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Background Reading: Davison’s Statistical models

See Section 2.2 (Pages 28-37) on convergence.

Section 3.3 (Pages 77-90) goes more deeply into simulation
than we will. At least skim it.
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Sample Space Ω, ω ∈ Ω

Observe whether a single individual is male or female:
Ω = {F,M}
Pair of individuals; observe their genders in order:
Ω = {(F, F ), (F,M), (M,F ), (M,M)}
Select n people and count the number of females:
Ω = {0, . . . , n}

For limits problems, the points in Ω are infinite sequences.
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Random variables are functions from Ω into the set of
real numbers

Pr{X ∈ B} = Pr({ω ∈ Ω : X(ω) ∈ B})
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Random Sample X1(ω), . . . , Xn(ω)

T = T (X1, . . . , Xn)

T = Tn(ω)

Let n→∞ to see what happens for large samples
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Modes of Convergence

Almost Sure Convergence

Convergence in Probability

Convergence in Distribution
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Almost Sure Convergence

We say that Tn converges almost surely to T , and write Tn
a.s.→ T

if

Pr{ω : lim
n→∞

Tn(ω) = T (ω)} = 1.

Acts like an ordinary limit, except possibly on a set of
probability zero.

All the usual rules of limits apply.

Called convergence with probability one or sometimes
strong convergence.
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Strong Law of Large Numbers

Let X1, . . . , Xn be independent with common expected value µ.

Xn
a.s.→ E(Xi) = µ

The only condition required for this to hold is the existence of
the expected value.
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Probability is long run relative frequency

Statistical experiment: Probability of “success” is θ.

Carry out the experiment many times independently.

Code the results Xi = 1 if success, Xi = 0 for failure,
i = 1, 2, . . . , n
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Sample proportion of successes converges to the
probability of success
Recall Xi = 0 or 1.

E(Xi) =
1∑

x=0

xPr{Xi = x}

= 0 · (1− θ) + 1 · θ
= θ

The relative frequency (sample proportion) is

1

n

n∑
i=1

Xi = Xn
a.s.→ θ
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Estimating power by simulation

Recall the coffee taste test: Z2 =
√
n(Y−θ0)√
Y (1−Y )

We found that if true θ = 0.6, need n = 189 for a power of
0.80.

Verify by simulation.
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Estimate the power

> theta0 = 0.50; theta = 0.60

> n=190; M = 1000000 # M is Monte Carlo sample size

> ybar = rbinom(M,size=n,prob=theta)/n

> Z2 = sqrt(n)*(ybar-theta0)/sqrt(ybar*(1-ybar)) # There are M of these

> # Estimated power is another sample proportion

> estpow = length(subset(Z2,abs(Z2)>1.96))/M

> cat("Estimated power is",estpow,"\n")

Estimated power is 0.793081

> # 99% confidence interval for the true power

> marginerr99 = qnorm(0.995) * sqrt(estpow*(1-estpow)/M)

> ci = c(estpow-marginerr99,estpow+marginerr99)

> cat("99% confidence interval for the power is (",ci,") \n")

99% confidence interval for the power is ( 0.7920375 0.7941245 )
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Strategy for estimating power by simulation
Similar approach for probability of Type I error

Generate a large number of random data sets under the
alternative hypothesis.

For each data set, test H0.

Estimated power is the proportion of times H0 is rejected.
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Recall the Change of Variables formula: Let Y = g(X)

E(Y ) =

∫ ∞
−∞

y f
Y

(y) dy =

∫ ∞
−∞

g(x) f
X

(x) dx

Or, for discrete random variables

E(Y ) =
∑
y

y p
Y

(y) =
∑
x

g(x) p
X

(x)

This is actually a big theorem, not a definition.
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Applying the change of variables formula
To approximate E[g(X)]

1

n

n∑
i=1

g(Xi) =
1

n

n∑
i=1

Yi
a.s.→ E(Y )

= E(g(X))
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So for example

1

n

n∑
i=1

Xk
i

a.s.→ E(Xk)

1

n

n∑
i=1

U 2
i ViW

3
i

a.s.→ E(U 2VW 3)

That is, sample moments converge almost surely to population
moments.
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Approximate an integral:
∫∞
−∞ h(x) dx

Where h(x) is a nasty function.

Let f(x) be a density with f(x) > 0 wherever h(x) 6= 0.

∫ ∞
−∞

h(x) dx =

∫ ∞
−∞

h(x)

f(x)
f(x) dx

= E

[
h(X)

f(X)

]
= E[g(X)],

So

Sample X1, . . . , Xn from the distribution with density f(x)

Calculate Yi = g(Xi) = h(Xi)
f(Xi)

for i = 1, . . . , n

Calculate Y n
a.s.→ E[Y ] = E[g(X)]

Confidence interval for µ = E[g(X)] is routine.
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Convergence in Probability

We say that Tn converges in probability to T , and write Tn
P→ T

if for all ε > 0,

lim
n→∞

P{|Tn − T | < ε} = 1

Convergence in probability (say to a constant θ) means no
matter how small the interval around θ, for large enough n
(that is, for all n > N1) the probability of getting that close to
θ is as close to one as you like.
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Weak Law of Large Numbers

Xn
p→ µ

Almost Sure Convergence implies Convergence in
Probability.

Strong Law of Large Numbers implies Weak Law of Large
Numbers
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Consistency
T = T (X1, . . . , Xn) is a statistic estimating a parameter θ

The statistic Tn is said to be consistent for θ if Tn
P→ θ.

lim
n→∞

P{|Tn − θ| < ε} = 1

The statistic Tn is said to be strongly consistent for θ if Tn
a.s.→ θ.

