2.5 RANDOM VECTORS AND MATRICES

A random vector is a vector whose elements are random variables. Similarly, a ran- ~
dom matrix is a matrix whose elements are random variables. The expected value
of a random matrix (or vector) is the matrix (vector) consisting of the expected val-
ues of each of its elements. Specifically, let X = {X;}beann Xp random matrix.
Then the expected value of X, denoted by £ (X), is the n X p matrix of numbers

(if they exist)

E(Xy1) E(Xp,) E(X1p)
E().(Zl) E().(zz) E().(Zp) (2_23)

E(X) =
E(X,)) E(X,)  E(X,)

where, for each element of the matrix,?

* £(x,)d if X, is a continuous random variable with |
J_wxif ij\%ij) @%ij - probability density function fii(xij)

E (Xij) = -
2 % p,i (%) if X, is a discrete random variable with
HEUE probability function p;;(x;;)

allx;

Example 2.12 (Computing expected values for discrete random variables)
Suppose p =2andn =1, and consider the random vector X' = [ X, X,]. Let
the discrete random variable X, have the following probability function:

x | -1 0o 4
pi(x) | 3 3 4
21f you are unfamiliar with calculus, you should concentrate on the interpretation of the expected

value and, eventually, variance. Our development is based primarily on the properties of expectation
! rather than its particular evaluation for continuous or discrete random variables.

£
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Then E(X,) = D, x,p,(x) = (=1)(3) + (0)(3) + (1)(4) = .L

allx,

Similarly, let the discrete random variable X, have the probability
function

| 0 1
po(x)| 8 2

Then E(X,) = ;xzpz(xz) = (0)(.8) + (1)(2) = 2.
Thus, .

_[E@x)] T4
s - [ £ ] - 2] .

Two results involving the expectation of sums and products of matrices fol-
low directly from the definition of the expected value of a random matrix and the
univariate properties of expectation, E(X, + Y;) = E(X ,) + E(Y;) and
E(cX;) = cE(X,). Let X and Y be random matrices of the same dimension, and
let A and B be conformable matrices of constants. Then (see Exercise 2.40)

- EX AW =EX) +EY) 2
. E(AXB) = AE(X)B .

2.6 MEAN VECTORS AND COVARIANCE MATRICES

Suppose X = [X, X,,..., X,] is ap X 1 random vector. Then each element of X
is a random variable with its own marginal probability distribution. (See Example
2.12.) The marginal means y; and variances o? are defined as p; = E(X;) and
o> = E(X; — ;)% i = 1,2,..., respectively. Specifically,

j B X, f(x,) dx if X, is a continuous random variable with probability
VTR density function f(x;)

S xpi(x) if X, is a discrete random variable with probability

an function p,(x;)
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f * (v — w)f(x)dx, if X, is a continuous random variable
o Rid Jilxi) €% yith probability density function f,(x;)

2 (x; — w,)2p;(x,) if ‘X,. isa disgr‘ete rand‘om variable
i with probability function p,(x;) (2-25)
It will be convenient in later sections to denote the marginal variances by o, rather
than the more traditional ¢?, and consequently, we shall adopt this notation.

The behavior of any pair of random variables, such as X; and X, is described
by their joint probability function, and a measure of the linear association between
them is provided by the covariance

Oix = E(X; - i) (X — M)

o N if X;, X, are continuous
f,m f . (o = ) O = wi) fuc (X x) i, dlx, randomkvariables with
the joint density
function f, (x;, x;)
ﬁ > > 0 = m) O = )P (X %) if X, X, are dlscreFe
allx, allx, random variable with
joint probability
L ‘ function p, (x;, x;)

(2-26)

and u; and p,, i,k = 1,2,...,p, are the marginal means. When i = k, the covarl-
ance becomes the marginal variance.

More generally, the collective behavior of the p random varlables
X, X,,..., X, or, equivalently, the random vector X = [X, X,,..., X,],
descrlbed by a joint probability density function f(x,,x,,...,x,) = (x). As we
have already noted in this book, f(x) will often be the multlvarlate normal density
function. (See Chapter 4.)

If the joint probability P[X; < x; and X, < x,] can be written as the product
of the corresponding marginal probabilities, so that

P[X, < x;and X, < x;] = P[X; < x;] P[X, = x/] (2-27)

for all pairs of values x;, x,, then X; and X, are said to be statistically independent.
When X, and X, are continuous random variables with joint density f, (x;, x,) and
marginal densities f;(x;) and f, (x,), the independence condition becomes

fuGix) = fi(xe) fi(x)

for all pairs (x;, x,).
The p continuous random variables X, X,, ..., X, are mutually statistically
independent if their joint density can be factored as
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f124..p(xl’x2’ ’xp) = fl (xl)fZ(XZ) ”.fp(xp) (2_28)

for all p-tuples (X1, Xp, ... 5 Xp)-
Statistical independence has an important implication for covariance. The fac-

torization in (2-28) implies that Cov(X;, X,) = 0. Thus,

if Xfanc_lw_ X, are indg)pehd” ptlw R

The converse of (2-29) is not true in general; there are situations where
Cov(X;, X;) = 0, but X; and X, are not independent. (See [2].)

