
STA 2101/442 Assignment 31

These questions are practice for the midterm and final exam, and are not to be handed in.

1. Suppose X1, . . . , Xn are a random sample from a distribution with mean µ and variance

σ2. The central limit theorem says
√
n
(
Xn − µ

) d→ T ∼ N(0, σ2). One version of
the delta method says that if g(x) is a function whose derivative is continuous in a

neighbourhood of x = µ, then
√
n
(
g(Xn)− g(µ)

) d→ g′(µ)T . In many applications,
both µ and σ2 are functions of some parameter θ.

(a) Let X1, . . . , Xn be a random sample from a Bernoulli distribution with parameter
θ. Find the limiting distribution of

Zn = 2
√
n

(
sin−1

√
Xn − sin−1

√
θ

)
.

Hint: d
dx

sin−1(x) = 1√
1−x2 . The measurements are in radians, not degrees.

(b) In a coffee taste test, 100 coffee drinkers tasted coffee made with two different
blends of coffee beans, the old standard blend and a new blend. We will adopt a
Bernoulli model for these data, with θ denoting the probability that a customer
will prefer the new blend. Suppose 60 out of 100 consumers preferred the new
blend of coffee beans. Using your answer to the first part of this question, test
H0 : θ = 1

2
using a variance-stabilized test statistic. Give the value of the test

statistic (a number), and state whether you reject H0 at the usual α = 0.05
significance level. In plain, non-statistical language, what do you conclude? This
is a statement about preference for types of coffee, and of course you will draw a
directional conclusion if possible.

(c) If the probability of an event is p, the odds of the event is (are?) defined as
p/(1− p). Suppose again that X1, . . . , Xn are a random sample from a Bernoulli
distribution with parameter θ. In this case the log odds of Xi = 1 would be
estimated by

Yn = log
Xn

1−Xn

.

Naturally, that’s the natural log. Find the approximate large-sample distribution
(that is, the asymptotic distribution) of Yn. It’s normal, of course. Your job is to
give the approximate (that is, asymptotic) mean and variance of Yn.

(d) Again using the Taste Test data, give a 95% confidence interval for the log odds
of preferring the new brand. Your answer is a pair of numbers.

1This assignment was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It
is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of
it as you like and share the result freely. The LATEX source code is available from the course website:
http://www.utstat.toronto.edu/∼brunner/oldclass/appliedf18
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(e) Let X1, . . . , Xn be a random sample from an exponential distribution with pa-
rameter θ, so that E(Xi) = θ and V ar(Xi) = θ2.

i. Find a variance-stabilizing transformation. That is, find a function g(x) such
that the limiting distribution of

Yn =
√
n
(
g(Xn)− g(θ)

)
does not depend on θ.

ii. According to a Poisson process model for calls answered by a service techni-
cian, service times (that is, time intervals between taking 2 successive calls;
there is always somebody on hold) are independent exponential random vari-
ables with mean θ. In 50 successive calls, one technician’s mean service time
was 3.4 minutes. Test whether this technician’s mean service time differs
from the mandated average time of 3 minutes. Use your answer to the first
part of this question.

2. Let X1, . . . , Xn be a random sample from a uniform distribution on (0, θ).

(a) What is the limiting distribution of
√
n
(
Xn − µ

)
? Just give the answer; there is

no need to show any work.

(b) What is the limiting distribution of 2
√
n
(
Xn − µ

)
? Just give the answer; there

is no need to show any work. But what Slutsky Lemma are you using? Check
the lecture slides if necessary.

(c) Find a variance-stabilizing transformation that produces a standard normal dis-
tribution. That is, letting Tn = 2Xn, find a function g(x) such that the limiting
distribution of

Yn =
√
n (g(Tn)− g(θ))

is standard normal.

3. The label on the peanut butter jar says peanuts, partially hydrogenated peanut oil,
salt and sugar. But we all know there is other stuff in there too. There is very good
reason to assume that the number of rat hairs in a 500g jar of peanut butter has a
Poisson distribution with mean λ, because it’s easy to justify a Poisson process model
for how the hairs get into the jars. A sample of 30 jars of Brand A yields X = 6.8,
while an independent sample of 40 jars of Brand B yields Y = 7.275.

(a) State the model for this problem.

(b) What is the parameter space Θ?

(c) State the null hypothesis in symbols.

(d) Find a variance-stabilizing transformation for the Poisson distribution.

(e) Using your variance-stabilizing transformation, derive a test statistic that has an
approximate standard normal distribution under H0.
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(f) Calculate your test statistic for these data. Do you reject the null hypothesis at
α = 0.05? Answer Yes or No.

(g) In plain, non-statistical language, what do you conclude? Your answer is some-
thing about peanut butter and rat hairs.

4. If the p × 1 random vector x has variance-covariance matrix Σ and A is an m × p
matrix of constants, prove that the variance-covariance matrix of Ax is AΣA>. Start
with the definition of a variance-covariance matrix:

cov(Z) = E(Z− µz)(Z− µz)
>.

5. If the p × 1 random vector x has mean µ and variance-covariance matrix Σ, show
Σ = E(xx>)− µµ>.

6. Let the p × 1 random vector x have mean µ and variance-covariance matrix Σ, and
let c be a p× 1 vector of constants. Find cov(x + c). Show your work.

