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Background Reading
Optional

Chapter 1 of Davison’s Statistical models: Data,
and probability models for data.
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Goal of statistical analysis

The goal of statistical analysis is to draw
reasonable conclusions from noisy numerical data.
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Steps in the process of statistical analysis
One approach

I Consider a fairly realistic example or problem.

I Decide on a statistical model.

I Perhaps decide sample size.

I Acquire data.

I Examine and clean the data; generate displays and
descriptive statistics.

I Estimate model parameters, for example by maximum
likelihood.

I Carry out tests, compute confidence intervals, or both.

I Perhaps re-consider the model and go back to estimation.

I Based on the results of estimation and inference, draw
conclusions about the example or problem.
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What is a statistical model?
You should always be able to state the model.

A statistical model is a set of assertions that partly specify the
probability distribution of the observable data. The
specification may be direct or indirect.

I Let X1, . . . , Xn be a random sample from a normal
distribution with expected value µ and variance σ2.
The parameters µ and σ2 are unknown.

I For i = 1, . . . , n, let yi = β0 + β1xi,1 + · · ·+ βp−1xi,p−1 + εi,
where

β0, . . . , βp−1 are unknown constants.
xi,j are known constants.
ε1, . . . , εn are independent N(0, σ2) random variables.
σ2 is an unknown constant.
y1, . . . , yn are observable random variables.

The parameters β0, . . . , βp−1, σ
2 are unknown.
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Model and Truth
Is a statistical model the same thing as the truth?

“Essentially all models are wrong, but some are
useful.” (Box and Draper, 1987, p. 424)
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Parameter Space

The parameter space is the set of values that can be taken on by
the parameter.

I Let X1, . . . , Xn be a random sample from a normal
distribution with expected value µ and variance σ2.
The parameter space is {(µ, σ2) : −∞ < µ <∞, σ2 > 0}.

I For i = 1, . . . , n, let yi = β0 + β1xi,1 + · · ·+ βp−1xi,p−1 + εi,
where

β0, . . . , βp−1 are unknown constants.
xi,j are known constants.
ε1, . . . , εn are independent N(0, σ2) random variables.
σ2 is an unknown constant.
y1, . . . , yn are observable random variables.

The parameter space is
{(β0, . . . , βp−1, σ2) : −∞ < βj <∞, σ2 > 0}.
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Coffee taste test

A fast food chain is considering a change in the blend of coffee
beans they use to make their coffee. To determine whether their
customers prefer the new blend, the company plans to select a
random sample of n = 100 coffee-drinking customers and ask
them to taste coffee made with the new blend and with the old
blend, in cups marked “A” and “B.” Half the time the new
blend will be in cup A, and half the time it will be in cup B.
Management wants to know if there is a difference in preference
for the two blends.
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Statistical model

Letting θ denote the probability that a consumer will choose the
new blend, treat the data Y1, . . . , Yn as a random sample from a
Bernoulli distribution. That is, independently for i = 1, . . . , n,

P (yi|θ) = θyi(1− θ)1−yi

for yi = 0 or yi = 1, and zero otherwise.

I Parameter space is the interval from zero to one.

I θ could be estimated by maximum likelihood.

I Large-sample tests and confidence intervals are available.

Note that Y =
∑n

i=1 Yi is the number of consumers who choose
the new blend. Because Y ∼ B(n, θ), the whole experiment
could also be treated as a single observation from a Binomial.
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Find the MLE of θ
Show your work

Denoting the likelihood by L(θ) and the log likelihood by
`(θ) = logL(θ), maximize the log likelihood.

∂`

∂θ
=

∂

∂θ
log

(
n∏
i=1

P (yi|θ)

)

=
∂

∂θ
log

(
n∏
i=1

θyi(1− θ)1−yi
)

=
∂

∂θ
log
(
θ
∑n
i=1 yi(1− θ)n−

∑n
i=1 yi

)
=

∂

∂θ

(
(

n∑
i=1

yi) log θ + (n−
n∑
i=1

yi) log(1− θ)

)

=

∑n
i=1 yi
θ

−
n−

∑n
i=1 yi

1− θ
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Setting the derivative to zero and solving

I θ =
∑n
i=1 yi
n = y

I Second derivative test: ∂2 log `
∂θ2 = −n

(
1−y

(1−θ)2 + y
θ2

)
< 0

I Concave down, maximum, and the MLE is the sample
proportion: θ̂ = y = p
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Numerical estimate

Suppose 60 of the 100 consumers prefer the new blend. Give a
point estimate the parameter θ. Your answer is a number.

