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Abstract
This article shows how structural equation modelling methods may be used to

carry out a valid regression analysis when independent variables are measured with
error. An essential part of the process is to overcome the problem of model identi-
fication. A general solution, called the “double measurement design,” is described;
this involves measuring each variable twice, in such a way that errors of measure-
ment are independent between occasions. When data are collected according to
the double measurement design, model identification is guaranteed, and the data
analyst need not struggle with mathematical details.

Keywords: Errors in variables, Model identification, Tau-equivalent measures,
Double measurement.

Introduction

In a survey, suppose that a respondent’s annual income is “measured” by simply asking
how much he or she earned last year. Will this measurement be completely accurate?
Of course not. Some people will lie, some will forget and give a reasonable guess, and
still others will suffer from legitimate confusion about what constitutes income. Even
physical variables like height, weight and blood pressure are subject to some inexactness
of measurement, no matter how skilled the personnel doing the measuring. In fact, very
few of the variables in the typical data set are measured completely without error. An
exception might be something like the amount of drug administered in a clinical trial.
Here, laboratory procedures guarantee that for all practical purposes, the amount of drug
a subject receives is exactly what you think it is. But in general, if a variable is simply
measured rather than being experimentally manipulated, there is usually at least a little
bit of measurement error.
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Random variables that cannot be directly observed are called latent variables. The
ones we can observe are sometimes called “manifest,” but in this paper they will be called
“observed” or “observable,” which is also a common usage. Upon reflection, it is clear that
most of the time, we are interested in relationships among latent variables, but at best
our data consist only of their imperfect, observable counterparts. One is reminded of the
allegory of the cave in Plato’s Republic, where human beings are compared to prisoners
in a cave, with their heads chained so that they can only look at a wall. Behind them is
a fire, which casts flickering shadows on the wall. They cannot observe reality directly;
all they can see are the shadows.

In ordinary least-squares regression, the only latent variable is the error term. Mea-
surement error in the dependent variable can perhaps be absorbed into the error term,
but there is no provision for measurement error in the independent variables. Unfortu-
nately, when independent variables are measured with error, the results can be disastrous.
Estimated regression coefficients are biased even as the sample size approaches infinity,
and Type I error rates can be seriously inflated.

This has been known for a long time. The alarm about biased regression coefficients
was sounded by Stouffer (1936), and by the seventh edition of Statistical methods for
research workers, Fisher (1938) was warning scientists about the problem. For a mod-
ern and readable discussion of what happens to ordinary least-squares regression when
measurement error is ignored, the classic article by Cochran (1968) is an excellent source.
Fuller (1987) provides an authoritative treatment of regression models that incorporate
measurement error; also see Cheng and Van Ness (1999). And the classical structural
equation models (for example Goldberger and Duncan, 1973; Jöreskog, 1978; McArdale,
1980; McDonald, 1978; Bentler and Weeks, 1980; Bollen, 1989) include regression with
and without measurement error as special cases.

Nevertheless, few regression texts outside Econometrics provide guidance about what
to do when the independent variables are measured with error. The present article at-
tempts to fill this gap. It uses language and notation associated with the LISREL struc-
tural equation model (Jöreskog, 1978; Bollen, 1989) rather than the arguably more sophis-
ticated approach of Fuller (1987), in order to be accessible to advanced undergraduates
in Statistics. Another advantage of the structural equation modelling approach is that
high-quality commercial software is available. SAS proc calis (SAS Institute, 1999) is
available in many academic environments, and LISREL (Jöreskog and Sörbom, 1996) and
AMOS (Arbuckle, 2006) are excellent programs with free student versions. There is also
a structural equation modelling package for R (Fox, 2006).

Here is the plan of the paper. Section 1 presents almost the simplest possible regression
model with measurement error. There is one independent variable, no intercept, additive
measurement error, and everything is normally distributed. We will see that even in this
case, the model parameters cannot be successfully estimated from the data. The problem
is model identification. When a statistical model is not identified, it is impossible to
recover the parameters even from an infinite amount of data.

Section 2 discusses model identification, and arrives at a well-known principle that
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applies to all structural equation models, including models of regression with measurement
error. The principle is this. The mean and covariance matrix of the observable variables
are always functions of the model parameters. If the model parameters are also functions
of the mean and covariance matrix, then those parameters are identified.

Section 3 describes a general solution of the identification problem for regression with
measurement error: the double measurement design. This consists of measuring all the
variables twice, preferably on two different occasions, with different measurement pro-
cedures. If this can be done in such a way that the errors of measurement on the two
occasions are independent, then model identification is taken care of automatically, and
the analysis can proceed in a routine manner.

The double measurement design is similar to the idea of “tau-equivalent measures”
(for example Bollen, 1987, p. 208, or cite Lord and Novick?), except that all measurement
errors need not be independent. In fact, a very desirable feature of the double measure-
ment design is that while errors of measurement from different measurement procedures
must be independent, errors of measurement from the same measurement procedure are
allowed to be correlated. For example, one should always expect correlated measurement
errors for self-report data; these would arise from consistent individual differences in style
of responding to questionnaires and in desire to make a favorable impression. And when
measurement errors are correlated, adopting a model where they are uncorrelated can
have effects that are just as bad as ignoring measurement error altogether.

