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Preliminaries

In this book we will frequently use a notation like the following:
u

X —>>y

It may be read as “a change in x or u produces a change in y” or “y
depends on x and u” or “x and u are the causes of y.” In all these
statements, we need to include a distinction between two sorts of
causes, x and u. We intend the former to stand for some definite,
explicit factor (this variable has a name) producing variation in y,
identified as such in our model of the dependence of y on its causes. On
the other hand, u stands for all other sources (possibly including many
different causes) of variation in y, which are not explicitly identified in
the model. It sums up all their effects and serves to account for the fact
that no single cause, x, nor even a finite set of causes (a list of specific
x's) is likely to explain all the observable variation in y. (The variable u
has no specific name; it is just called “the disturbance.”)

The letters (like x, y, and u), the arrows, and the words (like
“depends on ™) are elements in a language we use in trying to specify
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2 INTRODUCTION TO STRUCTURAL EQUATION MODELS

how we think the world—or, rather, that part of it we have selected for
study—works. Once our ideas are sufficiently definite to help us make
sense of the observations we have made or intend to make, it may be
useful to formalize them in terms of a model. The preceding little arrow
diagram, once we understand all the conventions for reading it, is
actually a model or, if one prefers, a pictorial representation of a
model. Such a representation has been found useful by many investiga-
tors as an aid in clarifying and conveying their ideas and in studying
the properties of the models they want to entertain.

More broadly useful is the algebraic language of variables, con-
stants, and functions, symbolized by letters and other notations, which
are manipulated according to a highly developed grammar. In this
language, our little model may be expressed as

y=bx+u
or, even more explicitly,
y=b,x+u

It is convenient, though by no means essential, to follow the rule that
y, the “ dependent variable” or “effect” is placed on the left-hand side
of the equation while x, the © independent variable™ or “cause,” goes
on the right-hand side. The constant, or coefficient b in the equation
tells us by how much x influences y. More precisely, it says that a
change of one unit in x (on whatever scale we adopt for the measure-
ment of x) produces a change of b units in y (taking as given some scale
on which we measure y). When we label b with subscripts (as in b,,) the
order of subscripts is significant: the first named variable (y) is the
dependent variable, the second (x) the independent variable.

(Warning: Although this convention will be followed throughout this
book, not all authors employ subscripts to designate the dependent and
independent variables.)

The scale on which u is measured is understood to be the same as
that used for y. No coefficient for u is required, for in one sense, u is
merely a balancing term, the amount added to the quantity bx to
satisfy the equation. (In causal terms, however, we think of y as
depending on u, and not vice versa.) This statement may be clearer if
we make explicit a feature of our grammar that has been left implicit

PRELIMINARIES 3

up to now. The model is understood to apply (or, to be proposed for
application) to the behavior of units in some population, and the
variables y, x, and u are variable quantities or “measurements” that
describe those units and their behavior. [The units may be individual
persons in a population of people. But they could also be groups or
collectives in a population of such entities. Or they could even be the
occasions in a population of occasions as, for instance, 2 set of elec-
tions, each election being studied as a unit in terms of its outcome )
and being characterized by properties such as the number of candi-
dates on the ballot (x), for example.] We may make this explicit by
supplying a subscript to serve as an identifier of the unit (like the
numeral on the sweater of a football player). Then the equation of our

model is
yi = byxi + 4

That is, for the ith member of the population we ascertain its score or
value on x, to wit x;, multiply it by b, and add to the product an
amount u; (positive or negative). The sum is equal to y;, or the score of
the ith unit on variable y. Ordinarily we will suppress the observation
subscript in the interest of compactness, and the operation of summa-
tion, for example, will be understood to apply over all members of a
sample of N units drawn from the population.

It is assumed that the reader will have encountered notation quite
similar to the foregoing in studying the topic of regression in a sta-
tistics course. (Such study is a prerequisite to any serious use of this
book.) But what we have been discussing is not statistics. Rather, we
have been discussing the form of one kind of model that a scientist
might propose to represent his ideas or theory about how things work
in the real world. Theory construction, model building, and statistical
inference are distinct activities, sufficiently so that there is strong pres-
sure on a scientist to specialize in one of them to the exclusion of the
others. We hope in this book to hint at reasons why such specialization
should not be carried too far. But we must note immediately some
reasons why the last two may come to be intimately associated.

