
Analysis of Fractional Factorial Designs1

STA442/2101 Fall 2018

1See last slide for copyright information.
1 / 12



Fractional Factorial Designs

So far, we have considered only complete factorials.

In a complete factorial, there are observations at all
treatment combinations.

In a fractional factorial, some cells in the design are
deliberately empty.

Why? Usually expense.
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Models for fractional factorial designs

You can still fit a regression model if you are willing to
make some assumptions.

Usually, assume one or more interactions are absent.

Its another example of the tradeoff between assumptions
and amount of data.

The more data you have, the less you have to assume.
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The simplest example: Two by two
Omit the red cell

A = Yes
A = No

B = Yes B = No

µ11 µ12
µ21 µ22

No interaction means the effect of A is the same for both levels
of B. µ11 − µ21 = µ12 − µ22 ⇔ µ22 = µ12 − µ11 + µ21
And the difference between marginal means for A is

1

2
(µ11 + µ12)−

1

2
(µ21 + µ22)

=
1

2

(
µ11 + µ12 − µ21 − (µ12 − µ11 + µ21)

)
=

1

2

(
µ11 + µ12 − µ21 − µ12 + µ11 − µ21

)
=

1

2

(
2µ11 − 2µ21

)
= µ11 − µ21
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Extensions

In a 2× 2× · · · × 2 factorial, You can sacrifice any cell you
want in exchange for the highest-way interaction.

Chapter 6A in Cochran and Cox’s Design of experiments
has a lot of rules that apply to balanced designs.

Here’s another approach.
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For larger designs

All the standard tests are tests of whether contrasts or
collections of contrasts equal zero.
You can sacrifice any contrast in exchange for a cell by

Choosing one of the µ parameters involved in the contrast.
Solving for it.
Letting that cell be empty.

You can do this for more than one contrast (and cell).

How do you know what contrasts to test for the remaining
effects?

Substitute the solution(s) for the µ parameter(s).

Calculate the contrast you would usually test.

And simplify.

Just as in the 2× 2 example.

The hardest part is knowing what contrasts correspond to
an effect of interest for larger designs.

There is a systematic way to find out.
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Effect coding

Pick an interaction or set of interactions to sacrifice.

The number of potential empty cells equals the number of
βs set to zero.

Each β is zero if and only if a linear combination of the µ
values is zero.

It’s a matter of going back and forth between cell means
coding and effect coding.

To get an explicit formula for the β parameters of effect
coding in terms of the µ parameters of cell means coding.
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Example: Crop yield study
Three Fertilizers by Sprinkler versus Drip Irrigation

E[Y |X] = β0 + β1f1 + β2f2 + β3w + β4f1w + β5f2w

Fertilizer Water f1 f2 w f1w f2w E[Y |X]

1 Sprinkler 1 0 1 1 0 µ11 = β0 + β1 + β3 + β4
1 Drip 1 0 -1 -1 0 µ12 = β0 + β1 − β3 − β4
2 Sprinkler 0 1 1 0 1 µ21 = β0 + β2 + β3 + β5
2 Drip 0 1 -1 0 -1 µ22 = β0 + β2 − β3 − β5
3 Sprinkler -1 -1 1 -1 -1 µ31 = β0 − β1 − β2 + β3 − β4 − β5
3 Drip -1 -1 -1 1 1 µ32 = β0 − β1 − β2 − β3 + β4 + β5

The µij are linear combinations of the βj .

And the coefficients are sitting right there in the table.
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Matrix form



1 1 0 1 1 0
1 1 0 −1 −1 0
1 0 1 1 0 1
1 0 1 −1 0 −1
1 −1 −1 1 −1 −1
1 −1 −1 −1 1 1





β0
β1
β2
β3
β4
β5
β6


=



µ11
µ12
µ21
µ22
µ31
µ32



Aβ = µ

β = A−1µ

This is really nice because it shows the equivalence of the two
dummy variable coding schemes.
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Can even do most of the job with R
β = A−1µ

> A = rbind( c(1, 1, 0, 1, 1, 0),

+ c(1, 1, 0,-1,-1, 0),

+ c(1, 0, 1, 1, 0, 1),

+ c(1, 0, 1,-1, 0,-1),

+ c(1,-1,-1, 1,-1,-1),

+ c(1,-1,-1,-1, 1, 1) )

> solve(A) # Inverse

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667

[2,] 0.3333333 0.3333333 -0.1666667 -0.1666667 -0.1666667 -0.1666667

[3,] -0.1666667 -0.1666667 0.3333333 0.3333333 -0.1666667 -0.1666667

[4,] 0.1666667 -0.1666667 0.1666667 -0.1666667 0.1666667 -0.1666667

[5,] 0.3333333 -0.3333333 -0.1666667 0.1666667 -0.1666667 0.1666667

[6,] -0.1666667 0.1666667 0.3333333 -0.3333333 -0.1666667 0.1666667

> 0.1666667 * 6

[1] 1

This identifies the linear combination of µs that correspond to each β.

Still have to solve for the cell mean you’re omitting, and substitute.

But at least now we know what linear combinations to calculate.
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Which cells can we omit?
And still be able to test the remaining effects

Try omitting one or more cells.

Solve for that µ in terms of the other µs.

Substitute the solution for the missing cell mean(s).

Set the contrast(s) you want the test to zero (get these
from A−1)

Simplify.

If you get 0 = 0, you’ve omitted the wrong cells.

Otherwise, you know what special hypotheses to test.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The
LATEX source code is available from the course website:
http://www.utstat.toronto.edu/∼brunner/oldclass/appliedf18
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