The double measurement model of Section 3 employs the classical Structural Equa-
tion Modelling trick of “centering” all the variables by subtracting off the means, and
then conducting the analysis under the assumption that all expected values are zero. In
Section 4, the model is expanded to include intercepts. But in most cases this just makes
the model parameters harder to identify, and does not providing any additional informa-
tion about the relationship between the independent and dependent variables. The final
conclusion is that most of the time, including intercepts is not worth the extra trouble.

In the development of this theory, assuming multivariate normality simplifies the ex-
position but is not really necessary. In Section 5, the normal assumption is relaxed. For
independent variables that are measured without error (for example, the dummy variables
for factors that are experimentally manipulated), the distribution does not matter at all.
For independent variables that are measured with error, the double measurement design
guarantees identification of a necessary function of the parameters of a distribution-free
model.

The double measurement design also points to Method of Moments estimators of the
regression coefficient that are consistent and asymptotically normal, by a straightforward
application of the Central Limit Theorem. This would provide the basis for a full set
of large-sample tests and confidence intervals, but it is unnecessary to go there. In fact,
the estimators and tests based on a multivariate normal assumption enjoy robustness
properties that make them superior to one method (the weighted least-squares approach
of Browne, 1984) that was specifically designed to avoid the assumption of normality.
They are probably also superior to the methods suggested by the double measurement
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design, which are very similar to Browne’s.
The moral of the story is comforting in its simplicity. For data that are collected

according to the double measurement recipe, just fit a classical structural model with no
intercepts and everything normally distributed; this is close to the default settings of most
available software.

1 Regression through the origin with one indepen-

dent variable

Even in the simplest case, when we try to incorporate measurement error into a regression
model, we immediately encounter a technical difficulty: model identification. In a simple
regression, suppose the dependent variable is related to an independent variable. We can
observe the dependent variable, but not the actual value of the independent variable. All
we can see is the independent variable plus a piece of random noise.

Independently for i = 1, . . . , n, let

Yi = γξi + ζi (1)

Xi = ξi + δi,

where ξi, ζi and δi and are independent normal random variables with expected value
zero, V ar(ξi) = φ, V ar(ζi) = ψ, and V ar(δi) = θδ. The regression coefficient γ is a
fixed constant. The notation here is taken from the LISREL structural equation model
(Jöreskog, 1978; Bollen, 1989) for compatibility with later parts of this paper, and because
familiarity with this notation will make it easier for students to use structural equation
modelling software.

Data from Model (1) are just the pairs (Xi, Yi) for i = 1, . . . , n. The true independent
variable ξi is a latent variable whose value cannot be known exactly. The model implies
that the (Xi, Yi) are independent bivariate normal with mean zero and covariance matrix

Σ =

[
φ+ θδ γφ
γφ γ2φ+ ψ

]
. (2)

A multivariate normal distribution with mean zero is completely characterized by its
covariance matrix, so even an infinite amount of data can only tell us the three unique
values in the matrix Σ. But there are four parameters in the model: γ, φ, ψ and θδ.
Recovering all four parameters from the unique elements of Σ amounts to solving three
equations in four unknowns — an impossibility. Maximum likelihood estimation will
fail, with a non-unique maximum at an infinite number of points along a curve in four
dimensions.

The problem is that Model (1) is not uniquely identified in the model parameters. The
concept of model identification is unfamiliar to most students, because typically (except
in the case of exploratory factor analysis) we present them with statistical models that
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are nicely identified, and the issue does not arise. Thus, a general discussion of model
identification may be helpful.

2 Model identification

Suppose we have a vector of observable data D = (D1, . . . , Dn), and a statistical model
(a set of assertions implying a probability distribution) for D. The model depends on a
parameter θ, which is usually a vector. If the probability distribution of D corresponds
uniquely to θ, then we say that the model is identified. But if any two different parameter
values yield the same probability distribution, then the model is not identified. In this
case, the data cannot be used to decide between the two parameter values, and standard
methods of parameter estimation will fail. Even an infinite amount of data cannot tell
you the true parameter values.

In Model (1), θ = (γ, φ, ψ, θδ), Di = (Xi, Yi), and the probability distribution of
D is completely determined by Σ. The two variances and one covariance in Σ cannot
correspond uniquely to the four elements of θ, so the model is not identified. To really
nail it down, the two distinct parameter values θ1 = (1, 2, 4, 1) and θ2 = (2, 1, 1, 2) both
yield

Σ =

[
3 2
2 6

]
,

and thus the same distribution of the sample data. The clearest way to prove a model is
non-identified is with a simple numerical example like this, but frequently other arguments
are more convenient.

