of these equations,
since the model cannot (by definition) tell us anything about how that
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correlation is generated. Moreover, the presence of this correlation
means that the remaining correlations are generated in a somewhat
mE_.Bmco:m way. Consider the correlation between x, and x3. We have
a 93.2 effect, p;,. The other term, p,, p,,, consists of the product of
the direct effect of x, on x; and the correlation of x; and x,. It
represents a contribution to p, ; by virtue of the fact that another cause
of x5 A:mim._w x,) is correlated (to the extent of p, ,) with the cause we
are examining at the moment (namely, x,). As in Chapter 2 (see
Models .:\ and IIT) we use a curved, double-headed arrow to refer to a
ooaﬁ_m:os that cannot be analyzed in terms of causal components
within this model. Hence the way to look at this situation is that P

equals the direct effect, p,, h

plus correlation due to correlation with another cause, ps, p; 5

N

X — X,

.X~|Ilv.vnu

\\

Similarly, we may break down p,, into the components: direct effect,
P32 .
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plus correlation due to correlation with another cause, p3; ;5

v\\&

llll'
xu

The same kind of reasoning interprets the remaining correlations.
For p,, we obtain the direct effect, p,,

N

X, — X4

X X3

v

plus the indirect effect, p,; ps,

x2

X

plus correlation due to the correlation of x; with another cause (x,),

working both directly, p,; 012
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and indirectly, p,y3 p3, P12

X3 > X3

Xy

We decompose p,, into the direct effect, p,,

N

Xy X4

—
X, X5

v

plus the indirect effect, p,; ps,

w/

X2

—_—
Xy X3

/

plus correlation due to the ooqo_mSOb of x, with another cause (x,),
working both directly, p,, p;5

N
x > *a

X x5




40 INTRODUCTION TO STRUCTURAL EQUATION MODELS

and indirectly, ps3 P31 P12

B
X~K

As in the previous version of the model, p34 involves no indirect omoo.a,
but the correlation generated by the common causes (X; mwa x,) in-
volves both the direct effects of those causes and the correlation due to
the fact that they are correlated with each other. Hence, p34 equals the

direct effect, p43

™~

X, — %a

X—> X3

/

plus correlation due to x, as a common cause, Paz P32

N

t’x
Xy 4

kwll\|w X3

and X, as a common cause, Pay P31

B

Xy \
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plus correlation due to the correlation of x, with another common
cause (Xz), Pa2 P31 P12

and correlation due to the correlation of x, with another common
cause (X;), Pa1 P32 P12

™

Xy > X4

x, X3
/
For some purposes, one might be content to aggregate the last four
components, so as to describe the correlation p3,4 as being generated
by the direct effect (p,3) and the correlation due to the influence of the
two common causes, x; and x,, on x; and x,.

To bring this discussion within the scope of Sewall Wright’s multi-
plication rule, we stipulate that the curved double-headed arrow is
read either back or forward.

It is, of course, an undesirable property of this modified model that
we cannot clearly disentangle the effects of its two exogenous variables.
But our theory may simply be unable to tell us whether x; causes x,
x, causes x,, each influences the other, both are effects of one or more
common or correlated causes, or some combination of these situations
holds true. In that event, we cannot know for sure whether a change
initiated in (say) x, will have indirect effects via x, or not, since we do
not know whether x, depends on x;. It follows that we cannot, with
this model, estimate the total effect (defined as direct effect plus indirect
effect) of x, on, say, x,. There may or may not be an indirect causal
linkage from x, through x, to x,. But since we know nothing about

this, we cannot include any such indirect effect in our estimate of total
effect.
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It should be noted, in both forms of the model, that the zero-order
correlation between two variables often is not the correct measure of
total effect of one variable on the other, since that correlation may
include components other than direct and indirect effects.

In a further modification of the four-variable model, we suppose that
X1, X, , and xj all are exogenous. This gives rise to the degenerate case
of a single-equation model:

Xa = Pa3X3 + Pa2Xy + Pg1 X1 + PawX
The disturbance is uncorrelated with the exogenous variables.
There are three normal equations:

P14 = Pa1 + PaspP12 + Pa3pPis
P24 = Ps1P12 + Paz + PazpPas

P3a = Pa1P13 + PazParz + Pas

As before, if sample correlations are inserted into these equations, the
solution for the p’s yields least-squares estimates of the parameters.