The means and covariances of the p X 1 random vector X can be set out
as matrices. The expected value of each element is contained in the vector of
means p = E(X), and the p variances o;; and the p(p — 1)/2 distinct covariances
o, (i < k) are contained in the symmetric variance-covariance matrix % =

EX-mX- w)'. Specifically,

E(Xy) I
Exy = | D = B = (2:30)
ex))  Lu
and
5 = EX-mEX - p)
X, — m
_Eg|l| % THRK - Xy T e X )
X, -
[ X - ) (X, = p) (X = o) o (XK= e (X )
_ gl )& 1) (X, = p)* (X = ) (X - 1p)
(X = ) (% = ) (K, = ) (K~ Ba) S A
EX, — m) E(X, — ) (X, — m2) B — p) (X — my)
_ | EGp = )X - me) E(X, ~ 1)’ v E(X, - 1) (X, — )
B, — i) (K = i) B, = i) (Ko = ) N A

or
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Oy 012 770 Oy

P
T = Cov(x) = | 720 T2 % (2-31)
Tp1 Tp2 """ Opp

Example 2.13 (Computing the covariance matrix)

Find the covariance matrix for the two random variables X, and X, intro-
duced in Example 2.12 when their joint probability function py,(x, x,) is
represented by the entries in the body of the following table:

X3
Xy 0 1 pi(x))
-1 24 .06 3
0 16 14 3
1 40 .00 4
Dy (x3) 8 2 1

We have already shown that u, = E(X;) = .1l and u, = E(X;) = 2. (See

Example 2.12.) In addition,

o = E(X; — P«l)z = 2 (% - .1)2p1(x1)

= (=1 - .1)%(3) :“x(‘o — 1X3) + (1 - .1)%(4) = 69
oy = E(X; — 1y)* = E (x, = 2)°pa(xz)
= (0 = 2)%(8) + (1 — 2)*(2)
= 16
o= E(X, — u)(X, —m) = 2 (q— 10— Dpplxx)

all pairs (x,, x;)

+ o4 (1 - 1)1 = 2)(00) = —.08

(-1 = 1)(0 = 2)(24) + (=1 = 1)(1 — 2)(.06)

oy = E(X, — p) (X = my) = E(X; — w)(Xy = pp) = o, = —.08

Consequently, with X' = [X|, X,],

-0 - [230] - (0]

H
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and
2=EX-p)X - p)

g - (&—um&—u»]
(X; = ) (X — ) (X, — P«z)2

z[m&—mf ﬂ&—mﬂ&—mq
E(X, — pp)(X; — ) E(X, - #2)2

_ o o _ 69 —.08
0y Oy -.08 .16 ]

We note that the computation of means, variances, and covariances for dis-
crete random variables involves summation (as in Examples 2.12 and 2.13), while
analogous computations for continuous random variables involve integration.

Because o, = E(X; — u;) (X, — py) = oy, it is convenient to write the
matrix appearing in (2-31) as

01y Oy 770 Oy
S=EX-p)X-p)y=|%2 727 % 2-32)
Tip O2p """ Opp

We shall refer to u and % as the population mean (vector) and population vari-
ance—covariance (matrix), respectively.

The multivariate normal distribution is completely specified once the mean
vector u and variance—covariance matrix X are given (see Chapter 4), so it is not
surprising that these quantities play an important role in many multivariate
procedures.

It is frequently informative to separate the information contained in vari-
ances o;; from that contained in measures of association and, in particular, the
measure of association known as the population correlation coefficient p,,. The
correlation coefficient p;, is defined in terms of the covariance o;, and variances
o; and oy, as

O

Pik = VO VO

(2-33)

The correlation coefficient measures the amount of linear association between the
random variables X, and X,. (See, for example, [2].)
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Let the population correlation matrix be the p X p symmetric matrix

011 Y Tip
\/0'—11\/0'11 VO Vo, Vay VOpp
012 0y O2p

VUH@ VO3 VO 0'22\/‘_7';,—;

4V T2p Opp

1 P12 777 Pip
pi2 1 T Pyp

LP1p P2p ™" 1
and let the p X p standard deviation matrix be

\foﬁ o - 0
V2 = 0 ‘722:” 0

0 0o - \/0'.,)—[)
Then it is easily verified (see Exercise 2.23) that
V1/2pvl/2 = 2

and

: p = (VI/Z)—-lz(Vl/Z)—l

(2-34)

(2-35)

(2-36)

237)

That is, 3, can be obtained from V2 and p, whereas p can be obtained from 3
Moreover, the expression of these relationships in terms of matrix operations

allows the calculations to be conveniently implemented on a computer.