> p = 60/100; p

[1] 0.6
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Tests of statistical hypotheses

I Model: Y ∼ Fθ
I Y is the data vector, and Y is the sample space: Y ∈ Y
I θ is the parameter, and Θ is the parameter space: θ ∈ Θ

I Null hypothesis is H0 : θ ∈ Θ0 v.s. HA : θ ∈ Θ ∩Θc
0.

I Meaning of the null hypothesis is that nothing interesting is
happening.

I C ⊂ Y is the critical region. Reject H0 in favour of HA

when Y ∈ C.
I Significance level α (size of the test) is the maximum

probability of rejecting H0 when H0 is true.
Conventionally, α = 0.05.

I p-value is the smallest value of α for which H0 can be
rejected.

I Small p-values are interpreted as providing stronger
evidence against the null hypothesis.
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Type I and Type II error
A Neyman-Pearson idea rather than Fisher

I Type I error is to reject H0 when H0 is true.

I Type II error is to not reject H0 when H0 is false.

I 1− Pr{Type II Error} is called power.

I If two tests have the same maximum Type I error
probability α, the one with higher power is better.

I Power may also be used to select sample size.
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Carry out a test to determine which brand of coffee is
preferred
Recall the model is Y1, . . . , Yn

i.i.d.∼ B(1, θ)

Start by stating the null hypothesis.

I H0 : θ = 0.50

I H1 : θ 6= 0.50

I Could you make a case for a one-sided test?

I α = 0.05 as usual.

I Central Limit Theorem says θ̂ = Y is approximately
normal with mean θ and variance θ(1−θ)

n .
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Several valid test statistics for H0 : θ = θ0 are available
Recall that approximately, Y ∼ N(θ, θ(1−θ)

n
)

Two of them are

Z1 =

√
n(Y − θ0)√
θ0(1− θ0)

and

Z2 =

√
n(Y − θ0)√
Y (1− Y )

What is the critical value? Your answer is a number.

> alpha = 0.05

> qnorm(1-alpha/2)

[1] 1.959964
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Calculate the test statistic and the p-value for each test
Suppose 60 out of 100 preferred the new blend

Z1 =
√
n(Y−θ0)√
θ0(1−θ0)

> theta0 = .5; ybar = .6; n = 100

> Z1 = sqrt(n)*(ybar-theta0)/sqrt(theta0*(1-theta0)); Z1

[1] 2

> pval1 = 2 * (1-pnorm(Z1)); pval1

[1] 0.04550026

Z2 =
√
n(Y−θ0)√
Y (1−Y )

> Z2 = sqrt(n)*(ybar-theta0)/sqrt(ybar*(1-ybar)); Z2

[1] 2.041241

> pval2 = 2 * (1-pnorm(Z2)); pval2

[1] 0.04122683
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Conclusions

I Do you reject H0? Yes, just barely.

I Isn’t the α = 0.05 significance level pretty arbitrary?
Yes, but if people insist on a Yes or No answer, this is
what you give them.

I What do you conclude, in symbols? θ 6= 0.50. Specifically,
θ > 0.50.

I What do you conclude, in plain language? Your answer is a
statement about coffee. More consumers prefer the new
blend of coffee beans.

I Can you really draw directional conclusions when all you
did was reject a non-directional null hypothesis? Yes.
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A technical issue

I In this class we will mostly avoid one-tailed tests.

I Why? Ask what would happen if the results were strong and in
the opposite direction to what was predicted (dental example).

I But when H0 is rejected, we still draw directional conclusions.

I For example, if x is income and y is credit card debt, we test
H0 : β1 = 0 with a two-sided t-test.

I Say p = 0.0021 and β̂1 = 1.27. We say “Consumers with higher
incomes tend to have more credit card debt.”

I Is this justified? We’d better hope so, or all we can say is “There
is a connection between income and average credit card debt.”

I Then they ask: “What’s the connection? Do people with lower
income have more debt?”

I And you have to say “Sorry, I don’t know.”

