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Background Reading: Davison’s Statistical models

See Section 2.2 (Pages 28-37) on convergence.

Section 3.3 (Pages 77-90) goes more deeply into simulation
than we will. At least skim it.
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Sample Space Ω, ω ∈ Ω

Ω is a set, the underlying sample space.

It could literally be the universe of websites from which we
intend to sample.

F is a class of subsets of Ω.

If could be the class of all subsets (if Ω is countable).

There is a probability measure P defined on the elements of
F.

Maybe each website is equally likely to be chosen (with
replacement).
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Random variables are functions from Ω into the set of
real numbers

Pr{X ∈ B} = Pr({ω ∈ Ω : X(ω) ∈ B})
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Random Sample X1(ω), . . . , Xn(ω)

T = T (X1, . . . , Xn)

T = Tn(ω)

Let n→∞ to see what happens for large samples
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Modes of Convergence

Almost Sure Convergence

Convergence in Probability

Convergence in Distribution
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Almost Sure Convergence

We say that Tn converges almost surely to T , and write Tn
a.s.→ T

if

Pr{ω : lim
n→∞

Tn(ω) = T (ω)} = 1.

Acts like an ordinary limit, except possibly on a set of
probability zero.

All the usual rules apply.

Called convergence with probability one or sometimes
strong convergence.

In this course, convergence will usually be to a constant.

Pr{ω : lim
n→∞

Tn(ω) = c} = 1.
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Strong Law of Large Numbers

Let X1, . . . , Xn be independent with common expected value µ.

Xn
a.s.→ E(Xi) = µ

The only condition required for this to hold is the existence of
the expected value.
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Probability is long run relative frequency

Statistical experiment: Probability of “success” is θ.

Carry out the experiment many times independently.

Code the results Xi = 1 if success, Xi = 0 for failure,
i = 1, 2, . . .
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Sample proportion of successes converges to the
probability of success

Recall Xi = 0 or 1.

E(Xi) =
1∑

x=0

xPr{Xi = x}

= 0 · (1− θ) + 1 · θ
= θ

Relative frequency is

1

n

n∑
i=1

Xi = Xn
a.s.→ θ
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Simulation
Using pseudo-random number generation by computer

Estimate almost any probability that’s hard to figure out

Statistical power

Weather model

Performance of statistical methods

Need confidence intervals for estimated probabilities.
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Estimating power by simulation

Example: Bernoulli random sampling.

Recall the two test statistics for testing H0 : θ = θ0:

Z1 =
√
n(Y−θ0)√
θ0(1−θ0)

Z2 =
√
n(Y−θ0)√
Y (1−Y )

When θ 6= θ0, calculating P{|Z2| > zα/2} can be challenging.
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Strategy for estimating power by simulation

Generate a large number of random data sets under the
alternative hypothesis.

For each data set, test H0.

Estimated power is the proportion of times H0 is rejected.

How accurate is the estimate?

p̂ ± zα/2

√
p̂(1−p̂)
m
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Testing H0 : θ = 0.50 when true θ = 0.60 and n = 100
Power of Z1 was about 0.52

Z2 =

√
n(Y − θ0)√
Y (1− Y )

> # Power by simulation

> set.seed(9999)

> m = 10000 # Monte Carlo sample size

> theta=0.60; theta0 = 1/2; n = 100

> Ybar = rbinom(m,size=n,prob=theta)/n # A vector of length m

> Z2 = sqrt(n)*(Ybar-theta0)/sqrt(Ybar*(1-Ybar)) # Another vector of length m

> power = length(Z2[abs(Z2>1.96)])/m; power

[1] 0.5394
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Margin of error for estimated power

Confidence interval for an estimated probability was

p̂± zα/2

√
p̂(1− p̂)

n

# How about a 99 percent margin of error

> a = 0.005; z = qnorm(1-a)

> merror = z * sqrt(power*(1-power)/m); merror

[1] 0.0128391

> Lower = power - merror; Lower

[1] 0.5265609

> Upper = power + merror; Upper

[1] 0.5522391
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Recall the Change of Variables formula: Let Y = g(X)