None of the correlations on the right-hand side of the normal equa-
tions can be expressed in terms of path coefficients. Therefore, we
cannot separate indirect effects from correlation due to common or
correlated causes. Thus, the only decomposition we can provide is the
following:

Correlation due

Causal Total Direct to common andjor
. R = +

variable correlation effect on x, correlated causes
X3 Pia Pay Paz2P12 + Pa3pis
X2 P24 Paz Pa1P12 + Pa3pP2s
X3 P3q Pa3 P11P13 + Paz2P23

The path diagram for this single-equation model is shown below:

*1

S
{_—

X3
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Correlations between exogenous variables are represented by curved,
double-headed arrows. The normal equations can be written using
Sewall Wright's rule. The curved arrow can be read either forward or
backward, but only one curved arrow can be included in a given trajec-
tory. Thus, to find p, 4 (for example), we read Par

Xy

N

(—

plus paz p12

plus pa3 P13 -

The single-equation model correctly represents the direct effects of the
€xogenous variables. But, since the causal structure of relationships
among the exogenous variables is unknown, this model cannot tell us
anything about how the indirect effects (not to mention total effects)
are generated. In this respect, it is even less satisfactory than the two-
equation model.

A major goal of theory, therefore, should be to supply a model that
will make some of the exogenous variables endogenous.

This discussion has illustrated a significant theorem: The direct
effects of predetermined variables in one equation of a model on the
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dependent variable of that equation are the same, irrespective of the
causal relationships holding among the predetermined variables. Thus,
returning to the complete model discussed at the beginning, the values
of p41, Paz > and p4s in the third equation do not depend on whether x,
causes x; or vice versa in the first equation or on whether x,, x,, or x;
is the dependent variable in the second equation.

Thus far we have only considered models in which all direct paths
allowed by the causal ordering are, in fact, present in the model. We
must now consider procedures suited to recursive models in which one
or more such paths are (or may be) missing. These procedures have to
do with the distinct (though related) problems of estimation and
testing. We discuss them in that order.

We have seen that in the fully recursive model with direct paths from
each “earlier ” variable to each “later” variable, the path coefficients
may be estimated by OLS regression. Suppose, however, that our
model, while recursive, explicitly specifies that one or more coefficients
are zero. To take a concrete example, consider this path diagram

AN
/\/\

The equations of the model are
(x, exogenous)
X2 = P21 X1t PauXy
X3 = P32X2 + P31 X1 + P3y X,
X4 = Pa3X3 t Pa1 X1 + PawXy

The only change from the model on page 28 is that p,, = 0. We
continue to assume that all variables (including disturbances) are in
standard form. In each equation of the model, the disturbance is uncor-
related with the predetermined variables. Moreover, we take the model
to be fully recursive, so that the disturbance in each equation is uncor-
related with predetermined variables in all “earlier ” equations. (Here,
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as elsewhere in this chapter, we allow the zero correlation of two
disturbances to appear as a consequence of the zero correlation of
disturbances with prior predetermined variables.) The force of this
specification, with special reference to the present example, is that
P2w =0, even though x, does not appear (explicitly) in the
x4-equation. We have, then, the following specification on the distur-
bances: py, = P1, = P1y = P2p = Paw = P13 = 0. As a consequence of
this specification, we find that it is also true that p,, = p,., = p,,, = 0.

The normal equations for the x,-equation and the x;-equation are
the same as before, and OLS estimates of their path coefficients are
obtained by formulas given earlier.

Multiplying through the x,-equation by each predetermined varia-
ble, we find

P14 = Par + PazpPia
P24 = Pa1P12 + PasP23
P34 = Pa1P13 + Pas

Assuming the p’s are known, we have three equations in the two un-
known path coefficients. In mathematical terms, the solution for the p’s
is overdetermined. In the language of structural equation models, the
x4-equation is overidentified. In the event that an equation in the model
is overidentified, we may deduce that one or more overidentifying re-
strictions must hold if the model is true. Here, we can ascertain the
overidentifying restriction by writing out each of the solutions for
the p’s obtained upon solving a pair of the normal equations. There are
three distinct solutions. If the model holds, the values obtained in all
three must be equal. Thus,

() (i) (i)

P1a — P13P3a _ P1apPrs — }ubmaﬂbna — P23P34
1 Ibmw P23 — P12P13 P12 — P13P23

Pa1 =

P3a — P13P1a _ P2a — P12P14 Hb:bup — P13P24
1 - bmu P23 — P12P13 P12 — P13P23

Daz =

where solution number (i) makes use of the first and third normal
equations, number (ii) is from the first and second normal equations,
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and number (iii) is from the last two normal equations. If p{} = p4? it
follows that

P2a + P13P1aP23 + P12P13P3a — P2aP13 — P23P3s — P12P14 =0

We note that this expression is just the expansion of the determinant
given as the numerator of p,, on page 30; and that determinant must
be zero if p,, = 0. We reach the same conclusion from any of the other
equalities of solutions for p,, or p,;. These several equalities are not
independent. There is actually only one overidentifying restriction on
this model.