I It’s a good way to get fired, or at least look silly.
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The technical resolution

Decompose the two-sided test into a set of two one-sided tests
with significance level α/2, equivalent to the two-sided test.
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Two-sided test

H0 : θ = 1
2 versus H1 : θ 6= 1

2 , α = 0.05

0.025 0.025

Z
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Left-sided test

H0 : θ ≥ 1
2 versus H1 : θ < 1

2 , α = 0.05

0.025
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Right-sided test

H0 : θ ≤ 1
2 versus H1 : θ > 1

2 , α = 0.05

0.025
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Decomposing the 2-sided test into two 1-sided tests

H0 : θ = 1
2 vs. H1 : θ 6= 1

2 , α = 0.05

0.025 0.025

Z

H0 : θ ≥ 1
2 vs. H1 : θ < 1

2 , α = 0.05

0.025

H0 : θ ≤ 1
2 versus H1 : θ > 1

2 , α = 0.05

0.025

I Clearly, the 2-sided test rejects H0 if and only if exactly
one of the 1-sided tests reject H0.

I Carry out both of the one-sided tests.
I Draw a directional conclusion if H0 is rejected.
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Summary of the technical resolution

I Decompose the two-sided test into a set of two one-sided
tests with significance level α/2, equivalent to the
two-sided test.

I In practice, just look at the sign of the regression
coefficient, or compare the sample means.

I Under the surface you are decomposing the two-sided test,
but you never mention it.
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Plain language

I It is very important to state directional conclusions, and
state them clearly in terms of the subject matter. Say
what happened! If you are asked state the conclusion in
plain language, your answer must be free of statistical
mumbo-jumbo.

I Marking rule: If the question asks for plain language and
you draw a non-directional conclusion when a directional
conclusion is possible, you get half marks at most.
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What about negative conclusions?
What would you say if Z = 1.84?

Here are two possibilities, in plain language.

I “This study does not provide clear evidence that
consumers prefer one blend of coffee beans over the other.”

I “The results are consistent with no difference in preference
for the two coffee bean blends.”

In this course, we will not just casually accept the null
hypothesis. We will not say that there was no difference in
preference.

We are taking the side of Fisher over Neyman and Pearson in
an old and very nasty philosophic dispute.
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Confidence intervals
Usually for individual parameters

I Point estimates may give a false sense of precision.

I We should provide a margin of probable error as well.
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Confidence Intervals
Taste test example

Approximately for large n,

1− α = Pr{−zα/2 < Z < zα/2}

≈ Pr

−zα/2 <
√
n(Y − θ)√
Y (1− Y )

< zα/2


= Pr

Y − zα/2
√
Y (1− Y )

n
< θ < Y + zα/2

√
Y (1− Y )

n


I Could express this as Y ± zα/2

√
Y (1−Y )

n .

I zα/2

√
Y (1−Y )

n is sometimes called the margin of error.

I If α = 0.05, it’s the 95% margin of error.
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Give a 95% confidence interval for the taste test data.
The answer is a pair of numbers. Show some work.

(
y − zα/2

√
y(1− y)

n
, y + zα/2

√
y(1− y)

n

)

=

(
0.60− 1.96

√
0.6× 0.4

100
, 0.60 + 1.96

√
0.6× 0.4

100

)

= (0.504, 0.696)

In a report, you could say

I The estimated proportion preferring the new coffee bean
blend is 0.60± 0.096, or

I “Sixty percent of consumers preferred the new blend.
These results are expected to be accurate within 10
percentage points, 19 times out of 20.”
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Meaning of the confidence interval

I We calculated a 95% confidence interval of (0.504, 0.696)
for θ.

I Does this mean Pr{0.504 < θ < 0.696} = 0.95?

I No! The quantities 0.504, 0.696 and θ are all constants, so
Pr{0.504 < θ < 0.696} is either zero or one.

I The endpoints of the confidence interval are random
variables, and the numbers 0.504 and 0.696 are realizations
of those random variables, arising from a particular
random sample.

I Meaning of the probability statement: If we were to
calculate an interval in this manner for a large number of
random samples, the interval would contain the true
parameter around 95% of the time.

I The confidence interval is a guess, and the guess is either
right or wrong. But the guess is the constructed by a
method that is right 95% of the time.
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More on confidence intervals

I Can have confidence regions for the entire parameter vector
or multi-dimensional functions of the parameter vector.

I Confidence regions correspond to tests.
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Confidence intervals (regions) correspond to tests
Recall Z1 =

√
n(Y−θ0)√
θ0(1−θ0)

and Z2 =
√
n(Y−θ0)√
Y (1−Y )

.

