Omitted Variables¹ STA442/2101 Fall 2014

 $^{^1 \}mathrm{See}$ last slide for copyright information.

 $Y_i = \beta_0 + \beta_1 x_{i,1} + \dots + \beta_k x_{i,p-1} + \epsilon_i$, with $\epsilon_i \sim N(0, \sigma^2)$

- If viewed as conditional on X_i = x_i, this model implies independence of ε_i and X_i, because the conditional distribution of ε_i given X_i = x_i does not depend on x_i.
- What is ϵ_i ? Everything else that affects Y_i .
- So the usual model says that if the explanatory variables are random, they have zero covaiance with all other variables that are related to Y_i , but are not included in the model.
- For observational data, this assumption is almost always violated.
- Does it matter?

Suppose that the variables X_2 and X_3 have an impact on Y and are correlated with X_1 , but they are not part of the data set. The values of the response variable are generated as follows:

$$Y_{i} = \beta_{0} + \beta_{1}X_{i,1} + \beta_{2}X_{i,2} + \beta_{2}X_{i,3} + \epsilon_{i},$$

independently for i = 1, ..., n, where $\epsilon_i \sim N(0, \sigma^2)$. The explanatory variables are random, with expected value and variance-covariance matrix

$$E\begin{pmatrix}X_{i,1}\\X_{i,2}\\X_{i,3}\end{pmatrix} = \begin{pmatrix}\mu_1\\\mu_2\\\mu_3\end{pmatrix} \text{ and } V\begin{pmatrix}X_{i,1}\\X_{i,2}\\X_{i,3}\end{pmatrix} = \begin{pmatrix}\phi_{11} & \phi_{12} & \phi_{13}\\ & \phi_{22} & \phi_{23}\\ & & \phi_{33}\end{pmatrix},$$

where ϵ_i is independent of $X_{i,1}$, $X_{i,2}$ and $X_{i,3}$.

Since X_2 and X_3 are not observed, they are absorbed by the intercept and error term.

$$Y_{i} = \beta_{0} + \beta_{1}X_{i,1} + \beta_{2}X_{i,2} + \beta_{2}X_{i,3} + \epsilon_{i}$$

= $(\beta_{0} + \beta_{2}\mu_{2} + \beta_{3}\mu_{3}) + \beta_{1}X_{i,1} + (\beta_{2}X_{i,2} + \beta_{3}X_{i,3} - \beta_{2}\mu_{2} - \beta_{3}\mu_{3} + \epsilon_{i})$
= $\beta_{0}' + \beta_{1}X_{i,1} + \epsilon_{i}'.$

And,

$$Cov(X_{i,1},\epsilon'_i) = \beta_2\phi_{12} + \beta_3\phi_{13} \neq 0$$

The "True" Model Almost always closer to the truth than the usual model, for observational data

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i,$$

where $E(X_i) = \mu_x$, $Var(X_i) = \sigma_x^2$, $E(\epsilon_i) = 0$, $Var(\epsilon_i) = \sigma_\epsilon^2$, and $Cov(X_i, \epsilon_i) = c$.

Under this model,

$$\sigma_{xy} = Cov(X_i, Y_i) = Cov(X_i, \beta_0 + \beta_1 X_i + \epsilon_i) = \beta_1 \sigma_x^2 + c$$

Estimate β_1 as usual

$$\widehat{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$

$$= \frac{\frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{\frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$

$$= \frac{\widehat{\sigma}_{xy}}{\widehat{\sigma}_{x}^{2}}$$

$$\stackrel{a.s.}{\rightarrow} \frac{\sigma_{xy}}{\sigma_{x}^{2}}$$

$$= \frac{\beta_{1}\sigma_{x}^{2} + c}{\sigma_{x}^{2}}$$

$$= \beta_{1} + \frac{c}{\sigma_{x}^{2}}$$

- $\widehat{\beta}_1$ is biased (Homework)
- It's inconsistent.
- It could be almost anything, depending on the value of c, the covariance between X_i and ϵ_i .
- The only time $\hat{\beta}_1$ behaves properly is when c = 0.
- Test $H_0: \beta_1 = 0$: Probability of Type I error goes almost surely to one.
- What if $\beta_1 < 0$ but $\beta_1 + \frac{c}{\sigma_z^2} > 0$, and you test $H_0: \beta_1 = 0$?

When a regression model fails to include all the explanatory variables that contribute to the response variable, and those omitted explanatory variables have non-zero covariance with variables that are in the model, the regression coefficients are biased and inconsistent.

- The problem of omitted variables is the technical version of the correlation-causation issue.
- The omitted variables are "confounding" variables.
- With random assignment and good procedure, x and ϵ have zero covariance.
- But random assignment is not always possible.
- Most applications of regression to observational data provide very poor information about the regression coefficients.
- Is bad information better than no information at all?

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LAT_EX source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/appliedf14