Statistics, in one of its several meanings, is an application of the
theory of probability. Whenever, in applied work—and all empirical
inquiry is “applied ” in this sense—we encounter a problem that prob-
ability theory may help to solve, we turn to statistics for guidance.
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There are two broad kinds of problems that demand statistical treat-
ment in connection with scientific use of a model like the one we are
discussing. One is the problem of inference from samples. Often we do
not have information about all units in a population. (The population
may be hypothetically infinite, so that one could never know about
“all” units; or for economic reasons we do not try to observe all units
in a large finite population.) Any empirical estimate we may make of
the coefficient(s) in our model will therefore be subject to sampling
error. Any inference about the form of our model or the values of
coefficients in it that we may wish to base on observational data will be
subject to uncertainty. Statistical methods are needed to contrive opti-
mal estimators and proper tests of hypotheses, and to indicate the
degree of precision in our results or the size of the risk we are taking in
drawing a particular conclusion from them.

The second, not unrelated, kind of problem that raises statistical
issues is the supposition that some parts of the world (not excluding
the behavior of scientists themselves, when making fallible measure-
ments) may be realistically described as behaving in a stochastic
(chance, probabilistic, random) manner. If we decide to build into our
models some assumption of this kind, then we shall need the aid of
statistics to formulate appropriate descriptions of the probability
distributions.

This last point is especially relevant at this stage in the presentation
of our little model, for there is one important stipulation about it that
we have not yet stated. We think of the values of u as being drawn from
a probability distribution. We said before that, for the ith unit of
observation, u; is the amount added to bx; to produce y;. Now we are
saying that u; itself is produced by a process that can be likened to that
of drawing from a large set of well-mixed chips in a bowl, each chip
bearing some value of u. The description of our model is not complete
until we have presented the “specification on the disturbance term,”
calling u the “disturbance” in the equation (for reasons best known to
the econometricians who devised the nomenclature), and meaning by
the “specification ” of the model a statement of the assumptions made
about its mathematical form and the essential stochastic properties of
its disturbance.

Throughout this book, we will assume that the values of the distur-
bance are drawn from the same probability distribution for all units in
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the population. This subsumes, in particular, the assumption of
“ homoskedasticity.” It can easily be wrong in an empirical situation,
and tests for departures from homoskedasticity are available. When
the assumption is too wide of the mark, special methods-(for example,
transformation of variables, or weighting of regression estimators) are
needed to replace the methods sketched in this book. No special atten-
tion is drawn to this assumption in the remainder of the text: but the
reader must not forget it, nonetheless. Another assumption made
throughout is that the mean value of the disturbance in the population
is zero. The implications of assumptions about the disturbance are
discussed in Chapter 11.

Frequently we shall assume explicitly that the disturbance is uncor-
related with the causal variable(s) in a model, although this assump-
tion will be modified when the logic of the situation requires. Thus for
the little model under study now, we specify that E(xu) = 0. (E is the
sign for the expectation operator. If the reader is not familiar with its
use in statistical arguments, he should look up the properties of the
operator in an intermediate statistics text such as Hays, 1963, Appen-
dix B.) The assumption that an explanatory or causal variable is uncor-
related with the disturbance must always be weighed carefully. It may
be negated by the very logic of the model, as already hinted. If it is
supposed, not only that y depends on x, but also that x simultaneously
depends on y, it is contradictory to assume that the disturbance in the
equation explaining y is uncorrelated with x. The specification
E(xu) = 0 may also be contrary to fact, even when it is not inherently
illogical. The difficulty is that we will never know enough about the
facts of the case to be sure that the assumption is true—that would be
tantamount to knowing everything about the causes of y. Lacking
omniscience, we rely on theory to tell us if there are substantial reasons
for faulting the assumption. If so, we shall have to eschew it—however
convenient it may be—and consider how, if at all, we may modify our
model or our observational procedures to remedy the difficulty. For we
must have this assumption in the model in some form—though not neces-
sarily in regard to all causal variables—if any statistical procedures
(estimation, hypothesis testing) are to be justified. Here we distinguish
sharply between (1) statistical description, involving summary meas-
ures of the joint distributions of observed variables, which may serve
the useful purpose of data reduction, and (2) statistical methods
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applied to the problem of estimating coefficients in a structural model
(as distinct from a “statistical model ) and testing hypotheses about
that model. One can do a passably good job of the former without
knowing much about the subject matter (witness the large number of
specialists in “multivariate data analysis” who have no particular
interest in any substantive field). But one cannot even get started on
the latter task without a firm grasp of the relevant scientific theory,
because the starting point is, precisely, the model and not the statistical
methods.
In summary, we have proposed a model,