Strong consistency implies ordinary consistency.
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Consistency is great but it’s not enough.

It means that as the sample size becomes indefinitely large,
you probably get as close as you like to the truth.

It’s the least we can ask. Estimators that are not
consistent are completely unacceptable for most purposes.

Tn
a.s.→ θ ⇒ Un = Tn +

100, 000, 000

n

a.s.→ θ
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Consistency of the Sample Variance

σ̂2n =
1

n

n∑
i=1

(Xi −X)2

=
1

n

n∑
i=1

X2
i −X

2

By SLLN, Xn
a.s.→ µ and 1

n

∑n
i=1X

2
i
a.s.→ E(X2) = σ2 + µ2.

Because the function g(x, y) = x− y2 is continuous,

σ̂2n = g

(
1

n

n∑
i=1

X2
i , Xn

)
a.s.→ g(σ2 + µ2, µ) = σ2 + µ2 − µ2 = σ2
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Convergence in Distribution
Sometimes called Weak Convergence, or Convergence in Law

Denote the cumulative distribution functions of T1, T2, . . . by
F1(t), F2(t), . . . respectively, and denote the cumulative
distribution function of T by F (t).

We say that Tn converges in distribution to T , and write

Tn
d→ T if for every point t at which F is continuous,

lim
n→∞

Fn(t) = F (t)
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Univariate Central Limit Theorem

Let X1, . . . , Xn be a random sample from a distribution with
expected value µ and variance σ2. Then

Zn =

√
n(Xn − µ)

σ

d→ Z ∼ N(0, 1)
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Connections among the Modes of Convergence

Tn
a.s.→ T ⇒ Tn

p→ T ⇒ Tn
d→ T .

If a is a constant, Tn
d→ a⇒ Tn

p→ a.
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Sometimes we say the distribution of the sample mean
is approximately normal, or asymptotically normal.

This is justified by the Central Limit Theorem.

But it does not mean that Xn converges in distribution to
a normal random variable.

The Law of Large Numbers says that Xn converges almost
surely (and in probability) to a constant, µ.

So Xn converges to µ in distribution as well.
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Why would we say that for large n, the sample mean is
approximately N(µ, σ

2

n )?

Have Zn =
√
n(Xn−µ)

σ
d→ Z ∼ N(0, 1).

Pr{Xn ≤ x} = Pr

{√
n(Xn − µ)

σ
≤
√
n(x− µ)

σ

}
= Pr

{
Zn ≤

√
n(x− µ)

σ

}
≈ Φ

(√
n(x− µ)

σ

)

Suppose Y is exactly N(µ, σ
2

n ):

Pr{Y ≤ x} = Pr

{√
n(Y − µ)

σ
≤
√
n(x− µ)

σ

}
= Pr

{
Z ≤

√
n(x− µ)

σ

}
= Φ

(√
n(x− µ)

σ

)
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Convergence of random vectors I

1 Definitions (All quantities in boldface are vectors in Rm unless

otherwise stated )

? Tn
a.s.→ T means P{ω : limn→∞Tn(ω) = T(ω)} = 1.

? Tn
P→ T means ∀ε > 0, limn→∞ P{||Tn −T|| < ε} = 1.

? Tn
d→ T means for every continuity point t of FT,

limn→∞ FTn
(t) = FT(t).

2 Tn
a.s.→ T⇒ Tn

P→ T⇒ Tn
d→ T.

3 If a is a vector of constants, Tn
d→ a⇒ Tn

P→ a.

4 Strong Law of Large Numbers (SLLN): Let X1, . . .Xn be independent
and identically distributed random vectors with finite first moment,
and let X be a general random vector from the same distribution.
Then Xn

a.s.→ E(X).

5 Central Limit Theorem: Let X1, . . . ,Xn be i.i.d. random vectors with
expected value vector µ and covariance matrix Σ. Then

√
n(Xn − µ)

converges in distribution to a multivariate normal with mean 0 and
covariance matrix Σ.
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Convergence of random vectors II

6 Slutsky Theorems for Convergence in Distribution:

1 If Tn ∈ Rm, Tn
d→ T and if f : Rm → Rq (where q ≤ m) is

continuous except possibly on a set C with P (T ∈ C) = 0,

then f(Tn)
d→ f(T).

2 If Tn
d→ T and (Tn −Yn)

P→ 0, then Yn
d→ T.

3 If Tn ∈ Rd, Yn ∈ Rk, Tn
d→ T and Yn

P→ c, then(
Tn

Yn

)
d→
(

T
c

)
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An application of the Slutsky Theorems

Let X1, . . . , Xn
i.i.d.∼ ?(µ, σ2)

By CLT, Yn =
√
n(Xn − µ)

d→ Y ∼ N(0, σ2)

Let σ̂n be any consistent estimator of σ.

Then by 6.3, Tn =

(
Yn
σ̂n

)
d→
(
Y
σ

)
= T

The function f(x, y) = x/y is continuous except if y = 0
so by 6.1,

f(Tn) =

√
n(Xn − µ)

σ̂n

d→ f(T) =
Y

σ
∼ N(0, 1)
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We need more tools

Because

The multivariate CLT establishes convergence to a
multivariate normal, and

Vectors of MLEs are approximately multivariate normal for
large samples, and

Most real-life models have multiple parameters,

We need to look at random vectors and the multivariate normal
distribution.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The
LATEX source code is available from the course website:
http://www.utstat.toronto.edu/∼brunner/oldclass/appliedf16
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