2

Correlation and
Causation

Partly for historical reasons, the topic of structural equation models
has often been approached by considering the implications of causal
relationships for observable correlations or, inversely, the problem of
rendering a causal interpretation of observed correlations. Taking the
correlation coefficient as a point of departure has been particularly
characteristic of psychometrics. But sociology, as well, has depended
heavily on this measure of the degree of linear association between two
quantitative variables. We suggest in Chapter 4 that a more fundamen-
tal view of structural equation models is secured by foregoing the
algebra of correlation. Nevertheless, some aspects of our topic are
quite convenient to develop in terms of correlation, so that is the way
we shall begin.

Let us reconsider briefly the illustrative model studied in Chapter 1:

y=byx+u

We already specified that E(x) = E(u) =0 [whence it follows that
E(y) = 0], and that E(xu) = 0. Let us now suppose that each variable
(3, x, and u) is to be reexpressed in units of its own standard deviation.
We can make the equality hold, while retaining the form of the model,

9




10 INTRODUCTION TO STRUCTURAL EQUATION MODELS

by introducing ratios of standard deviations in the following fashion:

6, X O, U
R W R
o, o, 0, 0, 0,
The expressions
Q..K
@zk| = ﬁwk
Q.z
L p
o yu

were termed path coefficients by Sewall Wright (1921, 1960, 1968), the
great pioneer in the development of structural equation models (Li,
1956, 1968 ; Goldberger, 1972a). Let us now revise our notation, so that
y, x, and u are the standardized values of the dependent variable, the
independent variable, and the disturbance. Henceforth, in Chapters 2
and 3 only, we shall suppose that E(y?) = E(x?) = E(u?) = 1, since the
variance of a standardized variable is unity.

Writing our model in terms of path coefficients and standardized
variables, we have

V= PyX + Pl

with the specification E(xu) = 0, which is not affected by standardiza-
tion. (Why?) We may study the properties of this model, as coﬁﬂa, by
multiplying through the equation by one or another of the variables,
taking expectations, and simplifying. The last step calls upon the
theorem that the covariance of two standardized variables is the
coefficient of correlation. Hence, using the letter rho to designate
the correlation between two variables in the population under study
(reserving the letter r for the corresponding correlation in a sample),
we have

E(xy) = pxy
We see at once that, since
E(xy) = Py E(x*) + ppuE(xu)
we have an equality of the path coefficient and the correlation,

Ekv = wa
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recalling that E(xu) = p,, = 0. (We hasten to add that the path
coefficient has the same value as the correlation because this model is
one with only a single explanatory variable; this will not hold true in
general.) In writing path coefficients, as for structural coefficients, the
first subscript refers to the variable affected, the second to the causal
variable. In writing simple correlations, the order of subscripts is
immaterial, since p,, = p,,.
The variance of the dependent variable is given by

E(y*) = pyxE(yx) + pyuE(yu)
But, since E(y*) = 1, we have

L= pyPys + PruPru
Multiplying the equation of the model through by u, we find

E(yu) = p,,E(xu) + p,, E(uu)
so that

Pyu = Pyu

Hence, with one dependent variable, one explanatory variable, and the
disturbance, we find that the variance (set at unity) of the dependent
variable is partitioned into

1=pl +pk

the “explained ” (by x) and “unexplained  portions.

As the reader must have guessed, this little model has been used
primarily to illustrate notation, nomenclature, and the basic
techniques to be used henceforth in studying properties of a model. It
is time to complicate the discussion, and we do so by introducing a
third explicit variable in addition to x and y. Three-variable models are
interesting mainly for didactic purposes. But they illustrate all the
essential principles that apply in more elaborate models.