E(Y ) =

∫ ∞
−∞

y f
Y

(y) dy =

∫ ∞
−∞

g(x) f
X

(x) dx

Or, for discrete random variables

E(Y ) =
∑
y

y p
Y

(y) =
∑
x

g(x) p
X

(x)

This is actually a big theorem, not a definition.
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Applying the change of variables formula
To approximate E[g(X)]

Simulate X1, . . . , Xn from the distribution of X. Calculate

1

n

n∑
i=1

g(Xi) =
1

n

n∑
i=1

Yi
a.s.→ E(Y )

= E(g(X))
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So for example

1

n

n∑
i=1

Xk
i

a.s.→ E(Xk)

1

n

n∑
i=1

U 2
i ViW

3
i

a.s.→ E(U 2VW 3)

That is, sample moments converge almost surely to population
moments.
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Approximate an integral:
∫∞
−∞ h(x) dx

Where h(x) is a nasty function.

Let f(x) be a density with f(x) > 0 wherever h(x) 6= 0.

∫ ∞
−∞

h(x) dx =

∫ ∞
−∞

h(x)

f(x)
f(x) dx

= E

[
h(X)

f(X)

]
= E[g(X)],

So

Sample X1, . . . , Xn from the distribution with density f(x)

Calculate Yi = g(Xi) = h(Xi)
f(Xi)

for i = 1, . . . , n

Calculate Y n
a.s.→ E[Y ] = E[g(X)]

Confidence interval for µ = E[Y ] is routine.
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Convergence in Probability

We say that Tn converges in probability to T , and write Tn
P→ T

if for all ε > 0,

lim
n→∞

P{ω : |Tn(ω)− T (ω)| < ε} = 1

For us, convergence will usually be to a constant:

lim
n→∞

P{|Tn − c| < ε} = 1

Convergence in probability (say to c) means no matter how
small the interval around c, for large enough n (that is, for all
n > N1) the probability of getting that close to c is as close to
one as you like.
We will seldom use the definition in this class.
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Weak Law of Large Numbers

Xn
p→ µ

Almost Sure Convergence implies Convergence in
Probability

Strong Law of Large Numbers implies Weak Law of Large
Numbers
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Consistency
T = T (X1, . . . , Xn) is a statistic estimating a parameter θ

The statistic Tn is said to be consistent for θ if Tn
P→ θ for all θ

in the parameter space.

lim
n→∞

P{|Tn − θ| < ε} = 1

The statistic Tn is said to be strongly consistent for θ if Tn
a.s.→ θ.

Strong consistency implies ordinary consistency.
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Consistency is great but it’s not enough.

It means that as the sample size becomes indefinitely large,
you probably get as close as you like to the truth.

It’s the least we can ask. Estimators that are not
consistent are completely unacceptable for most purposes.

Tn
a.s.→ θ ⇒ Un = Tn +

100, 000, 000

n

a.s.→ θ
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Consistency of the Sample Variance

σ̂2n =
1

n

n∑
i=1

(Xi −X)2

=
1

n

n∑
i=1

X2
i −X

2

By SLLN, Xn
a.s.→ µ and 1

n

∑n
i=1X

2
i
a.s.→ E(X2) = σ2 + µ2.

Because the function g(x, y) = x− y2 is continuous,

σ̂2n = g

(
1

n

n∑
i=1

X2
i , Xn

)
a.s.→ g(σ2 + µ2, µ) = σ2 + µ2 − µ2 = σ2
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Convergence in Distribution
Sometimes called Weak Convergence, or Convergence in Law

Denote the cumulative distribution functions of T1, T2, . . . by
F1(t), F2(t), . . . respectively, and denote the cumulative
distribution function of T by F (t).

We say that Tn converges in distribution to T , and write

Tn
d→ T if for every point t at which F is continuous,

lim
n→∞

Fn(t) = F (t)

Again, we will seldom use this definition directly.
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Univariate Central Limit Theorem

Let X1, . . . , Xn be a random sample from a distribution with
expected value µ and variance σ2. Then

Zn =

√
n(Xn − µ)

σ

d→ Z ∼ N(0, 1)
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Connections among the Modes of Convergence

Tn
a.s.→ T ⇒ Tn

p→ T ⇒ Tn
d→ T .