It is sometimes useful to distinguish among three kinds of model identification. In
pointwise identification, a model is said to be identified at a point if no other point in
the parameter space yields the same prbbility distribution. If the model is identified at
every point in the parameter space, it is said to be globally identified. The model is called
locally identified at a point θ0 if that point is surrounded by a neighborhood where none
of the other points in the neighborhood yield the same probability distribution as θ0. A
globally identified model is locally identified at every point, but the converse is not true.
In this paper, “identification” refers to global identification.

It is possible for certain functions of the parameter vector to be identified, even when
the entire model is not. If full knowledge of the probability distribution of D implies
knowledge of some function of θ, then that function is said to be identified, and consistent
estimation of it is a possibility. For example, let D1, . . . , Dn be i.i.d. Poisson random
variables with mean λ1 + λ2, where λ1 > 0 and λ1 > 0. The parameter is the pair θ =
(λ1, λ2). The model is not identified because any pair of λ values satisfying λ1+λ2 = c will
produce exactly the same probability distribution. Notice also how maximum likelihood
estimation will fail in this case; the likelihood function will have a ridge, a non-unique
maximum along the line λ1 + λ2 = D, where D is the sample mean. The function
λ = λ1 + λ2, of course, is identified.
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The Normal distribution Suppose we have a random sample D1, . . . , Dn from a nor-
mal distribution with parameters µ and σ2. This model must be identified because we
use it all the time, but how can one prove it? An indirect way is to obseve that consistent
estimators of µ and σ2 are available, and this would not be possible if the model were not
identified. But it is more instructive to use the definition. To clarify the ideas, we shall
be very explicit.

The objective to show that the parameter θ = (µ, σ2) is a function of the distribution
of the data vector D = (D1, . . . , Dn). By “distribution,” we mean the joint cumulative
distribution function, which in this case may be written

FD(d; θ) =
n∏

i=1

F (di; θ) =
n∏

i=1

∫ di

−∞

1

σ
√

2π
exp[− 1

2σ2
(xi − µ)2] dxi.

For independent and identically distributed data, we only need the marginal distribu-
tion of one observation in order to check model identification. The marginal distribution
of D1 will do. It is a function of the joint distribution.

g1(FD) = lim
d2→∞

. . . lim
dn→∞

FD(d; θ) = F (d1; θ)
n∏

i=2

lim
di→∞

F (di; θ) = F (d1; θ)

Now we take a function g2 of the marginal distribution. This function maps a space
of cumulative distribution functions into <2.

g2(F ) = g2(g1(FD)) =

[ ∫∞
−∞ xF

′(x; θ) dx∫∞
−∞ x

2F ′(x; θ) dx

]
=

[
E(D1)
E(D2

1)

]

And finally, one last function g3 : <2 → <2:

g3(g2(g1(FD))) =

[
E(D1)

E(D2
1)− [E(D1)]

2

]
=

[
µ
σ2

]

This last composite function expresses the parameter as a function of the distribution
of the data, proving model identification. It is usually unnecessary to go into such detail.
In general, if the parameters of a statistical model can be recovered from the moments
of the model distribution, then the model is identified. If a function of the parameters
can be recovered from the moments, then that function of the parameters is identified.
Identification of most common probability models (including the multivariate normal)
follows in this way.

Back to regression with measurement error Classical structural equation models,
including models for regression with measurement error, are based on systems of simulta-
neous linear equations. Assuming simple random sampling from a large population, the
observable data are independent and identically distributed, with a mean vector µ and
a covariance matrix Σ that may be written as functions of the model parameters in a
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straightforward way. If it is possible to solve uniquely for a given model parameter in
terms of the elements of µ and Σ, then that parameter is a function of µ and Σ, which in
turn are functions of the probability distribution of the data. A function of a function is
a function, and so the parameter is a function of the probability distribution of the data.
Hence, it is identified.

To summarize, we have arrived at the standard way to check model identification for
any linear simultaneous equation model, not just measurement error regression. First,
calculate the expected value and covariance matrix of the observable data, as a function
of the model parameters. If it is possible to solve uniquely for the model parameters in
terms of the means, variances and covariances of the observable data, then the model
parameters are identified. If all the random vectors in the model are multivariate normal,
this condition is necessary as well as sufficient.

Example: Instrumental variables In a model like (1), suppose that we have access
to data for another two variables that depend on the latent independent variable ξ. Our
main interest is still in Y ; the other two are are called instrumental variables because
they are just tools for obtaining an identified model.

Here is the expanded version of Model (1). The original dependent variable Y is
now called Y1. Following the usual convention in structural equation modelling, the
subscript i has been omitted to reduce notational clutter. The model is presented for a
single observation, and implicitly everything is independent and identically distributed,
for i = 1, . . . , n.

X = ξ + δ (3)

Y1 = γ1ξ + ζ1

Y2 = γ2ξ + ζ2

Y3 = γ3ξ + ζ3,

where δ, ξ, ζ1, ζ2 and ζ3 are all independent, V ar(ξ) = φ, V ar(ζ1) = ψ1, V ar(ζ2) = ψ2,
V ar(ζ3) = ψ3, V ar(δ) = θδ, all expected values are zero, and the regression coefficients
γ1, γ2 and γ3 are fixed constants.