Now, the overidentifying restriction must hold in any population in
which the model applies. But if we have only sample values of the
correlations we cannot expect it to hold exactly, nor can we expect the
three solutions for each path coefficient to be exactly equal. In that
event, to estimate the path coefficients we must choose one of
the solutions, or perhaps some average of them. Since each solution
makes use of only two of the normal equations, it would appear that
averaging the solutions would be advisable, since we would then be
making use of all the sample correlations rather than only some of
them. This intuition, however, is wrong. It turns out that the preferred
estimate is obtained upon inserting sample correlations into solution
(i). It will be noted that the estimates of p,; and p,; obtained in this
way are just the OLS regression coefficients of x, on x; and x;. The
general rule, then, is this: In a fully recursive model (where the correla-
tion between each pair of disturbances is zero), estimate the coefficients
‘in each equation by OLS regression of the dependent variable on the
predetermined variables included in that equation.

The basis for this rule is a proof that the sampling variance of a p
estimated by OLS is smaller than the variance of any other unbiased
estimate of the same coefficient, even if such an estimate appears to use
more information in the sense of combining correlations involving the
included variables with correlations involving the excluded
predetermined variable(s). Some of the earlier literature on path
analysis was in error on this point; it was called to the attention of
sociologists by A. S. Goldberger (1970).

We now turn to the problem of testing. In the preceding example, we
discussed estimation on the assumption that the model and, in particu-
lar, the overidentifying restriction on the model are known in advance
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to oo true. But the investigator may not feel confident of this
specification. Indeed, he may be undertaking a study precisely to test
that aspect of his theory which says that a particular coefficient should
be zero. Much of the literature on causal models in the 1960s—
ﬁm:_o.Eml% papers discussing or using the so-called “Simon-Blalock
technique "—focused on this very question. Sometimes the problem
was described as that of « making causal inferences from correlational
amﬁm,.: but that ambiguous phrase seems to promise far too much. In
the __.mE of our preceding discussion, it would be more accurate to
describe the problem as that of testing the overidentifying restriction(s)
of a model.

We first take note of two plausible and conceptually correct
procedures for making such tests on recursive models. But, since these
procedures are not convenient from the standpoint of the standard
methods of statistical inference, we conclude with an alternative
recommendation.

Oos::i:m. with the example already described, suppose the analyst
computes estimates of the path coefficients, Pa; and pu,, by some
method ?oﬁ necessarily the OLS estimates recommended above). If
these om.camamfomz them p,; and p,;—are combined with sample
correlations according to the normal equations, we have

x __ =~ ~
F1a = D4y + Pasty3

X > ~

F24 = ParT12 + Paataz
* _ =~ ~

T34 = Pa1713 + P43

where Thj is an observed sample correlation and r¥; is the “implied ”
(“predicted ” or « reproduced ”) correlation that would be observed if
the o<.o1aoba§:m restriction(s) held exactly in the sample. Because of
sampling error, implied and observed correlations will ordinarily not
all be equal. Thus, we have a set of discrepancies,

&HAIJA I.Jwa.
drs =1y — 13
dys =r3s — 1%,

If the OLS method of estimation were used, we would have
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dys = d34 = O but d,, # 0.If some other method were used we would
still find one or more d’s differing from zero. However, if the model
holds true in the population, any such difference(s) should be “small,”
that is, no larger than one might reasonably expect as a consequence of
sampling error alone.

It would seem plausible to use the set of d’s in a formal statistical test
against the null hypothesis which asserts the truth of the overidentify-
ing restriction(s) of the model. However, this procedure is less conven-
ient than the standard test described later, in the event that this test is
available. Under some circumstances—though not in the case of the
model used as an example here—the method of implied correlations
may be recommended cautiously as a heuristic expedient, if an appro-
priate standard statistical test is not available. It may also be of use in
the initial stage of specifying a model, where the investigator wishes to
make an informal test of his ideas.

A similar approach to testing of overidentifying restrictions is the
Simon-Blalock procedure. Consider any fully recursive model in
which one or more paths are taken to be missing, that is, to have the
value zero. It is then possible to deduce that certain simple and/or
partial correlations will be zero. Blalock (1962-1963) has actually
provided an exhaustive enumeration of the “ predictions ” for all pos-
sible four-variable models. The example given here appears in Blalock’s
enumeration as “Model E,” and we find that in this model p,, ;3 = 0.
The corresponding sample partial correlation (r,, ;) should, there-
fore, be close to zero. If it is not—if the difference from zero is
too great to attribute to sampling error—we should be obliged to
call into question the overidentifying restriction of this model. Blalock
does not develop formal procedures of statistical inference for this
kind of test. Again, we conclude that the proposed test is conceptually
valid and is useful to the investigator who wants to be sure he under-
stands the properties of his model. The research worker should not,

however, rely on mere inspection of sample partial correlations. We
recommend instead the standard statistical test described hereafter.