Let us call the three variables x, y, and z and assume that each is in
standard form. For the time being, we will suppose that nothing is
known about the causal relationships—which (if any) of these var-
iables cause(s) any of the others. It has sometimes been thought that
correlations among variables can be employed in a quasi-deductive
logic: If A and B are positively correlated, and if B and C are positively
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correlated, then it is quite likely that A and C are positively ooqoﬂw:&.
Whatever its plausibility in any particular concrete instance, this mode
of reasoning clearly is not rigorous 1n general. If pyys Pxz> and p,, are
the correlations among three variables, then it can be shown that a

certain determinant must be nonnegative; that is, that

1 pxy P
Pxy 1 Py: =14 Nbxzbzubxn - bw@ - bwn - EWN = 0
Prz Py 1

This theorem places only very broad constraints on the possible range
of values of any on¢ of the correlations. To see this, put 1n gﬁoﬁro:om;
values for two of the correlations, evaluate the determinant, and

analyze the result. For example, if pez = Pyz = 5, we have
lebmz;‘bxzwo
so that p,, can have any value between —5 and +10. If
Prz = Pyz = z\lm (about 707), we have
Py — P 20

so that p,, 18 constrained to fall between zero and cEQ. .,EEmu one
must assume rather high values for two of the correlations 1n order to
decide with certainty even the sign of the third correlation. .

If, on the other hand, we are in a position to assume causal Hoﬂwﬁoa-
ships among the variables, rather strong deductions may be possible.
To illustrate, consider the diagram

u v

Model I
X— Y — z
We interpret this as a representation of a two-equation model,

= PyX T Prtlpfodel 1
z= ﬁnzv\ + Pzo?¥

where the p's are path coefficients and the specification on Eo distur-
bances 1S Pux = Pox = Poy = 0. That is, each disturbance 18 uncor-
related with all © prior” causal variables. (But note that neither puy,
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Puz»> NOT P, 18 zero.) Let us substitute the value of y, as given by the
y-equation, into the z-equation:

z= ﬁnwﬁ.c.x.x + ﬁnvﬁﬁ.: + Pz?
Multiply through by x and take expectations:

Pzx = ﬁnvﬁek

since P, = Pxy = 0 and E(x?) = 1.0. But both the y-equation and the
z-equation are just like the model studied previously. So we already
know that p,, = p., and p,, = p,,. Hence, we conclude that for this
“simple causal chain” model

Pax = PryPyx

whatever the values of the two correlations on the right-hand side.

It is a plausible conjecture that when we attempt to reason from the
values of two correlations to the value of a third, we must actually be
working with an implicit causal model. With the right kind of causal
model, the reasoning is valid. Without one, the reasoning is loose.
Would it not be advantageous in such cases to make the causal model
explicit, so as to be able to check our reasoning carefully?

In general, the advantages of having the model explicit are seen to lie
in (1) making our arguments consistent (so that we are not altering our
premises surreptitiously in the course of a discussion), (2) making our
conclusions precise (so that it is easier to see what evidence is, and
what is not, compatible with them), and thereby (3) rendering our
conclusions susceptible of empirical refutation.

In the case of our causal chain, if p,, = .7and py, = .6, we infer that
pox = 42. The conclusion is, indeed, precise. If it is belied by the facts,
we must question one Or Mmore of the premises, for the argument itself is
explicit and unexceptionable. There are two difficulties, one material,
the other logical. The material difficulty is that we can never know p,,
exactly but can only estimate it from sample data. Hence the statement
P F 4218 based on a statistical inference and is, therefore, subject to
uncertainty (the degree of uncertainty, however, we may hope to esti-
mate by statistical methods). The logical difficulty is that, having
rejected the conclusion of our argument because it is contradicted by
the facts, we do not know which one(s) of the premises is (are) in error.
We may have entered into the argument with erroneous values of
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or both. Moreover, We may wwéoﬁwmuo M”M Mwi ow
i at. If, however, W O
asis for the argume € o et tha
s Emocﬁ.n two correlations m:.a also Homwo:MWWWQ Bden: de.
e o _mw jon is unsupported by evidence, W€ mu
the conclusi

i or a certain taste
lbeit an advantage the full enjoyment of which calls f
albel .
mo:aoarmsoﬁ BmwOQEwB.

