
STA 2101/442 Assignment Three1

The questions are just practice for the quiz, and are not to be handed in. Use R as necessary
for Question 18, and bring your printout to the quiz.

1. This is about how to simulate from a continuous univariate distribution. Let the
random variable X have a continuous distribution with density fX(x) and cumulative
distribution function FX(x). Suppose the cumulative distribution function is strictly
increasing over the set of x values where 0 < FX(x) < 1, so that FX(x) has an
inverse. Let U have a uniform distribution over the interval (0, 1). Show that the
random variable Y = F−1X (U) has the same distribution as X. Hint: You will need an
expression for FU(u) = Pr{U ≤ u}, where 0 ≤ u ≤ 1.

2. Let X1, . . . , Xn be a random sample from a Binomial distribution with parameters 3
and θ. That is,

P (Xi = xi) =

(
3

xi

)
θxi(1− θ)3−xi ,

for xi = 0, 1, 2, 3. Find the maximum likelihood estimator of θ, and show that it is
strongly consistent.

3. Let X1, . . . , Xn be a random sample from a continuous distribution with density

f(x; τ) =
τ 1/2√

2π
e−

τx2

2 ,

where the parameter τ > 0. Let

τ̂ =
n∑n

i=1X
2
i

.

Is τ̂ a consistent estimator of τ? Answer Yes or No and prove your answer. Hint: You
can just write down E(X2) by inspection. This is a very familiar distribution.

4. Let X1, . . . , Xn be a random sample from a distribution with mean µ. Show that
Tn = 1

n+400

∑n
i=1Xi is a strongly consistent estimator of µ.

5. Let X1, . . . , Xn be a random sample from a distribution with mean µ and variance σ2.

Prove that the sample variance S2 =
∑n
i=1(Xi−X)2

n−1 is a strongly consistent estimator of
σ2.

6. Independently for i = 1, . . . , n, let

Yi = βXi + εi,

1Copyright information is at the end of the last page.
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where E(Xi) = E(εi) = 0, V ar(Xi) = σ2
X , V ar(εi) = σ2

ε , and εi is independent of Xi.
Let

β̂ =

∑n
i=1XiYi∑n
i=1X

2
i

.

Is β̂ a consistent estimator of β? Answer Yes or No and prove your answer.

7. In this problem, you’ll use (without proof) the variance rule, which says that if θ is a
real constant and T1, T2, . . . is a sequence of random variables with

lim
n→∞

E(Tn) = θ and lim
n→∞

V ar(Tn) = 0,

then Tn
P→ θ.

In Problem 6, the independent variables are random. Here they are fixed constants,
which is more standard (though a little strange if you think about it). Accordingly, let

Yi = βxi + εi

for i = 1, . . . , n, where ε1, . . . , εn are a random sample from a distribution with expected
value zero and variance σ2, and β and σ2 are unknown constants.

(a) What is E(Yi)?

(b) What is V ar(Yi)?

(c) Find the Least Squares estimate of β by minimizing Q =
∑n

i=1(Yi − βxi)2 over

all values of β. Let β̂n denote the point at which Q is minimal.

(d) Is β̂n unbiased? Answer Yes or No and show your work.

(e) Give a nice simple condition on the xi values that guarantees β̂n will be consistent.
Show your work. Remember, in this model the xi are fixed constants, not random
variables.

(f) Let β̂2,n = Y n
xn

. Is β̂2,n unbiased? Consistent? Answer Yes or No to each question
and show your work. Do you need a condition on the xi values ?

(g) Prove that β̂n is a more accurate estimator than β̂2,n in the sense that it has
smaller variance. Hint: The sample variance of the independent variable values
cannot be negative.

8. Let X1, . . . , Xn be a random sample from a Gamma distribution with α = β = θ > 0.
That is, the density is

f(x; θ) =
1

θθΓ(θ)
e−x/θxθ−1,

for x > 0. Let θ̂ = Xn. Is θ̂ a consistent estimator of θ? Answer Yes or No and prove
your answer.
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9. The ordinary univariate Central Limit Theorem says that if X1, . . . , Xn are a random
sample (independent and identically distributed) from a distribution with expected
value µ and variance σ2, then

Z(1)
n =

√
n(Xn − µ)

σ

d→ Z ∼ N(0, 1).

An application of some Slutsky theorems (see lecture slides) shows that also,

Z(2)
n =

√
n(Xn − µ)

σ̂n

d→ Z ∼ N(0, 1),

where σ̂n is any consistent estimator of σ. For this problem, suppose that X1, . . . , Xn

are Bernoulli(θ).

(a) What is µ?

(b) What is σ2?

(c) Re-write Z
(1)
n for the Bernoulli exanple.

(d) What about Zn =
√
n(Xn−θ)√
Xn(1−Xn)

? Does Zn converge in distribution to a standard

normal? Why or why not?

(e) What about the t statistic Tn =
√
n(Xn−µ)
Sn

, where Sn is the sample standard
deviation? Does Tn converge in distribution to a standard normal? Why or why
not?