H0 is not rejected if and only if

−zα/2 < Z2 < zα/2

if and only if

Y − zα/2

√
Y (1− Y )

n
< θ0 < Y + zα/2

√
Y (1− Y )

n

I So the confidence interval consists of those parameter
values θ0 for which H0 : θ = θ0 is not rejected.

I That is, the null hypothesis is rejected at significance level
α if and only if the value given by the null hypothesis is
outside the (1− α)× 100% confidence interval.
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Selecting sample size

I Where did that n = 100 come from?

I Probably off the top of someone’s head.

I We can (and should) be more systematic.

I Sample size can be selected
I To achieve a desired margin of error
I To achieve a desired statistical power
I In other reasonable ways
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Statistical Power

The power of a test is the probability of rejecting H0 when H0

is false.

I More power is good.

I Power is not just one number. It is a function of the
parameter(s).

I Usually,
I For any n, the more incorrect H0 is, the greater the power.
I For any parameter value satisfying the alternative

hypothesis, the larger n is, the greater the power.
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Statistical power analysis
To select sample size

I Pick an effect you’d like to be able to detect – a parameter
value such that H0 is false. It should be just over the
boundary of interesting and meaningful.

I Pick a desired power, a probability with which you’d like to
be able to detect the effect by rejecting the null hypothesis.

I Start with a fairly small n and calculate the power.
Increase the sample size until the desired power is reached.

There are two main issues.

I What is an “interesting” or “meaningful” parameter value?

I How do you calculate the probability of rejecting H0?
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Calculating power for the test of a single proportion
True parameter value is θ

Power = 1− Pr{−zα/2 < Z2 < zα/2}

= 1− Pr

−zα/2 <
√
n(Y − θ0)√
Y (1− Y )

< zα/2


= . . .

= 1− Pr


√
n(θ0 − θ)√
θ(1− θ)

− zα/2

√√√√Y (1− Y )

θ(1− θ)
<

√
n(Y − θ)√
θ(1− θ)

<

√
n(θ0 − θ)√
θ(1− θ)

+ zα/2

√√√√Y (1− Y )

θ(1− θ)


≈ 1− Pr

{√
n(θ0 − θ)√
θ(1− θ)

− zα/2 < Z <

√
n(θ0 − θ)√
θ(1− θ)

+ zα/2

}

= 1− Φ

(√
n(θ0 − θ)√
θ(1− θ)

+ zα/2

)
+ Φ

(√
n(θ0 − θ)√
θ(1− θ)

− zα/2

)
,

where Φ(·) is the cumulative distribution function of the
standard normal.
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An R function to calculate approximate power
For the test of a single proportion

Power = 1− Φ

(√
n(θ0 − θ)√
θ(1− θ)

+ zα/2

)
+ Φ

(√
n(θ0 − θ)√
θ(1− θ)

− zα/2

)

Z2power = function(theta,n,theta0=0.50,alpha=0.05)

{

effect = sqrt(n)*(theta0-theta)/sqrt(theta*(1-theta))

z = qnorm(1-alpha/2)

Z2power = 1 - pnorm(effect+z) + pnorm(effect-z)

Z2power

} # End of function Z2power
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Some numerical examples
Z2power = function(theta,n,theta0=0.50,alpha=0.05)

> Z2power(0.50,100) # Should be alpha = 0.05

[1] 0.05

>

> Z2power(0.55,100)

[1] 0.1713209

> Z2power(0.60,100)

[1] 0.5324209

> Z2power(0.65,100)

[1] 0.8819698

> Z2power(0.40,100)

[1] 0.5324209

> Z2power(0.55,500)

[1] 0.613098

> Z2power(0.55,1000)

[1] 0.8884346
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Find smallest sample size needed to detect θ = 0.60 as
different from θ0 = 0.50 with probability at least 0.80

> samplesize = 1

> power=Z2power(theta=0.60,n=samplesize); power

[1] 0.05478667

> while(power < 0.80)

+ {

+ samplesize = samplesize+1

+ power = Z2power(theta=0.60,n=samplesize)

+ }

> samplesize

[1] 189

> power

[1] 0.8013024
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What is required of the scientist
Who wants to select sample size by power analysis

The scientist must specify

I Parameter values that he or she wants to be able to detect
as different from H0 value.

I Desired power (probability of detection)

It’s not always easy for a scientist to think in terms of the
parameters of a statistical model.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The
LATEX source code is available from the course website:
http://www.utstat.toronto.edu/∼brunner/oldclass/appliedf18
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