Writing the vector of observable data (for subject i) as D = (X, Y1, Y2, Y3)
′, elements

of the covariance matrix Σ may be obtained by elementary one-variable calculations, like
V ar(X) = V ar(ξ + δ) = V ar(ξ) + V ar(δ) = φ+ θδ, and

Cov(X, Y1) = E(X, Y1) = E([ξ + δ][γ1ξ + ζ1]) = E(γ1ξ
2 + ξζ1 + γ1δξ + δζ1)

= γ1E(ξ2) + E(ξζ1) + γ1E(δξ) + E(δζ1))

= γ1V ar(ξ) + E(ξ)E(ζ1) + γ1E(δ)E(ξ) + E(δ)E(ζ1)

= γ1φ
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In this way, we obtain

Σ =


φ+ θδ γ1φ γ2φ γ3φ

γ2
1φ+ ψ1 γ1γ2φ γ1γ3φ

γ2
2φ+ ψ2 γ2γ3φ

γ2
3φ+ ψ3

 . (4)

To prove model identification, we need to solve for the model parameters in terms of
Σ. Denote the i, j element of Σ by σij. The task is to solve the following ten equations
in eight unknowns

σ11 = φ+ θδ (5)

σ12 = γ1φ

σ13 = γ2φ

σ14 = γ3φ

σ22 = γ2
1φ+ ψ1

σ23 = γ1γ2φ

σ24 = γ1γ3φ

σ33 = γ2
2φ+ ψ2

σ34 = γ2γ3φ

σ44 = γ2
3φ+ ψ3

for φ, θδ, γ1, γ2, γ3, ψ1, ψ2, and ψ3.
The fact that there are more equations than unknowns does not guarantee the existence

of a unique solution; it merely tells us that a unique solution is possible. Suppose that
γ2 and γ3 are both non-zero. This is reasonable, because to be useful, the instrumental
dependent variables must have some relationship to the independent variable. In this
case,

σ13σ14

σ34

=
γ2γ3φ

2

γ2γ3φ
= φ. (6)

Then, simple substitutions allow us to solve for the rest of the parameters, yielding the
complete solution

φ =
σ13σ14

σ34

(7)

θδ = σ11 −
σ13σ14

σ34

γ1 =
σ12σ34

σ13σ14
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γ2 =
σ34

σ14

γ3 =
σ34

σ13

ψ1 = σ22 −
σ2

12σ34

σ13σ14

ψ2 = σ33 −
σ13σ34

σ14

ψ3 = σ44 −
σ14σ34

σ13

This proves model identification. The solution is thorough but somewhat tedious,
even for this simple example. The student may wonder how much work really needs to
be shown. I would suggest showing the calculations leading to the covariance matrix (4),
saying “Denote the i, j element of Σ by σij,” skipping the system of equations (5) because
they are present in (4), and showing the solution for φ in (6), including the stipulation that
γ2 and γ3 are both non-zero. Then, instead of the explicit solution (7), write something
like

θδ = σ11 − φ (8)

γ1 =
σ12

φ

γ2 =
σ13

φ

γ3 =
σ14

φ

ψ1 = σ22 − γ2
1φ

ψ2 = σ33 − γ2
2φ

ψ3 = σ44 − γ2
3φ

Notice how once we have solved for a model parameter, we use it to solve for other
parameters without explicitly substituting in terms of σij. The objective is to prove that
a unique solution exists by showing how to get it. An exact statement of the solution is
not necessary.

Two additional comments are in order. First, this model had no intercepts, and the
random variables all had expected value zero. This is typical of the classical structural
equation models, in which inference is based solely on the sample covariance matrix and
not the means. One speaks of “centering” all the variables by subtracting off the sample
means (for example Bollen, 1989). For large samples, this is almost the same as sub-
tracting off the population means. Since all the confidence intervals and tests are based
on large-sample theory anyway, no harm is done. Later, we shall consider models with
intercepts.
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A second comment is that even for the most complex models, proving model identifi-
cation as in the preceding example involves only elementary mathematics. But it can be
long and messy, especially for models with lots of independent variables — and almost all
real-life regressions have lots of independent variables. Furthermore, for a given data set,
it is not always possible to come up with a realistic model that is identified. A sensible
alternative is to plan the statistical analysis in advance, and to ensure model identification
by collecting the right kind of data. The next section describes a way to do this. The
key is to measure the independent variables twice, preferably using different methods or
measuring instruments.

3 The double measurement design

For regression with measurement error, the model identification problem is solved if we
measure all the variables on more than one occasion, in such a way that errors of measure-
ment on different occasions are independent. We begin with a classical structural equation
model in which all random variables have expected value zero and there no intercepts. In
Section 4, the model is extended to include intercepts and non-zero expected values, but
ultimately Model (9) below is recommended for most purposes.