Consider another diagram:
y -— U

\ Model 11
/

either p., OF Pyx

X

" e he same causal
- .
i have two equations, but this time they havet
Again, we

variable: ) = by N u%:«goa& =
= N.x.x + Nw N—..C

e o correlation between the omﬁm.m_
— 0. We further specify

he disturbances of the two equations,

1 ify a zer
equation we spect ™
b na the disturbance, SO that P = Pxv

variable an .
a zero correlation between t

\vﬁd = o. ~
Exercise. Show that in the mamm.&s M N&m::
this condition explicit, since it wa

= = 0. |

P i h variable 1n the
tion by cac :

; throvgh e onaawmm the result 1n terms of

I it was :::ammmma@.s E&&
plied by the specification,

We now multipl

model, take oxvoogao:mu and €xp
correlations.
Exercise. Verify the following results.
Pyx = Pyx
Pzx = Pzx
Pyz = PyxPax
puz = Py =0
Puy = Py

ECNHQNC
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We also find:

E(y?) P + P
E() = 1=ph+ b

The key result for Model 11 is that p,, = p,, p,,. Again we see the
possibility of rejecting the model, upon discovering that the value of
one of the correlations is inconsistent with the values of the other two,
assuming Model II is true.

It is worth noting that this test of Model II is equivalent to a test of
the null hypothesis that the partial correlation p,, , = 0. This is inter-
esting because the tradition of empirical sociology has placed strong
emphasis upon partial correlation, partial association, and “partial-
ing” in general as a routine analytical procedure. By contrast, the
approach taken in this book leaves rather little scope for partial cor-
relation as such, although it does attempt to exploit the insights into
causal relationships that often guide the capable analyst working with
partial correlations.

To show the connection of partial correlation with Model 11, recall

the definition of a first-order partial correlation in terms of simple
correlations:

p — P yz p z.bek
> /\H|bW&/\~|bW&
We see at once that, if Model II holds, the numerator of this partial
correlation is zero, since p,, = p,, p.,,and thus p,. . = 0. Let us sup-
pose that Model II has been rejected since p,, , in the population under
study clearly is not zero. We can represent the situation by relinquish-

ing the specification p,, = 0 which was originally part of the model.
We require a new path diagram,

\

* Model U (p,,. # 0)

™

Z Y

y-——1u

in which the curved, double-headed arrow linking u and v stands for
the correlation (p,,) between these two variables (leaving unresolved
the issue of whether that correlation has any simple causal interpreta-



16 INTRODUCTION TO STRUCTURAL EQUATION MODELS

tion). We note that the equations of Model II' can be solved, respec-
tively, for u and v,

— y = ﬁvﬁu«
Dy

Z = PixX

V= —"
Dzv

from which it is but a short step to

u

\VVN - bekbuk
DyuPzo

in view of results already obtained. We now note that

E(uv) = p,, =

Pr=1-pl=1-p
and

pl,=1-pl=1-p%
so that we may write

_ bwﬁ - bvkbNx
P /\H|bv~§/>|wa
But this is precisely the formula for p,. , given earlier. .

We see that Model II is a way of expressing the 3@0985. that a
single common cause (here called x) exactly accounts for the entirety OM
the correlation between two other variables (here, y and z). Model 11
asserts that y and z do indeed share x as a common cause, ._uE that
some other factor or factors, unrelated to x, also serve 8. induce a
correlation between them. Note that the hypothesis c:&.nn_w_:m zoao_
11 is subject to a direct test, once we have sufficiently reliable omm_ﬁmam
of the three observable correlations p,., p,., and p,,. Model II' is not
so easily rejected. Indeed, one can (if one wishes) defend Ew truth of
Model IT' in the face of any conceivable set of three ooﬂm_mco.bm (that
is, correlations that satisfy the condition stated for the aoazb_.cma on
page 12). To call Model II' seriously into question wnm:w requires :x.:
we develop and justify a different model such that, if the new model is

correct, Model II' cannot be true. (When you think you have learned -

enough about the technique of working with structural equation
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models to try your hand at i, you should undertake the exercise of
posing a countermodel to Model IT', such that a set of observable
correlations could show decisively that, if the new model is true, Model
IT" cannot be.)

