A Brief Introduction to R

```
> 1+1
[1] 2
> 2^3 # Two to the power 3
[1] 8
> 1:30
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
[26] 26 27 28 29 30
> gamma(.5)^2
                  \# Gamma(1/2) = Sqrt(Pi)
[1] 3.141593
> x <- 1
                   # Assigns the value 1 to x
> y <- 2
> x+y
[1] 3
> z < - x+y
> z
[1] 3
> x <- c(1,2,3,4,5,6) # Collect these numbers; x is now a vector</pre>
> z # No dynamic updating; it's not a spreadsheet
[1] 3
> x+y
[1] 3 4 5 6 7 8
> y = 1 + 2*x # Another way to do assignment
> cbind(x,y)
    x y
1 3
[1,] 1
       5
[2,] 2
        7
[3,] 3
[4,] 4
        9
[5,] 5 11
[6,] 6 13
                         # z gets y such that x > 4
> z <- y[x>4]
> z
[1] 11 13
> # If you put an array of integers inside the brackets, you get those
> # elements, in the order indicated.
> y[c(6,5,4,3,2,1)] # y in opposite order
[1] 13 11 9 7 5 3
> y[c(2,2,2,3,4)] # Repeats are okay
[1] 5 5 5 7 9
> y[7] # There is no seventh element. NA is the missing value code
[1] NA
```

```
> # Computing probabilities, etc.
>
> pnorm(0) # Area less than zero for a standard normal
[1] 0.5
>
> pnorm(160,mean=100,sd=15) # IQ of 160
[1] 0.9999683
>
> pcauchy(4)
[1] 0.9220209
>
> dnorm(0) # height of the curve
[1] 0.3989423
>
> dpois(0,lambda=3) \# P(Y=0) for Y ~ Poisson(3)
[1] 0.04978707
>
> qnorm(0.975) \# z value with P(Z<z) = 0.975
[1] 1.959964
>
> qf(0.975, df1=6, df2=122) # Critical value for F, not in any table
[1] 2.513606
>
> CriticalValue = qchisq(0.95,df=1:8)
> df=1:8; cbind(df,CriticalValue)
     df CriticalValue
[1,]
      1
              3.841459
[2,] 2
              5.991465
[3,]3/.814/20[4,]49.487729[5,]511.070498[6,]612.591587[7,]714.067140[8,]815.507313
[3,] 3
             7.814728
```

> # Random number generation > # Maybe transforming a uniform by inverse CDF > help(Exponential) # Could also use help(rexp)

Exponential {stats} R Documentation
The Exponential Distribution

Description

Density, distribution function, quantile function and random generation for the exponential distribution with rate rate (i.e., mean 1/rate).

Usage

```
dexp(x, rate = 1, log = FALSE)
pexp(q, rate = 1, lower.tail = TRUE, log.p = FALSE)
qexp(p, rate = 1, lower.tail = TRUE, log.p = FALSE)
rexp(n, rate = 1)
> expdata = rexp(50,rate=1/2) # Random sample from exponential distribution, mean=theta=2
> expdata
 [1] 0.4330015 5.7893762 0.9803759 0.7172530 2.2696433 4.0045302 3.3989651 0.3104736
 [9] 1.2026790 0.8543951 1.0438012 5.5095891 0.7587579 1.9263300 6.0660176 9.3017992
[17] 1.0910204 0.6551285 1.5747176 5.9417700 0.8464761 7.6684436 0.1107589 1.6787699
25 2.4744338 3.3470232 0.3209082 4.4307811 4.5510434 1.4316870 0.3457547 0.1302476
[33] 0.5777305 1.0898631 1.4467458 3.2472808 1.8113195 0.5090032 2.4633656 0.8972205
[41] 0.7562905 2.4623634 0.3413955 2.3122374 0.4166320 2.6279765 1.5072294 3.5732947
[49] 3.5449348 2.6472542
> mean(expdata) # The MLE
[1] 2.267962
> hist(expdata)
```

Histogram of expdata

Going further on your own

Look at the free mini-book *An introduction to R* by Venables et al. A copy is available at <u>http://www.utstat.toronto.edu/~brunner/help/R-intro.pdf</u>. Or, try

> library(help="stats")

AIC	Akaike's An Information Criterion
ARMAacf	Compute Theoretical ACF for an ARMA Process
ARMAtoMA	Convert ARMA Process to Infinite MA Process
Beta	The Beta Distribution
Binomial	The Binomial Distribution
Box.test	Box-Pierce and Ljung-Box Tests
C	Sets Contrasts for a Factor
Cauchy	The Cauchy Distribution
Chisquare	The (non-central) Chi-Squared Distribution
Exponential	The Exponential Distribution
FDist	The F Distribution
GammaDist	The Gamma Distribution
Geometric	The Geometric Distribution
HoltWinters	Holt-Winters Filtering

. . . list continues!

To see details on one of these packages, type something like

> help(t.test)

Generally, R's help assumes knowledge of the topic, but they often give references. For a quicker introduction to many statistical topics, try the Wikipedia:

http://en.wikipedia.org

Or you could ask me, but I might have to look in the Wikipedia.

This document was prepared by <u>Jerry Brunner</u>, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License:

<u>http://creativecommons.org/licenses/by-sa/3.0/deed.en_US</u>. Use any part of it as you like and share the result freely. It is available in OpenOffice.org from the course website: <u>http://www.utstat.toronto.edu/~brunner/oldclass/appliedf17</u>