If a is a constant, Tn
d→ a⇒ Tn

p→ a.
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Sometimes we say the distribution of the sample mean
is approximately normal, or asymptotically normal.

This is justified by the Central Limit Theorem.

But it does not mean that Xn converges in distribution to
a normal random variable.

The Law of Large Numbers says that Xn converges almost
surely (and in probability) to a constant, µ.

So Xn converges to µ in distribution as well.
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Why would we say that for large n, the sample mean is
approximately N(µ, σ

2

n )?

Have Zn =
√
n(Xn−µ)

σ
d→ Z ∼ N(0, 1).

Pr{Xn ≤ x} = Pr

{√
n(Xn − µ)

σ
≤
√
n(x− µ)

σ

}
= Pr

{
Zn ≤

√
n(x− µ)

σ

}
≈ Φ

(√
n(x− µ)

σ

)

Suppose Y is exactly N(µ, σ
2

n ):

Pr{Y ≤ x} = Pr

{√
n(Y − µ)

σ
≤
√
n(x− µ)

σ

}
= Pr

{
Zn ≤

√
n(x− µ)

σ

}
= Φ

(√
n(x− µ)

σ

)
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Convergence of random vectors I

1 Definitions (All quantities in boldface are vectors in Rm unless

otherwise stated )

? Tn
a.s.→ T means P{ω : limn→∞Tn(ω) = T(ω)} = 1.

? Tn
P→ T means ∀ε > 0, limn→∞ P{||Tn −T|| < ε} = 1.

? Tn
d→ T means for every continuity point t of FT,

limn→∞ FTn
(t) = FT(t).

2 Tn
a.s.→ T⇒ Tn

P→ T⇒ Tn
d→ T.

3 If a is a vector of constants, Tn
d→ a⇒ Tn

P→ a.

4 Strong Law of Large Numbers (SLLN): Let X1, . . .Xn be independent
and identically distributed random vectors with finite first moment,
and let X be a general random vector from the same distribution.
Then Xn

a.s.→ E(X).

5 Central Limit Theorem: Let X1, . . . ,Xn be i.i.d. random vectors with
expected value vector µ and covariance matrix Σ. Then

√
n(Xn − µ)

converges in distribution to a multivariate normal with mean 0 and
covariance matrix Σ.
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Convergence of random vectors II

6 Slutsky Theorems for Convergence in Distribution:

1 If Tn ∈ Rm, Tn
d→ T and if f : Rm → Rq (where q ≤ m) is

continuous except possibly on a set C with P (T ∈ C) = 0,

then f(Tn)
d→ f(T).

2 If Tn
d→ T and (Tn −Yn)

P→ 0, then Yn
d→ T.

3 If Tn ∈ Rd, Yn ∈ Rk, Tn
d→ T and Yn

P→ c, then(
Tn

Yn

)
d→
(

T
c

)
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Convergence of random vectors III

7 Slutsky Theorems for Convergence in Probability:

1 If Tn ∈ Rm, Tn
P→ T and if f : Rm → Rq (where q ≤ m) is

continuous except possibly on a set C with P (T ∈ C) = 0,

then f(Tn)
P→ f(T).

2 If Tn
P→ T and (Tn −Yn)

P→ 0, then Yn
P→ T.

3 If Tn ∈ Rd, Yn ∈ Rk, Tn
P→ T and Yn

P→ Y, then(
Tn

Yn

)
P→
(

T
Y

)
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Convergence of random vectors IV

8 Delta Method (Theorem of Cramér, Ferguson p. 45): Let g : Rd → Rk

be such that the elements of ġ(x) =
[
∂gi
∂xj

]
k×d

are continuous in a

neighborhood of θ ∈ Rd. If Tn is a sequence of d-dimensional random

vectors such that
√
n(Tn − θ)

d→ T, then
√
n(g(Tn)− g(θ))

d→ ġ(θ)T.

In particular, if
√
n(Tn − θ)

d→ T ∼ N(0,Σ), then
√
n(g(Tn)− g(θ))

d→ Y ∼ N(0, ġ(θ)Σġ(θ)′).
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An application of the Slutsky Theorems

Let X1, . . . , Xn
i.i.d.∼ ?(µ, σ2)

By CLT, Yn =
√
n(Xn − µ)

d→ Y ∼ N(0, σ2)

Let σ̂n be any consistent estimator of σ.