We consider next a model in which one variable has the other two as
causes:

Z=DPny tpux+ v Model 111

It takes only one equation to write this model. Since the equation has
two variables that are causally prior to z, we specify that both are
uncorrelated with the disturbance term: Pyw = Pxw = 0. The model as
such says nothing about the correlation of y and x. In the absence of
definite information to the contrary, we would do best to assume that
this correlation may not be zero. Hence, the path diagram will be

drawn as
X
/ v
2+~ Model III

\

y

In some previous literature (for example, Blalock, 1962-1963), the con-
trary assumption led to Model III, as below, with Pry = 0.

k/rN\\e
-

y

Model IIT" has the ostensible advantage that one can test and possibly
reject it. The “test” would consist merely in ascertaining whether a set
of sample data are consistent with the hypothesis, Pxy = 0. But this
“test” does not get at the causal properties of the model in any way.
Indeed, one should think of the value of Pxy as being entirely
€xogenous in this model. The model might well hold good in different
populations with varying values (not excluding zero) of Pxy- We will
have to work harder to get a cogent test of Model II1.

Let us multiply through the equation of Model III by each of the
causal variables, take expectations, and express the result in terms of

Model 11T
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correlations. (By now, this technique should be quite familiar.) We find

Py = Py ¥ PexPrsl  (56m Model I1I)

Pxz = ﬁnzbk.e + Dzx
This set of equations may be looked at from two viewpoints. First, it
shows how the correlations involving the dependent variable are gen-
erated by the path coefficients and the exogenous correlation, p,,.
Second, if we know the values of the three correlations in a population
to which Model ITI applies, we may solve these equations uniquely for

the path coefficients:

_ Pzy — PzxPxy
Py 1—p%

Pzx — PzyPx

Pox =" 3

1-p3,

We note that any conceivable set of three correlations (that is, cor-
relations meeting the condition on the determinant on page 12) will be
consistent with the truth of Model III. (It may happen, incidentally,
that a path coefficient will have a value greater than unity or less than
—1.0, for this coefficient is not constrained in the same way that a
correlation is.) Thus to call Model III into question—other than by
questioning the plausibility of estimated values of the path
coefficients—really requires one to pit it against some alternative
model, supported by equally strong or stronger theoretical considera-
tions, such that if the new model is true Model I is necessarily faulty.

(We have not yet developed a broad enough grasp of the possibilities
to exemplify this strategy here; but upon completing your study of this
book, you should be able to employ it with confidence.)

We have now surveyed the whole field of possibilities for the class of
three-variable models involving just two causal paths and no “feed-
back” or “reciprocal” relationships. Other models of the kinds
already studied can be developed, however, merely by interchanging
the positions of the variables in Model I, II, or III. It is instructive to
study the entire set of models that can be formulated in this way.