Example 2.14 (Computing the correlation matrix from the covariance matrix)

Suppose
4 1 2 o, Oy O3
S3=1(1 9 =3|=|0, 05 0
2 -3 25 O3 O3 O3

Obtain V2 and p



Sec. 2.6 Mean Vectors and Covariance Matrices 75

Here
Vo, 0 0 2 00
V2=1 0 Vo, 0 |=]|030
0 0 Vo, 005
and

1 00

(V/)7'=10 3 0

[0 0 &

Consequently, from (2-37), the correlation matrix g is given by

Loo][a 1 2][f 00
(V)TEW) =10 F ol 9 =310 30
oo 1]l2 -3 25]|0 0 !
=1 11—§
Ls -3 1 =

Partitioning the Covariance Matrix

Often, the characteristics measured on individual trials will fall naturally into two
or more groups. As examples, consider measurements of variables representing
consumption and income or variables representing personality traits and physical
characteristics. One approach to handling these situations is to let the characteris-
tics defining the distinct groups be subsets of the total collection of characteristics.
If the total collection is represented by a (p X 1)-dimensional random vector X, the
subsets can be regarded as components of X and can be sorted by partitioning X.

In general, we can partition the p characteristics contained in the p X 1 ran-
dom vector X into, for instance, two groups of size g and p — g, respectively. For
example, we can write

X, My
. q .
X, X iy u®
X=|%" = {““(55'] and p = E(X) = |- = e
g+1 X Mgt 1Y
: P-4 :
R L M
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ot III;_

From the definitions of the transpose and matrix multiplication,

(X(l) - ”(1))(X(2) — M(Z))f

X —
X, —m
= g : 2 [Xq+1 - :u'q+l’Xq+2 - l'Lq+2""’Xp - I"Lp]

X, Ky

(X, — Ml)(Xqﬂ - I“"q+1) (X, — I~L1)(Xq+2 - Mq+2) o (X Ml)(Xp - I‘Lp)
(X, — l“l’2)(){q+l - I“Lq+l) (X, — I‘LZ)(){q+2 - “‘q+2) (X, — P«z)_(Xp - M‘p)

(X, = 1) Kyer = o) (X, = ) Koz = tigrn) Xy = B (X, = )

Upon taking the expectation of the matrix (X — p®)(X® - n®)', we get ]

o-l,q+1 o-l,q+2 0-1p

o o O !
EXD — p®)(X® — p@y = | Trrt P2 T =%, @3)

Oug+1 Oqq+2 """ Tap }

which gives all the covariances, o-,.i,i =12,..,9,J=q9 %+ 1,q‘+ 2,...5D
between a component of X and a component of X®. Note that the matrix X, is

not necessarily symmetric or even square.
Making use of the partitioning in Equation (2-38), we can easily demon-

strate that
(X - X - p)
. |

il
(X(l) — M(l)) (x(l) — ”(1))' (X(l) — M(l)) (X(Z) — M(Z))'

= (2 V. (1xq) (gx1) (1x(-9)
(X(Z) - u®) (X(l) - uMy (X® — n®) (X® — n®y
((p=)xD 1xq (p—yx1) ax(p=q)

and consequently,
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With ¢’ = [a, b, aX; + bX, can be written as

[a b] [i‘] =X

Similarly, E(aX, + bX,) = ap, + bu, can be expressed as

[a b] [Ml] — C'M
H2
s = [0'11 0'12:|
012 02

be the variance—covariance matrix of X, Equation (2-41) becomes

If we let

Var(aX, + bX,) = Var(¢'X) = ¢'2¢c (2-42)

since -
oy O a

¢Sc=1[a b [ 1 12] |: J = a’¢,, + 2abo,, + b’c :

[ ] . b 11 12 2 .

The preceding results can be extended to a linear combination of p random variables:

~ The lincar combination ¢X = ¢,X; + -+ + ¢, X, has

;-«“ . = mean" e E(C'X) =cp

: yarianCé = Var(¢'X) = ¢S : (2-43)

here = E(X) and X = Cov(X).

In general, consider the g linear combinations of the p random variablgsf

X, X 12

Z, = X; t Xy + o X,
Z, = ¢ X + Xy + o 2, X,

Z,=cy Xt Xyt CepXp
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or
A ¢ Cip X,
z=|Z|=|% @@ o1 Nloex W
Zq Cq1 g2 Cap Xp
(gx1) (g%xp) (px1)

' The | combin ations "Z = CX have

he linear combin

E@ - ECX) =Cux -
Cov(Z) = Cov(CX) = C3,C

where gy and 3y are the mean vector and vatiance—covariance matrix of X, respec-
tively. (See Exercise 2.28 for the computation of the off-diagonal terms in Cx4C')

We shall rely heavily on the result in (2-45) in our discussions of principal
components and factor analysis in Chapters 8 and 9.

Example 2.15 (Means and covariances of linear combinations)
Let X' = [X,, X,] be a random vector with mean vector py = [u,, 4,] and

variance—covariance matrix
_ | %11 912
5, _[
0, 0Oy

Find the mean vector and covariance matrix for the linear combinations
Z, =X - X
Z,= X + X,

2= [2]-[ ][] e

in terms of py and 2.
Here

1 -1 —
w=r@=cu=[1 1 [1 ][]

or

and