Then by 6.3, Tn =

(
Yn
σ̂n

)
d→
(
Y
σ

)
= T

The function f(x, y) = x/y is continuous except if y = 0
so by 6.1,

f(Tn) =

√
n(Xn − µ)

σ̂n

d→ f(T) =
Y

σ
∼ N(0, 1)
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Univariate delta method

In the multivariate Delta Method 8, the matrix ġ(θ) is a
Jacobian. The univariate version of the delta method says that

if
√
n (Tn − θ)

d→ T and g′′(x) is continuous in a neighbourhood
of θ, then

√
n (g(Tn)− g(θ))

d→ g′(θ)T.

When using the Central Limit Theorem, especially if there is a
θ 6= µ in the model, it’s safer to write

√
n
(
g(Xn)− g(µ)

) d→ g′(µ)T.

and then substitute for µ in terms of θ.

36 / 52



Foundations LLN Consistency CLT Convergence of random vectors Delta Method

Example: Geometric distribution

Let X1, . . . , Xn be a random sample from a distribution,with
probability mass function p(x|θ) = θ(1− θ)x−1 for x = 1, 2, . . .,
where 0 < θ < 1.

So, E(Xi) = 1
θ and V ar(Xi) = 1−θ

θ2
.

The maximum likelihood estimator of θ is θ̂ = 1
Xn

. Using the

Central Limit Theorem and the delta method, find the
approximate large-sample distribution of θ̂.
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Solution: Geometric distribution
µ = 1

θ
and σ2 = 1−θ

θ2

CLT says
√
n
(
Xn − µ

) d→ T ∼ N(0, 1−θ
θ2

)

Delta method says
√
n
(
g(Xn)− g(µ)

) d→ g′(µ)T .

g(x) = 1
x = x−1

g′(x) = −x−2

So,

√
n
(
g(Xn)− g(µ)

)
=
√
n

(
1

Xn

− 1

µ

)
=
√
n
(
θ̂ − θ

)
d→ g′(µ)T = − 1

µ2
T

= −θ2 T ∼ N
(

0, θ4 · 1− θ
θ2

)
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Asymptotic distribution of θ̂ = 1
Xn

Approximate large-sample distribution

Have Yn =
√
n
(
θ̂ − θ

)
·∼ N(0, θ2(1− θ)).

So Yn√
n

=
(
θ̂ − θ

)
·∼ N

(
0, θ

2(1−θ)
n

)
And Yn√

n
+ θ = θ̂

·∼ N
(
θ, θ

2(1−θ)
n

)

We’ll say that θ̂ = 1
Xn

is approximately (or asymptotically)

N
(
θ, θ

2(1−θ)
n

)
.
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Another example of
√
n
(
g(Xn)− g(µ)

) d→ g′(µ)T
Don’t lose your head

Let X1, . . . , Xn
i.i.d.∼ ?(µ, σ2)

CLT says
√
n(Xn − µ)

d→ T ∼ N(0, σ2)

Let g(x) = x2

Delta method says
√
n
(
g(Xn)− g(µ)

) d→ g′(µ)T .

So
√
n
(
X

2
n − µ2

)
d→ 2µT ∼ N(0, 4µ2σ2)

Really? What if µ = 0?

If µ = 0 then
√
n
(
X

2
n − µ2

)
=
√
nX

2
n

d→ 2µT = 0

⇒
√
nX

2
n

p→ 0.

Already know from continuous mapping that X
2
n

p→ µ2 = 0.

Delta method reveals faster convergence.
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Also . . .

Have
√
nX

2
n

p→ 0. If we add another
√
n and if (say) σ2 = 1 as

well as µ = 0,

nX
2
n =

(√
n(Xn − µ)

)2 d→ Z2 ∼ χ2(1)

If σ2 6= 1, the target is Gamma(α = 1
2 , β = 2σ)
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The delta method comes from Taylor’s Theorem

Taylor’s Theorem: Let the nth derivative f (n) be continuous
in [a, b] and differentiable in (a, b), with x and x0 in (a, b). Then
there exists a point ξ between x and x0 such that

f(x) = f(x0) + f ′(x0) (x− x0) +
f ′′(x0)(x− x0)2

2!
+ . . .