For each of n independent observations, assume the following simultaneous equation
model. Implicitly, all the random quantities involved have a subscript i, i = 1, . . . , n.

η = Γξ + ζ (9)

X1 = ξ + δ1

X2 = ξ + δ2,

Y1 = η + ε1

Y2 = η + ε2,

where

η is an m×1 random vector of latent dependent variables. Because m can be greater
than one, the regression is multivariate.

Γ is an m × p matrix of unknown constants. These are the regression coefficients,
with one row for each dependent variable and one column for each independent
variable.

ξ is a p× 1 random vector of latent independent variables, with expected value zero
and variance-covariance matrix Φ, a p × p symmetric and positive definite matrix
of unknown constants.
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ζ is the error term of the latent regression. It is an m × 1 random vector with
expected value zero and variance-covariance matrix Ψ, an m × m symmetric and
positive definite matrix of unknown constants.

X1 and X2 are p×1 observable random vectors, each representing ξ plus a different
piece of random error.

δ1 is the measurement error in X1. It is a p× 1 random vector of error terms, with
expected value zero and variance-covariance matrix Θδ1 , a p × p symmetric and
positive definite matrix of unknown constants.

δ2 is the measurement error in X2. It is a p× 1 random vector of error terms, with
expected value zero and variance-covariance matrix Θδ2 , a p × p symmetric and
positive definite matrix of unknown constants.

Y1 and Y2 are m×1 observable random vectors, each representing η plus a different
piece of random error.

ε1 is the measurement error in Y1. It is an m × 1 random vector of error terms,
with expected value zero and variance-covariance matrix Θε1 , an m×m symmetric
and positive definite matrix of unknown constants.

ε2 is the measurement error in Y2. It is a p× 1 random vector of error terms, with
expected value zero and variance-covariance matrix Θε2 , an m×m symmetric and
positive definite matrix of unknown constants.

ξ and ζ are independent of one another.

ξ and ζ are independent of (δ1, ε1).

ξ and ζ are independent of (δ2, ε2).

(δ1, ε1) are independent of (δ2, ε2). However,

δ1 and ε1 need not be independent. Cov(δ1, ε1) = Θδε1 , a p×m matrix of unknown
constants.

δ2 and ε2 need not be independent. Cov(δ2, ε2) = Θδε2 , a p×m matrix of unknown
constants.

The model is depicted in Figure 1. It follows the usual conventions for path diagrams
of structural equation models. Straight arrows go from exogenous variables (that is,
independent variables, those on the right-hand side of equations) to endogenous varables
(dependent variables, those on the left side). Correlations among exogenous variables are
represented by two-headed curved arrows. Observable variables are enclosed by rectangles
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Figure 1: The Double Measurement Model
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or squares, while latent variables are enclosed by ellipses or circles. Error terms are not
enclosed by anything.

The main idea of the Double Measurement Design is that every variable is measured
by two different methods. Errors of measurement may be correlated within measurement
methods, but not between methods. So for example, farmers who overestimate their
number of pigs may also overestimate their number of cows. On the other hand, if
the number of pigs is counted once by the farm manager at feeding time and on another
occasion by a research assistant from an areal photograph, then it would be fair to assume
that the errors of measurement for the different methods are uncorrelated.

In symbolic terms, δ1 is error in measuring the independent variables by Method One,
and ε1 is error in measuring the dependent variables by Method One. V ar(δ1) = Θδ1

need not be diagonal, so errors of measurement for the independent variables may be
correlated with one another. Similarly, V ar(ε1) = Θε1 need not be diagonal, so errors
of measurement for the dependent variables may be correlated with one another. And,
errors of measurement using the same method may be correlated between the independent
and dependent variables. For method one, this is represented by the matrix Cov(δ1, ε1) =
Θδε1 . The same pattern holds for Method Two. On the other hand, δ1 and ε1 are each
independent of both δ2 and ε2.

To emphasize an important practical point, the matrices Θδ1 and Θδ2 must be of
the same dimension, and Θε1 and Θε2 must be of the same dimension – but none of the
corresponding elements need be equal. This means that measurements of a variable by
two different methods need not be equally precise.

Proof of model identification The following is typical of easier proofs for structural
equation models. The goal is to solve for the model parameters in terms of elements of
the variance-covariance matrix of the observable data. This shows the parameters are
functions of the distribution, so that no two distinct parameter values could yield the
same distribution of the observed data.

Collecting X1, X2, Y1 and Y2 into a single long data vector D, we write its variance-
covariance matrix as a partitioned matrix:

Σ =


Σ11 Σ12 Σ13 Σ14

Σ22 Σ23 Σ24

Σ33 Σ34

Σ44

 ,

where the covariance matrix of X1 is Σ11, the covariance matrix of X2 is Σ22, the matrix
of covariances between X1 and Y is Σ13, and so on.