10. If the p × 1 random vector X has variance-covariance matrix Σ and A is an m × p
matrix of constants, prove that the variance-covariance matrix of AX is AΣA′. Start
with the definition of a variance-covariance matrix:

V (Z) = E(Z− µz)(Z− µz)
′.

11. If the p × 1 random vector X has mean µ and variance-covariance matrix Σ, show
Σ = E(XX′)− µµ′.

12. Let the p × 1 random vector X have mean µ and variance-covariance matrix Σ, and
let c be a p× 1 vector of constants. Find V (X + c). Show your work.

13. Let X be a p × 1 random vector with mean µx and variance-covariance matrix Σx,
and let Y be a q× 1 random vector with mean µy and variance-covariance matrix Σy.

Recall that C(X,Y) is the p× q matrix C(X,Y) = E
(
(X− µx)(Y − µy)

′).
(a) What is the (i, j) element of C(X,Y)?

(b) For this item, p = q. Find an expression for V (X + Y) in terms of Σx, Σy and
C(X,Y). Show your work.
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(c) Simplify further for the special case where Cov(Xi, Yj) = 0 for all i and j.

(d) Let c be a p × 1 vector of constants and d be a q × 1 vector of constants. Find
C(X + c,Y + d). Show your work.

14. Denote the moment-generating function of a random variable Y by MY (t). The
moment-generating function is defined by MY (t) = E(eY t). Recall that the moment-
generating function corresponds uniquely to the probability distribution.

(a) Let a be a constant. Prove that MaX(t) = MX(at).

(b) Prove that MX+a(t) = eatMX(t).

(c) Let X1 and X2 be independent random variables. Prove that

MX1+X2(t) = MX1(t)MX1(t).

For convenience, you may assume that X1 and X2 are continuous, so you will
integrate. This result extends to M∑n

i=1Xi
(t) =

∏n
i=1MXi(t), but you don’t have

to show it. (You could use induction.)

15. Recall that if X ∼ N(µ, σ2), it has moment-generating function MX(t) = eµt+
1
2
σ2t2 .

(a) Let X ∼ N(µ, σ2) and Y = aX + b, where a and b are constants. Find the
distribution of Y . Show your work.

(b) Let X ∼ N(µ, σ2) and Z = X−µ
σ

. Find the distribution of Z.

(c) Let X1, . . . , Xn be random sample from a N(µ, σ2) distribution. Find the distri-
bution of Y =

∑n
i=1Xi.

(d) Let X1, . . . , Xn be random sample from a N(µ, σ2) distribution. Find the distri-
bution of the sample mean X.

(e) Let X1, . . . , Xn be random sample from a N(µ, σ2) distribution. Find the distri-

bution of Z =
√
n(X−µ)
σ

.

16. A Chi-squared random variable X with parameter ν > 0 has moment-generating func-
tion MX(t) = (1− 2t)−ν/2.

(a) LetX1, . . . , Xn be independent random variables withXi ∼ χ2(νi) for i = 1, . . . , n.
Find the distribution of Y =

∑n
i=1Xi.

(b) Let Z ∼ N(0, 1). Find the distribution of Y = Z2. For this one, you need
to integrate. Recall that the density of a normal random variable is f(x) =

1
σ
√
2π
e−

(x−µ)2

2σ2 .

(c) Let X1, . . . , Xn be random sample from a N(µ, σ2) distribution. Find the distri-
bution of Y = 1

σ2

∑n
i=1 (Xi − µ)2.

(d) Let Y = X1 + X2, where X1 and X2 are independent, X1 ∼ χ2(ν1) and Y ∼
χ2(ν1 + ν2), where ν1 and ν2 are both positive. Show X2 ∼ χ2(ν2).
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(e) Let X1, . . . , Xn be random sample from a N(µ, σ2) distribution. Show

(n− 1)S2

σ2
∼ χ2(n− 1),

where S2 =
∑n
i=1(Xi−X)

2

n−1 . Hint:
∑n

i=1 (Xi − µ)2 =
∑n

i=1

(
Xi −X +X − µ

)2
=

. . .

You may use the independence of X and S2 without proof, for now.

17. Recall the definition of the t distribution. If Z ∼ N(0, 1), W ∼ χ2(ν) and Z and W
are independent, then T = Z√

W/ν
is said to have a t distribution with ν degrees of

freedom, and we write T ∼ t(ν).

As in the last question, let X1, . . . , Xn be random sample from a N(µ, σ2) distribution.

Show that T =
√
n(X−µ)
S

∼ t(n− 1). Once again, you may use the independence of X
and S2 without proof for now.

18. Here is an integral you cannot do in closed form, and numerical integration is chal-
lenging. For example, R’s integrate function fails.

∫ 1/2

0

ecos(1/x) dx

Using R, approximate the integral with Monte Carlo integration, and give a 99%
confidence interval for your answer. You need to produce 3 numbers: the estimate, a
lower confidence limit and an upper confidence limit.

This assignment was prepared by Jerry Brunner, Department of Statistics, University of
Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported Li-
cense. Use any part of it as you like and share the result freely. The LATEX source code is avail-
able from the course website: http://www.utstat.toronto.edu/∼brunner/oldclass/appliedf16
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