+
f (n)(x0)(x− x0)n

n!
+

f (n+1)(ξ)(x− x0)n+1

(n+ 1)!

where Rn = f (n+1)(ξ)(x−x0)n+1

(n+1)! is called the remainder term.
If Rn → 0 as n→∞, the resulting infinite series is called the
Taylor Series for f(x).
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Taylor’s Theorem with two terms plus remainder
Very common in applications

Let g(x) be a function for which g′′(x) is continuous in an open

interval containing x = θ. Then

g(x) = g(θ) + g′(θ)(x− θ) +
g′′(θ∗)(x− θ)2

2!

where θ∗ is between x and θ.
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Delta method
Using g(x) = g(θ) + g′(θ)(x− θ) + 1

2
g′′(θ∗)(x− θ)2

Let
√
n(Tn − θ)

d→ T so that Tn
p→ θ.

√
n (g(Tn)− g(θ)) =

√
n

(
g(θ) + g′(θ)(Tn − θ) +

1

2
g′′(θ∗n)(Tn − θ)2 − g(θ)

)
=
√
n

(
g′(θ)(Tn − θ) +

1

2
g′′(θ∗n)(Tn − θ)2

)
= g′(θ)

√
n(Tn − θ)

+
1

2
g′′(θ∗n) ·

√
n(Tn − θ) · (Tn − θ)

d→ g′(θ)T + 0
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A variance-stabilizing transformation
An application of the delta method

Because the Poisson process is such a good model, count
data often have approximate Poisson distributions.

Let X1, . . . , Xn
i.i.d∼ Poisson(λ)

E(Xi) = V ar(Xi) = λ

Zn =
√
n(Xn−λ)√

Xn

d→ Z ∼ N(0, 1)

Could say Xn
·∼ N(λ, λ/n) and

∑n
i=1Xi

·∼ N(nλ, λ).

Because the sum of independent Poissons is Poisson, this
means Poisson-distributed variables with large λ are
approximately normal.

For analysis with normal linear models, approximate
normality is good. Variance that depends on E(Yi) is not
good.

Can we fix it?
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Variance-stabilizing transformation continued

CLT says
√
n(Xn − λ)

d→ T ∼ N(0, λ).

Delta method says
√
n
(
g(Xn)− g(λ)

) d→ g′(λ)T = Y ∼ N
(
0, g′(λ)2 λ

)

If g′(λ) = 1√
λ

, then Y ∼ N(0, 1).
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An elementary differential equation: g′(x) = 1√
x

Solve by separation of variables

dg

dx
= x−1/2

⇒ dg = x−1/2 dx

⇒
∫
dg =

∫
x−1/2 dx

⇒ g(x) =
x1/2

1/2
+ c = 2x1/2 + c
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We have found

√
n
(
g(Xn)− g(λ)

)
=
√
n
(

2X
1/2
n − 2λ1/2

)
d→ Z ∼ N(0, 1)

So,

We could say that
√
Xn is asymptotically normal, with

(asymptotic) mean
√
λ and (asymptotic) variance 1

4n .

This calculation could justify a square root transformation
for count data.

Note that the transformation is increasing, so if Yi is
number of visitors to a website,

√
Yi could still be called

“popularity.”
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The arcsin-square root transformation
For proportions

Sometimes, variable values consist of proportions, one for each
case.

For example, cases could be high schools.

The variable of interest is the proportion of students who
enroll in university the year after graduation.

This is an example of aggregated data.
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The advice you sometimes get
Still

When a proportion is the response variable in a regression, use
the arcsin square root transformation.

That is, if the proportions are P1, . . . , Pn, let

Yi = sin−1(
√
Pi)

and use the Yi values in your regression.

Why?

It’s a variance-stabilizing transformation (details omitted).
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That was fun, but it was all univariate.

Because

The multivariate CLT establishes convergence to a
multivariate normal, and

Vectors of MLEs are approximately multivariate normal for
large samples, and

The multivariate delta method can yield the asymptotic
distribution of useful functions of the MLE vector,

We need to look at random vectors and the multivariate normal
distribution.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The
LATEX source code is available from the course website:
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