Now we express all the Σij sub-matrices in terms of the parameter matrices of Model (9)
by straightforward variance-covariance calculations. Students may be reminded that
things go smoothly if one substitutes for everything in terms of exogenous variables and
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error terms before actually starting to calculate covariances. For example,

Σ13 = Cov(X1,Y1)

= E(X1Y
′
1)

= E((ξ + δ1)(η + ε1)
′)

= E((ξ + δ1)(Γξ + ζ + ε1)
′)

= E((ξ + δ1)(ξ
′Γ′ + ζ ′ + ε′1))

= E(ξξ′Γ′ + ξζ ′ + ξε′1 + δ1ξ
′Γ′ + δ1ζ

′ + δ1ε
′
1)

= E(ξξ′)Γ′ + E(ξ)E(ζ ′) + E(ξ)E(ε′1) + E(δ1)E(ξ′)Γ′ + E(δ1)E(ζ ′) + E(δ1ε
′
1)

= ΦΓ′ + 0 + 0 + 0 + 0 + Θδε1 .

In this manner, we obtain the partitioned covariance matrix of the observable data
D = (X′

1,X
′
2,Y

′
1,Y

′
2)
′ as

Σ =


Σ11 Σ12 Σ13 Σ14

Σ22 Σ23 Σ24

Σ33 Σ34

Σ44

 (10)

=


Φ + Θδ1 Φ ΦΓ′ + Θδε1 ΦΓ′

Φ + Θδ2 ΦΓ′ ΦΓ′ + Θδε2

ΓΦΓ′ + Ψ + Θε1 ΓΦΓ′ + Ψ
ΓΦΓ′ + Ψ + Θε2


The equality (10) corresponds to a system of ten matrix equations in nine matrix

unknowns. The unknowns are the parameter matrices of Model (9): Φ, Θδ1 , Γ, Θδε1 ,
Θδ2 , Θδε2 , Ψ, Θε1 and Θε2 . Solving for them involves only simple substitutions, as
follows.

Φ = Σ12 (11)

Γ = Σ′
13Φ

−1 = Σ′
23Φ

−1

Θδ1 = Σ11 −Φ

Θδ2 = Σ11 −Φ

Θδε1 = Σ13 −ΦΓ′

Θδε2 = Σ24 −ΦΓ′

Ψ = Σ34 − ΓΦΓ′

Θε1 = Σ33 − ΓΦΓ′ −Ψ

Θε2 = Σ44 − ΓΦΓ′ −Ψ
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This shows that Model (9) is identified, so that if data are collected following the double
measurement recipe, then the data analyst may proceed without giving further thought
to model identification.

A notable feature of the identifying equations in (10) is that Σ23 = Σ14. This con-
straint on the covariance matrix Σ arises from the model, and is called an over-identifying
restriction. Such constrants arise whenever there are more identifying equations than un-
knowns. Even non-identified models may imply constraints — testable constraints —
on the covariance matrix. This is an interesting side-issue we shall not pursue here. At
any rate, an identified model with more identifying equations than unknowns is called
over-identified.

Notice how the over-identifying restriction led us to write two expressions for Γ in the
second line of (11). This was not necessary for the proof, but it allows us to clear up
a point of confusion that sometimes arises. In an over-identified model, the parameter
vector may be written in terms of Σ in more than one way. However, this does not
mean that there are multiple solutions to the identifying equations, which would make
the model non-identified. Multiple solutions means that more than one set of parameter
values would satisfy the equations; this is not the case here.

4 Intercepts

We now expand Model (9) to include intercepts and non-zero expected values. We will
see that this leads to complications that are seldom worth the trouble, and the classical
models with zero expected value and no intercepts are usually preferable. Let

η = α + Γξ + ζ (12)

X1 = ν1 + ξ + δ1

X2 = ν2 + ξ + δ2,

Y1 = ν3 + η + ε1

Y2 = ν4 + η + ε2,

where α, ν1, ν2, ν3 and ν4 are vectors of constants, and E(ξ) = κ. Everything else is as
in Model (9). We call the terms ν1 . . . ,ν4 measurement bias. For example, of one of the
elements of X1 is reported amount of exercise, the corresponding element of ν1 would be
the average amount by which people exaggerate how much they exercise.

Again, the observable data X1, X2, Y1 and Y2 are collected into a data vector D,
with expected value µ and covariance matrix Σ. The pair (µ, Σ) is a function of the
probability distribution of D. If the parameter matrices of Model (12) are functions of µ
and Σ, then they are also functions of the distribution of D, and they will be identified.
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Since the addition of constants has no effect on variances or covariances, the contents
of Σ are given by (10), as before. The expected value µ is the partitioned vector

µ =


µ1

µ2

µ3

µ4

 =


E(X1)
E(X2)
E(Y1)
E(Y2)

 =


ν1 + κ
ν2 + κ

ν3 + α + Γκ
ν4 + α + Γκ

 . (13)

To demonstrate the identification of Model (12), one would need to solve the equations
in (13) uniquely for ν1, ν2, κ and α. Even with Γ considered known and fixed because it
is identified in (10), this is impossible, because (13) specifies 2m+2p additional equations
in 3m+ 3p additional unknowns.

