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Background Reading: Renscher and Schaalje’s Linear

models in statistics

o Chapter 3 on Random Vectors and Matrices

o Chapter 4 on the Multivariate Normal Distribution
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Overview

@ Definitions and Basic Results

© Multivariate Normal
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Definitions and Basic Results

Random Vectors and Matrices

A random matriz is just a matrix of random variables. Their
joint probability distribution is the distribution of the random
matrix. Random matrices with just one column (say, p x 1)
may be called random vectors.



Definitions and Basic Results

Expected Value

The expected value of a matrix is defined as the matrix of
expected values. Denoting the p x ¢ random matrix X by [X; ],

E(X) = [E(Xi;)].



Defi

Immediately we have natural properties like
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Definitions and Basic Results

Moving a constant through the expected value sign

Let A = [a; ;] be an 7 x p matrix of constants, while X is still a
p X ¢ random matrix. Then

E(AX) = E(

Similar calculations yield E(AXB) = AE(X)B.



Definitions and Basic Results

Variance-Covariance Matrices

Let X be a p x 1 random vector with E(X) = p. The
variance-covariance matriz of X (sometimes just called the
covariance matriz), denoted by cov(X), is defined as

cou(X) = B{(X = w)(X ~ )" }.



Definitions and Basic Results

cov(X)=E{(X-—p)(X—p)"}

X1
cov(X) = E{(Xgug) ( X1—p1 Xo—p2 X3—ps3 )}
X3 —p3
(X1 —m)? (X1 —pa)(X2 —p2) (X1 — p1)(Xs — p3)
= E (X2 — #2)(X1 p) (X2 — p2)? (Xz - #2)(X3 — p3)
(X3 —p3) (X1 —p1) (X3 —p3)(Xo —p2) (X3 — p3)?
E{(X1 —p1)?} E{(X1—p)(Xo —p2)}  E{(X1—p1)(Xs -
= B{(X2 —p2)(X1 —p1)}  B{(X2 —n2)?} E{(X2 *H2)(X -
B{(X3 —p3)(X1 —p1)}  B{(X3—p3)(Xz2 —p2)} E{(X5—p3)*}
( Var(X1) Cov(X1,X2) Cov(X1,X3) )
= Cov(X1,X2) Var(X2) Cov(X2,X3) |.
Cov(X1,X3) Cov(X2,X3) Var(Xs)

So, the covariance matrix cov(X) is a p X p symmetric matrix with variances on

the main diagonal and covariances on the off-diagonals.



Matrix of covariances between two random vectors

Let X be a p x 1 random vector with F(X) = p,, and let Y be
a ¢ x 1 random vector with E(Y) = p,. The p x ¢ matrix of
covariances between the elements of X and the elements of Y is

cou(X,Y) = E{(X =, )(Y — p,)" }.
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Adding a constant has no effect

On variances and covariances

e cov(X + a) = cov(X)
e cov(X+a,Y+Db)=covXY)

These results are clear from the definitions:
o coo(X) = B{(X - p)(X —p)7}
° COU(XaY) =F {(X - /’l’m)(Y - uy)T}

Sometimes it is useful to let a = —p, and b = —p,.
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Let X be a p x 1 random vector with F(X) = u and
cov(X) = X, while A = [a; ;] is an r x p matrix of constants.
Then

cov(AX) =



Normal

The Multivariate Normal Distribution

The p x 1 random vector X is said to have a multivariate normal
distribution, and we write X ~ N(u, X), if X has (joint) density

1
X)) = ——
||z (2m)

where p is p X 1 and X is p X p symmetric and positive definite.

1 _
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Multivariate Normal

3} positive definite

@ Positive definite means that for any non-zero p x 1 vector
a, we have a' Xa > 0.

@ Since the one-dimensional random variable Y = Zle a; X;
may be written as Y = a' X and
Var(Y) = cov(a’ X) = a' Za, it is natural to require that
3. be positive definite.

o All it means is that every non-zero linear combination of X
values has a positive variance.

e And recall ¥ positive definite is equivalent to X! positive
definite.