In the diagrams in Table 2.1 the disturbances are not given letter
names (as they would be in the algebraic representation of these
models), but are symbolized by the arrows that originate outside the
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Table 2.1 Three-Variable Recursive Models with 2 Causal Arrows

Form of model Case A Case B Case C
Model 1
N |lvw\ ; ¥ 4
. ow\ * ‘IIV\
(i Nop ALY T~
V4 V4 zZ
¥ ¥ ¥
X 4— Yy X y k\l]' %\
(i) NN\ T
z z z
Abkn = bu@b.ﬁv A\vk.c = Pxz ENVV A\v.ﬁ = b%&bev
Model IT
14 ¥
=, T S
z /N\ /n
AN
(Py: = Py Psz) (Pxz = Py py2) (Pry = PxzPy)
Model 1T
AT
x y x l;ve\ x \A,w
//)?N\ 4/4/7 4/4/
z z

diagram. The specifications on the di
e disturbances are the i
as those already stated for Models I, I1, and III. same in form,

Exercise. Derive the conditio i

3 ns written below Models 1B, IC, 1IB, and
.ﬂo For ma% of Models I11B and 111C, derive a pair of equations @m?.mm-
Sing correlations in terms of path coefficients.
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With the aid of this figure, it is worth pondering the problem of
«causal inference.” Suppose that one does not know which variables
cause which other variables, but does know the values of the correla-
tions among the three variables in some population. Imagine that these
correlations satisfy the condition given for Model IA(1) (px; = Pxy Pyz)-
Should one report his “discovery” that z depends on y and y in turn
depends on x? No, for this same condition is also consistent with either
Model IA(ii) or Model IIB, where the causal relationship is quite
different.

You should immediately leap to the conclusion that one can never
infer the causal ordering of two or more variables knowing only the
values of the correlations (or even the partial correlations!).

We can reason in the other direction, however. Knowing the causal
ordering, or, more precisely, the causal model linking the variables, we
can sometimes infer something about the correlations. Or, assuming a
model for sake of argument, we can express its properties in terms of
correlations and (sometimes) find one or more conditions that must
hold if the model is true but that are potentially subject to refutation
by empirical evidence. Thus any one of Models IA, IB, IC, IIA, 1B, 11C
can be rejected on the basis of reliable estimates of the three correla-
tions, if their estimated values do not come close to satisfying the
condition noted in the figure. Failure to reject a model, however, does
not require one to accept it, for the reason, already noted, that some
other model(s) will always be consistent with the same set of data.
Only if one’s theory is comprehensive and robust enough to rule out all
these alternatives would the inference be justified.

We turn more briefly to three-variable models with one causal arrow
connecting each pair of variables in one direction or the other.

There are actually only two kinds of models. One is the recursive
model of the form

u

x\lvv\\\

7

v

in which each variable depends on all “prior” or ¢ predetermined ”
variables.

CORRELATION AND CAUSATION 21

Exercise. Enumerate the si ] ]

X x possible models of this general form, i

. . i )
changing variables. g “

Hro anoéwam_u_m recursive model is included within the four-
«m:mc._@ recursive model treated in the next chapter, so we shall not
investigate it further here.

The second kind of model involvin .
X g three causal arro .
sented by either of the diagrams below: WS 1S fepre

/
x \\ VR
AN AN

As we shall discover in the next chapter, neither of these is a recursive
model. For reasons that are probably not clear now, but should become
so upon study of nonrecursive models, we are no longer entitled to
assume that the disturbance in a particular equation is uncorrelated
with the causal variable in that equation. Indeed, that assumption is
not merely contrary to fact, it gives rise to logical contradictions. The
wE.a.m of deductions made for Models I, 11, and III are no :.Emﬂ
legitimate. Moreover, with nonrecursive models it is often not plausible
to assume that the disturbances in the several equations are un-

correlated among themselves (although this assumption can be made

if there are adequate grounds for doin
g so). In that event, h
confront a model like the following: ) we should

N
I e )

Y

wﬁ. this Bo.a.o_ is “underidentified,” the meaning and implications of
which condition we shall consider in Chapter 6.
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Note on Partial Correlation

In the foregoing we paid no attention to partial correlations except
when comparing Model II with Model IT, in which the partial correla-
tion p,, . = p,, is actually a parameter of the model. This omission
may seem odd to readers acquainted with the literature on “causal
inference” in sociology, wherein partial correlations seem to play a
central role. It is true, of course, that each of the conditions tabulated
on page 19 could be restated in terms of a certain partial correlation.