y=b,x+u

and stated a specification on its disturbance term, E(xu) = 0. Without
mentioning it before, we have also been assuming that E(x) = 0, which
is simply a convention as to the location of the origin on the scale of
the independent variable. It follows at once that

E(y) = b, E(x) + E(u) = 0.

Now, each of the variables in our model has a variance, and it is
convenient to adopt the notation,

Oyy = NQNV
0w = E@u?)

for the variances (writing g,,, for example, in place of the usual 62).
There are also three covariances,

,x = E(yx)
0, = E(yu)
6= E(xu)=0

The disappearance of the last of these covariances is merely a restate-
ment of the original specification on the disturbance term. To evaluate
d,, we multiply the equation by u and take expectations, finding

E(yu) = by, E(xu) + E(u)
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so that 6, = g,,, in view of the fact that E(xu) = 0. Let us multiply
through the equation of our model by y, obtaining,
y? =b,.xy + yu
We take expectations
E(y*) = by, E(xy) + E(yu)
and thereby find that we can write the variance of y as
6,y =b,.0,,+ 0,

since 6, = o, as already noted. Let us next multiply through by x and
take expectations. We find

E(xy) = by, E(x*) + E(xu)
or
Q..xv = vkakk

Substituting this result into the expression for the variance of y, we
obtain

— K2
Q..e.c - @v.xa.xx + Q..E

(The same result is obtained upon squaring both sides of y = b,x+u
and taking expectations.)

The three symbols on the right-hand side stand for the basic pa-
rameters of this model as it applies in a well-defined population:

—the structural coefficient b, ,
—the variance of the exogenous variable x,
—the variance of the disturbance u.

The variance in the dependent variable is traceable to these three
distinct sources. .

The expression just obtained for the covariance of the two observ-
able variables is a suggestive one, for we can immediately rewrite it as

Q

b = %=

yx =
Qkk

We see that if we knew o, and o, we could calculate the value of the
structural coefficient. We do not and, in general, cannot know these
quantities exactly. But we can estimate them, or their ratio, from data
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pertaining to a sample of the population to which the model applies.
How to use this sample information in a correct and efficient manner is
a topic studied in the statistical theory of estimation. In this book, we
will draw upon a few important results from that theory, but will not
try to demonstrate those results.

Exercise. Our model

y=bx+u
could be solved for x, to read
= 11
=5 "

Let 1/b be renamed ¢ and —u/b be called v. Someone could, therefore,
assert that our model is equally well written

x=cy+v

But on the assumption that our original model is true (including the
specification on the disturbance term) show that the disturbance is not
uncorrelated with the variable on the right-hand side, that is, E(yv) # 0.
Show also that we cannot solve for ¢ using the same kind of formula
developed for the original model, that is, c # o,y/0,,. How do you square
this result with the well-known fact in statistics, that there are two regres-
sions, Y on X and X on Y?

FURTHER READING

The statistical methods of simple and multiple regression are well
presented in Snedecor and Cochran (1967, Chaps. 6, 7, and 13). A
judicious discussion of issues raised in the use of the regression model
to represent a causal relationship is given by Rao and Miller (1971,
Chap. 1).