It is tempting to assume the measuremant bias terms ν1 . . . ,ν4 to be zero; this would
allow identification of α and κ. Unfortunately, we doubt that such an assumption could
be justified very often in practice. And assuming no measurement bias when it is really
present will have an unfortunate effect on the estimation of Γ.

Most of the time, all we can do is identify the parameter matrices that appear in the
covariance matrix, and also the functions µ1 . . . ,µ4 of the parameters of Model (12).
This can be viewed as a re-parameterization of the model.

Looking at (13), we see that the mean vector contains information about the regression
coefficients in Γ, but we can’t get at it if there is measurement bias. We believe that except
in special circumstances, this makes it reasonable to employ the classical no-intercept
structural equation models to do regression with latent variables.

5 Normality

5.1 Maximum Likelihood Estimation

In the preceding section, we escaped from a serious model identification problem by re-
parameterizing the means and intercepts. It is instructive to see how this works in the
multivariate normal case, where the parameters would be estimated by maximum likeli-
hood. For i = 1, . . . , n, we collect the observed data xi,1, xi,2, yi,1 and yi,2 into a vector
di, of length 2m+2p. We then write -2 times the log likelihood as a function of µ and Σ.

−2 logL(µ,Σ) = −2 log
n∏

i=1

1

|Σ| 12 (2π)
k
2

exp
[
−1

2
(di − µ)′Σ−1(di − µ)

]

= n[ (2m+ 2p)(log |Σ|+ log 2π) + tr(Σ−1Σ̂) (14)

+ (d− µ)′Σ−1(d− µ) ],

where tr denotes the trace of a matrix: the sum of its diagonal elements.
The goal, of course, is to minimize (14) over all the model parameters making up µ

and Σ. Now for any value of Σ (so long as it is non-singular and hence positive definite),
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the quadratic form in the last line of (14) is zero and the entire function is minimized
when µ equals d. This means that “centering the data” by subtracting off sample means
and then pretending that all variables have expected value zero is equivalent to starting
with a model like (12) that contains intercepts, re-parameterizing the components of µ
in (13) as µ1, . . . ,µ4, and then estimating those functions by maximum likelihood.

Once this is done, the last line of (14) disappears, and inference is based solely on
the sample covariance matrix. We are back to the no-intercept Model (9). Denoting the
vector of model parameters by θ, the MLE is obtained by minimizing the -2 log likelihood

n[ (2m+ 2p)(log |Σ(θ)|+ log 2π) + tr(Σ(θ)−1Σ̂)]

numerically over all θ in the parameter space.
The full range of large-sample likelihood methods is then available. Maximum likeli-

hood estimates are asymptotically normal, and asymptotic standard errors are convenient
by-products of the numerical minimization; most software produces them by default. Di-
viding an estimated regression coefficient by its standard error gives a Z-test for whether
the coefficient is different from zero. We should mention that our experience is that like-
lihood ratio tests can substantially outperform both these Z-tests and the Wald tests
that are their generalizations, especially when there is a lot of measurement error and the
variables are strongly related to one another.

5.2 Robustness of the Normal Model

In presenting models for regression with measurement error, it is sometimes convenient
to assume that everything is multivariate normal. This is especially true when giving
examples of models that are not identified. But normality is not necessary. Suppose
Model (9) holds, and that the distributions of of the latent independent variables and
error terms are unknown, except for possessing covariance matrices. In this case the
parameter of the model could be expressed as θ = (Γ, Φ, Ψ, Θδ1 , Θδ2 , Θε1 , Θε2 , Θδε1 ,
Θδε2 , Fξ, Fζ, Fδ1 , Fδ2 , Fε1 , Fε2), where Fξ, Fζ, Fδ1 , Fδ2 , Fε1 and Fε2 are the (joint)
cumulative distribution functions of ξ, ζ, δ1, δ2, ε1 and ε2 respectively.

Note that the parameter in this “non-parametric” problem is of infinite dimension, but
this presents no conceptual difficulty. The probability distribution of the observed data is
still a function of the parameter vector, and to show model identification, we would have
to be able to recover the parameter vector from the probability distribution of the data.
While in general we cannot recover the whole thing, we certainly can recover a useful
function of the parameter vector, namely Γ. In fact, Γ is the only quantity of interest;
the remainder of the parameter vector consists only of nuisance parameters, whether the
model is normal or not.