Thus, if, as for Model IA,
Pxz = Bk%bvﬁ

it will also be true that
_ Pxz = PxyP yz =0
\VXN.! /\H . EWV ,/\H _ EWN
Accordingly, we might treat the sample partial correlation r,, , as a test
statistic for the null hypothesis, p,, = p,,p,.. But we shall find in
Chapter 3 that it is not necessary to invoke the concept of partial
correlation in order to carry out an equivalent test.

We also note that the partial correlation, unless it has a well-defined
role as a parameter of the model or as a test statistic, may actually be
misleading. Continuing with the example of Model IA, suppose it
occurred to an investigator to estimate the partial correlation
p.,—not for any clearly defined purpose, but simply because it is a
“good idea” to look at the partial correlations when one is working
with three or more variables. We know that, by definition,

Doy = Pzy = PzxPyx
V1= /1 - pk
IfModelIA is true, we have seen that p,, = p, p,.,s0 we may substitute
that value into the foregoing formula to see what p,, , would be under
this model:

p — \vne - waka
o /\H|bW&/\H|bW&
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Now, if all the correlations are less than unity and p,, = p, p (as it
does when the model is true), we must have P < p2 szm also
wa. < p}.. It follows that the fraction on the right-hand mame_.m less than
unity, so that

__bN%.H_ < _bN!_

or, if p,, is positive,
bu.e..x < .bnv.

Now, it is not always clear what one does after “partialing,” but it
seems likely that the investigator who goes so far as to estimate p
will not leave the result unreported. Most likely he will m::o:mwm
something like, “ The relationship between z and yis reduced when x is
vn_a constant,” and perhaps offer reasons why this might happen. But
# ModelIA is true, this result is artifactual, and the investigator’s Svom
IS erroneous.

. gm.BmmE also note, in light of our work with Model I11, that if the
mvestigator had computed, not the partial correlation p_, _, but the
oo.qomvo:&:m partial regression coefficient, the outcome iwca not be
misleading. For the value of that regression coefficient is

Mr upon substituting p,, p,. for p,_ on the assumption that Model I is
rue,

That is, the partial regression coefficient is the same as the path
oo&mo.mm:r as it should be for this kind of model, and the numerical
result is intelligible in terms of the model, while the one for the partial
correlation is misleading.

. We find, therefore, that partial correlations may only be a distrac-
tlon when studying some of the models treated in this chapter (see also
U:soma.r 1970). Indeed the very concept of correlation itself has a
subordinate role in the development of structural equation models.
Although in Chapter 3 the presentation of recursive models does fea-
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ture correlations, in subsequent chapters both recursive and nonrecur-
sive models are treated from a different and more fundamental point of

view.

FURTHER READING

The classic exposition of the causal structures that may Eama.:o Eo
correlations among three variables is that of Simon (1954). > didactic
presentation of four-variable models much in the mwi.ﬁ of E._m chapter
is given by Blalock (1962-1963). Both papers are reprinted in Blalock

(1971).

™

Recursive Models

A model is said to be recursive if all the causal linkages run “one
way,” that is, if no two variables are reciprocally related in such a way
that each affects and depends on the other, and no variable “feeds
back ” upon itself through any indirect concatenation of causal link-
ages, however circuitous. However, recursive models do cover the case
in which the “same ” variable occurs at two distinct points in time, for,
in that event, we would regard the two measurements as defining two
different variables. For example, a dynamic model like the following:

Y

u_n~|7 Xi41
e
3¢

A

where ¢ and ¢ + 1 are two points in time, is recursive (even though x
appears to feed back upon itself). The definition also subsumes the
case in which there are two or more ostensibly contemporaneous
dependent variables where none of them has a direct or indirect causal

25

|
|
N
\
|
_
|
\
|
|
|
|
|
|
‘
\