Multivariate Normal

Analogies

(Multivariate normal reduces to the univariate normal when p = 1)

@ Univariate Normal

of(x): lzﬂexp{—% = }

E(X)=p,Var(X) =o0?
° (X M) NX2(1)
e Multivariate Normal
o f(x)= —r—pexp{—3(x—p)' = (x—p)}

I=]2 (2m) 2
o E(X)=pu, cov(X)=3X

o (X— )= (X = p)~ x*(p)
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Multivariate Normal

More properties of the multivariate normal

e If ¢ is a vector of constants, X + ¢ ~ N(c + p, X)
o If A is a matrix of constants, AX ~ N(Au, AXAT)

e Linear combinations of multivariate normals are
multivariate normal.

o All the marginals (dimension less than p) of X are
(multivariate) normal, but it is possible in theory to have a
collection of univariate normals whose joint distribution is
not multivariate normal.

o For the multivariate normal, zero covariance implies
independence. The multivariate normal is the only
continuous distribution with this property.
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ate Normal

An easy example
If you do it the easy way

Let X = (X1, X2, X3)" be multivariate normal with

1 2 10
p=1_ 0 and¥=1[1 4 0
6 0 0 2

Let Y1 = X7 + X2 and Y5 = X5 4+ X3. Find the joint
distribution of Y7 and Y5.
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Multivariate Normal

In matrix terms

Y1 =Xi1+Xoand Y5 = Xo+ X3 means Y = AX

Y =AX ~ N(Au,ASAT)



Multivariate Normal

could do it by hand, but

mu = cbind(c(1,0,6))

Sigma = rbind( c(2,1,0),
c(1,4,0),
c(0,0,2) )

A = rbind( c(1,1,0),

c(0,1,1) ); A
A Yx% mu # E(Y)
[,1]

[1,] 1

[2,] 6

> A %xY Sigma %*% t(A) # cov(Y)

[,11 [,2]

[1,] 8 5

[2,] 5 6

vV + VvV + + Vv V



ate Normal

A couple of things to prove

o (X—p) ' ZHX —p)~x(p)

e X and S? independent under normal random sampling.



Multivariate Normal

Recall the square root matrix

Covariance matrix 3 is real and symmetric matrix, so we have
the spectral decomposition

b))

So X2 = PA/ZPT

PAP'
PA1/2A1/2PT
PA1/2 IAl/QPT
PA1/2PT PAl/QPT
21/2 21/2



Multivariate Normal

Square root of an inverse

Positive definite = Positive eigenvalues = Inverse exists

PA~2PT . PA2PT = PAIPT =321,
SO

(=) = PA2PT.

It’s easy to show

° (271)1/2 is the inverse of X!/2

o Justifying the notation =12



Multivariate Normal

Now we can show (X — u) "2 71X — u) ~ x2(p)

Where X ~ N(u, X)

Y=X-p ~ N(0, =)

Z-—%3Y ~ N(O,z—%zz—%>
- N(o,z—%z% 2%2—%)
- N(0,)

So Z is a vector of p independent standard normals, and

p
Y'Y =2"Z=> 7} ~x*(p) ]
j=1
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Multivariate Normal

X and S? independent

Let X1,...,X, "~ N(u,0?)
X, - X
X, :
X = : ~ N (,ul, 021) Y= x,,-Xx | =AX
Xn



Multivariate Normal

Y = AX

In more detail

1 1 1 1 Y
e % Tn X1 X=X
1 1 1 1 B
N I

31
31
31
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e
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Multivariate Normal

The argument

o Y is multivariate normal.

Cov (X, (X, — X)) =0 (Exercise)

@ So X and Y, are independent.

e So X and S? = g(Y3) are independent. M



Multivariate Normal

Leads to the ¢ distribution

If
e Z ~ N(0,1) and
o Y ~ x3(v) and

e Z and Y are independent, then
Z

VY/v -

t(v)



Multivariate Normal

Random sample from a normal distribution

Let X1,...,X, "% N(u,0?). Then

° \/ﬁ(f*“) = (f/:/%) ~ N(0,1) and

° ("_0712)52 ~ x%(n — 1) and
@ These quantities are independent, so
e S
— 2
N T

V(X — p)
S

~t(n—1)



Multivariate Normal

Multivariate normal likelihood
For reference

L(p,®) = ﬁ ST P {—%(Xi — ) E (g — u)}

1
1 =3 (2n)

= 1B2en P~ {0n(E2T) + (k- w) =T x- )

$_ 1y V(v )\ T
where ¥ = = 37" | (x; —X)(x; — X) ' is the sample
variance-covariance matrix.
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Multivariate Normal

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The

IXTEX source code is available from the course website:
http://www.utstat.toronto.edu/~brunner/oldclass/appliedf17

30 /30


http://www.utstat.toronto.edu/~brunner
http://creativecommons.org/licenses/by-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-sa/3.0/deed.en_US
http://www.utstat.toronto.edu/~brunner/oldclass/appliedf17

	Definitions and Basic Results
	Multivariate Normal