To make the reasoning explicit, the covariance matrix Σ is a function of the probability
distribution of the observed data, whether that probability distribution is known or not.
The calculations leading to (11) still hold, showing that Γ is a function of Σ, and hence
of the probability distribution of the data. Therefore, Γ is identified.
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This is all very well, but can we actually do anything without knowing what the dis-
tributions are? Certainly! Looking at (11), one is tempted to just put hats on everything
to obtain Method-of-Moments estimators. However, we can do a little better. Note that
while Φ = Σ12 is a symmetric matrix in the population and Σ̂12 converges to a symmetric
matrix, Σ̂12 will be non-symmetric for any finite sample size (with probability one). A
better estimator is obtained by averaging pairs of off-diagonal elements:

Φ̂M =
1

2
(Σ̂12 + Σ̂

′
12),

where the subscript M indicates a Method-of-Moments estimator. It is consistent by the
Law of Large Numbers. Using the second line of (11), a reasonable though non-standard
estimator of Γ is

Γ̂M =
1

2
(Σ̂

′
13 + Σ̂

′
23)Φ̂

−1

M (15)

Consistency follows from the Law of Large Numbers and a continuity argument. All this
assumes the existence only of second moments and cross-moments. With the assumption
of fourth moments, the multivariate Central Limit Theorem would provide a routine basis
for large-sample interval estimation and testing.

However, there is no need to bother. Research on the robustness of the normal model
for structural equation model (Amemiya, Fuller and Pantula, 1987; Anderson and Rubin,
1956; Anderson and Amemiya, 1988; Anderson, 1989; Anderson and Amemiya, 1990;
Browne, 1988; Browne and Shapiro, 1988; Satorra and Bentler, 1990) shows that proce-
dures for (such as likelihood ratio and Wald tests) based on a multivariate normal model
are asymptotically valid even when the normal assumption is false. And Satorra and
Bentler (1990) describe Monte Carlo work suggesting that normal-theory methods gener-
ally perform better than at least one method (Browne, 1984) that is specifically designed
to be distribution-free. Since the methods suggested by the estimator (15) are similar
to Browne’s weighted least squares approach, they are also likely to be inferior to the
standard normal-theory tools.

It is important to note that while the normal-theory tests and confidence intervals
for Γ can be trusted when the data are not normal, this does not extend to the other
model parameters. For example, if the vector of latent variables ξ is not normal, then
normal-theory inference about its covariance matrix will be flawed.

In any event, the method of choice is maximum likelihood, with interpretive focus on
the regression coefficients in Γ rather than on the other model parameters.

6 Discussion

In general, data collection should be planned with the statistical analysis in mind. In
keeping with this idea, the double measurement design is both a statistical model –
specifically, Model (9) – and a set of guidelines for data collection. It assumes that

18



measurement error is present, and that when data are collected by a common method
or in a common setting, the errors of measurement will naturally be correlated with one
another. It also assumes that each independent variable can be measured more than
once, ideally on different occasions and in ways that are different enough so that errors
of measurement are independent between occasions.

A great deal of effort can be saved by following this recipe. The data are tailored to
satisfy the technical requirements of the model, while the model allows for the inevitable
correlations among measurement errors within occasions and is automatically identified,
allowing clear conclusions to be drawn from the data. The only remaining issue is choosing
good software and making sure that one knows what it is actually doing.

Unfortunately, most observational data sets are assembled without any awareness of
measurement error as a statistical issue. Variables tend to be measured in only one
way, and often at more or less the same time by the same personnel. Only after the
data are collected do the investigators possibly start to think about fitting a model with
measurement error. Many times, it is only at this point that a statistician enters the
picture.

This is a difficult situation, but not necessarily hopeless. The most plausible model
that includes measurement error is unlikely to be identified, but the instrumental variables
example of Section 2 tells us that model identification can sometimes be purchased by
adding more dependent variables. (Watch out, though! Dependent variables are usually
measured with error too, and one needs specific reason to believe that those measurement
errors are unrelated to measurement errors in the independent variables.) Sometimes, a
model can be simplified or constrained, perhaps by assuming that certain covariances are
zero, and the simplified model will be identified and still fairly realistic.

Fixing up a non-identified model after the data are already collected requires the
quantitative sophistication to check model identification (repeatedly), and the subject-
matter sophistication to tell whether the model is still scientifically meaningful when a
given technical constraint is imposed. Either one person has to know a lot, or statistician
and scientist must work closely together for an extended period, without any guarantee
of ultimate success. It’s a lot easier to plan the study properly in the first place.

One final comment is that from the statistician’s viewpoint, a non-identified model
is a “bad” model because it does not allow us to find out about the model parameters,
and will probably generate a pile of warnings and error messages if we try to run the
software anyway. But it’s not the model’s fault! Think of the very first example, the
simple regression through the origin of Model (1). A model like this could be reasonable
and even approximately correct, but the data we have will not allow us to estimate the
parameters.

Now consider what happens when a fairly complicated initial model turns out not
to be identified. The typical approach is to start imposing constraints that will make it
identified. But this makes the model better only in a formal, statistical sense. Actually,
the initial model was probably the most natural and believable one, and what we are
doing is to chop pieces off for purely technical reasons. The best we can hope is that this
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does not cripple the model too much.
It’s not the model’s fault; it’s the data’s fault. Or, to put it delicately, there is an

opportunity for scientists to make their research even better by collecting data that allow
reasonable models to be estimated.
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