In our example, the issue as to the specification of the model is
whether p,, = 0 or ps, # 0. In other words, we must decide as
between the competing specifications of the x,-equation:

X4 = Pa3X3 + Pa1X1 + DawXw
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and

X4 = Pa3X3 + ParXa + Par X1 + PanX,,

We proceed on the latter specification and estimate by OLS the equa-
tion which includes p,, . In the usual routine for multiple regression we
obtain as a by-product of our calculations the quantities necessary to
compute the standard errors of our estimated coefficients (see, for
example, the chapter on multiple regression in Walker and Lev, 1953,
where the procedures are described for standardized variables). We
may then form the ratio,

t = Pa3/S.E.(Py2)

and refer it to the ¢-distribution with the appropriate degrees of free-
dom. Roughly speaking, if one is working with a reasonably “large”
sample, when || > 2.0, we may conclude with no more than 5% risk
of error that the null hypothesis is false. In this event, we would reject
the overidentifying restriction of the model and, presumably, respecify
it to include a nonzero value of p,,.

In the case of failure to reject the null hypothesis—that is, if the
t-ratio is not statistically significant—the situation is intrinsically am-
biguous. Clearly, one is not obliged to accept the null hypothesis unless
there is sufficient a priori reason to do so. It could happen, for example,
that the true value of p,,, is positive but small, so that our sample is just
not large enough to detect the effect reliably. If our theory. strongly
suggests this is the case, we would do well to keep p,, in the equation
despite the outcome of the test. In any event, it is good practice to
publish standard errors of all coefficients, so that the reader of the
.Smomnor report may draw his own conclusion as well as have some
idea of the precision of the estimates of coefficients. A good discussion
of the issues raised by tests of this kind is given by Rao and Miller
(1971); their discussion is presented in the context of a single-equation
Boawr .UE it carries over to the problem of testing an overidentifying
restriction on any equation of a recursive model.

This is not the place to develop the theory and techniques of statisti-
cal inference. What has been said can be reduced to a simple rule: If
OLS regression is the appropriate method of estimation, the theory
and techniques of statistical inference, as presented in the literature on
the multiple regression model, should be drawn upon when making




50 INTRODUCTION TO STRUCTURAL EQUATION MODELS

tests of overidentifying restrictions. (Perhaps we should note that such
a test will not always involve the ¢-statistic for a single coefficient but
may lead to the F-test for a whole set of coefficients.) This rule does not
cover all cases, as will become apparent when we consider models for
which OLS is not the appropriate method of estimation.

It is vital to keep the matter of tests of overidentifying restrictions in
perspective. Valuable as such tests may be, they do not really bear
upon what may be the most problematical issue in the specification of
a recursive model, that is, the causal ordering of the variables. It is the
gravest kind of fallacy to suppose that, from a number of competing
models involving different causal orderings, one can select the true
model by finding the one that comes closest to satisfying a particular
test of overidentifying restrictions. (Examples of such a gross misun-
derstanding of the Simon-Blalock technique can be found, among
other places, in the political science literature of the mid-1960s.) In fact,
a test of the causal ordering of variables is beyond the capacity of any
statistical method; or, in the words of Sir Ronald Fisher (1946), “if . . .
we choose a group of social phenomena with no antecedent knowledge
of the causation or absence of causation among them, then the calcula-
tion of correlation coefficients, total or partial, will not advance us a
step toward evaluating the importance of the causes at work [p. 191}

Exercise. Show how to express all the correlations in terms of path
coefficients in the model on page 44, using Sewall Wright's multiplication
rule for reading a path diagram.

Exercise. Change the model on page 28 so that p,s is specified to be
zero. Draw the revised path diagram. Obtain an expression for the over-
identifying restriction. Indicate how one would estimate the coefficients in
the revised model, supposing the overidentifying restriction was not called
seriously into question.

FURTHER READING

See Walker and Lev (1953, Chapter 13) for a treatment of multiple
regression with standardized variables. Sociological studies using re-
cursive models are numerous ; for examples, see Blalock (1971, Chapter
7) and Duncan, Featherman, and Duncan (1972).

Structural Coefficients
in Recursive Models

In Chapter 3 a four-variable recursive model was formulated in
terms of standardized variables. That procedure has some advantages.

(1) Certain algebraic steps are simplified.

(2) Sewall Wright’s rule for expressing correlations in terms of path
coefficients can be applied without modification.

(3) Continuity is maintained with the earlier literature on path
analysis and causal models in sociology.

(4) It shows how an investigator whose data are available only in
the form of a correlation matrix can, nevertheless, make use of a
clearly specified model in interpreting those correlations.

Despite these advantages (see also Wright, 1960), it would probably
be salutary if research workers relinquished the habit of expressing
variables in standard form. The main reason for this recommendation
is that standardization tends to obscure the distinction between the
structural coefficients of the model and the several variances and co-
variances that describe the joint distribution of the variables in a certain
population.
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