7. Let the p× 1 random vector x have mean µ and variance-covariance matrix Σ; let A
be a q× p matrix of constants and let B be an r× p matrix of constants. Derive a nice
simple formula for cov(Ax,Bx).

8. Let x be a p× 1 random vector with mean µx and variance-covariance matrix Σx, and
let y be a q × 1 random vector with mean µy and variance-covariance matrix Σy. Let

Σxy denote the p× q matrix cov(x,y) = E
(
(x− µx)(y − µy)

>).
(a) What is the (i, j) element of Σxy? You don’t need to show any work; just write

down the answer.

(b) Find an expression for cov(x + y) in terms of Σx, Σy and Σxy. Show your work.

(c) Simplify further for the special case where Cov(Xi, Yj) = 0 for all i and j.

(d) Let c be a p × 1 vector of constants and d be a q × 1 vector of constants. Find
cov(x + c,y + d). Show your work.

9. Let x = (X1, X2, X3)
> be multivariate normal with

µ =

 1
0
6

 and Σ =

 1 0 0
0 2 0
0 0 1

 .

Let Y1 = X1 +X2 and Y2 = X2 +X3. Find the joint distribution of Y1 and Y2.

10. Let X1 be Normal(µ1, σ
2
1), and X2 be Normal(µ2, σ

2
2), independent of X1. What is the

joint distribution of Y1 = X1 +X2 and Y2 = X1 −X2? What is required for Y1 and Y2
to be independent? Hint: Use matrices.
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11. Show that if w ∼ Np(µ,Σ) with Σ positive definite, Y = (w−µ)>Σ−1(w−µ) has a
chi-squared distribution with p degrees of freedom.

12. You know that if w ∼ Np(µ,Σ), then Aw + c ∼ Nr(Aµ + c,AΣA>). Use this result
to obtain the distribution of the sample mean under normal random sampling. That is,
let X1, . . . , Xn be a random sample from a N(µ, σ2) distribution. Find the distribution
of X. You might want to use 1 to represent an n× 1 column vector of ones.

13. Let X1, . . . , Xn be independent and identically distributed random variables with
E(Xi) = µ and V ar(Xi) = σ2.

(a) Show Cov(X, (Xj −X)) = 0 for j = 1, . . . , n.

(b) Why does this imply that if X1, . . . , Xn are normal, X and S2 are independent?

14. Recall that the chi-squared distribution with ν degrees of freedom is just Gamma with
α = ν

2
and β = 2. So if X ∼ χ2(ν), it has moment-generating function MX(t) =

(1− 2t)−ν/2.

(a) Let W1 ∼ χ2(ν1) and W2 ∼ χ2(ν2) be independent, and W = W1 +W2. Find the
distribution of W . Show your work (there’s not much).

(b) Let W = W1 + W2, where W1 and W2 are independent, W ∼ χ2(ν1 + ν2) and
W2 ∼ χ2(ν2), where ν1 and ν2 are both positive. Show W1 ∼ χ2(ν1).

(c) Let X1, . . . , Xn be random sample from a N(µ, σ2) distribution. Show

(n− 1)S2

σ2
∼ χ2(n− 1).

Hint:
∑n

i=1 (Xi − µ)2 =
∑n

i=1

(
Xi −X +X − µ

)2
= . . .
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15. Let y = Xβ + ε, where X is an n× p matrix of known constants, β is a p× 1 vector
of unknown constants, and ε is multivariate normal with mean zero and covariance
matrix σ2In. The constant σ2 > 0 is unknown.

(a) The “hat matrix” H = X(X>X)−1X>.

i. What are the dimensions (number of rows and columns) of H?

ii. Show H is symmetric.

iii. Show H is “idempotent,” meaning HH = H.

iv. Show I−H is symmetric.

v. Show I−H is idempotent.

(b) What is the distribution of y?

(c) The least squares (and maximum likelihood) estimate of β is β̂ = (X>X)−1X>y.

What is the distribution of β̂? Show the calculations.

(d) Let ŷ = Xβ̂.

i. Show ŷ = Hy

ii. What is the distribution of ŷ? Show the calculation.

(e) Let the vector of residuals e = y − ŷ.

i. Show e = (I−H)y

ii. What is the distribution of e? Show the calculations. Simplify both the
expected value and the covariance matrix.

(f) Using Problem 7, show that e and β̂ are independent.

(g) The least-squares (and maximum likelihood) estimator β̂ is obtained by minimiz-
ing the sum of squares Q = (y −Xβ)>(y −Xβ) over all β ∈ Rp.

i. Show that Q = e>e + (β̂ − β)>(X>X)(β̂ − β). Hint: Add and subtract ŷ.

ii. Why does this imply that the minimum of Q(β) occurs at β = β̂?

iii. The columns of X are linearly independent. Why does linear independence
guarantee that the minimum is unique? You have just minimized a function
of p variables without calculus.

iv. Show that W1 = SSE
σ2 ∼ χ2(n − p), where SSE = e>e. Use results from

earlier parts of this assignment. Start with the distribution of W = 1
σ2 (y −

Xβ)>(y−Xβ). This is the chi-squared random variable that appears in the
denominator of all those F and t statistics.
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