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Large-Sample Chi-square

Let X ∼ Np(µ,Σ) then recall

(X− µ)>Σ−1(X− µ) ∼ χ2(p)

It’s true asymptotically too.
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Using (X− µ)>Σ−1(X− µ) ∼ χ2(p)

Suppose
√
n (Tn − θ)

d→ T ∼ N (0,Σ) and

Σ̂n
p→ Σ.

Then approximately as n→∞, Tn ∼ N
(
θ, 1nΣ

)
, and

Wn = (Tn − θ)>
(

1

n
Σ

)−1
(Tn − θ) ∼ χ2(p)

=

n (Tn − θ)>Σ−1 (Tn − θ)

≈ n (Tn − θ)> Σ̂
−1
n (Tn − θ)

∼ χ2(p)

4 / 45



Large-Sample Chi-square Within cases Multiple comparisons Between cases

Or we could be more precise

Suppose
√
n (Tn − θ)

d→ T ∼ N (0,Σ) and

Σ̂n
p→ Σ.

Then Σ̂
−1
n

p→ Σ−1, and by a Slutsky lemma,( √
n (Tn − θ)

Σ̂
−1
n

)
d→
(

T
Σ−1

)
.

By continuity,

Wn =
(√
n(Tn − θ)

)>
Σ̂
−1
n

√
n(Tn − θ)

= n (Tn − θ)> Σ̂
−1
n (Tn − θ)

d→ T>Σ−1T

∼ χ2(p)
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If H0 : Lθ = h is true
Where L is r × p and of full row rank

Asymptotically, LTn ∼ N
(
Lθ, 1nLΣL>

)
. So

(LTn − Lθ)>
(

1

n
LΣL>

)−1
(LTn − Lθ) ∼ χ2(r)

=

n (LTn − h)>
(
LΣL>

)−1
(LTn − h)

≈ n (LTn − h)>
(
LΣ̂nL

>
)−1

(LTn − h)

= Wn ∼ χ2(r)

Or we could be more precise and use Slutsky lemmas.
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Test of H0 : Lθ = h
Where L is r × p and of full row rank

Wn = n (LTn − h)>
(
LΣ̂nL

>
)−1

(LTn − h)

Distributed approximately as chi-squared with r degrees of
freedom under H0.

If Tn is the maximum likelihood estimator of θ, it’s called a
Wald test (and Σ̂n has a special form).
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Example: The statclass data

Fifty-eight students in a Statistics class took 8 quizzes, a
midterm test and a final exam. They also had 9 computer
assignments. The instructor wants to compare average
performance on the four components of the grade.

How about a model?

Should we assume normality?

Does it make sense to assume quiz marks independent of
final exam marks?

Does this remind you of a matched t-test?
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Within cases versus between cases

Want to compare average performance under several
conditions, which are often experimental conditions, but
not always.

When a case (person, rat, school, etc.) appears in all the
conditions, it’s called a within cases design. Think of the
matched t-test.

When a case appears in only one condition, it’s called a
between cases design. Think of the two-sample t-test.

Comparing performance on quizzes, midterm, final and
computer assignments is within-cases.
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Assume multivariate normality?
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A model for the statclass data

Fifty-eight students in a Statistics class took 8 quizzes, a
midterm test and a final exam. They also had 9 computer
assignments.

Let Y1, . . . ,Yn be a random sample from an unknown
distribution with mean µ = (µ1, µ2, µ3, µ4)

> and covariance
matrix Σ.

H0 : µ1 = µ2 = µ3 = µ4

11 / 45



Large-Sample Chi-square Within cases Multiple comparisons Between cases

Applying Wn = n (LTn − h)>
(
LΣ̂nL

>
)−1

(LTn − h)

To test H0 : Lθ = h

Test is based on
√
n (Tn − θ)

d→ T ∼ N (0,Σ)

CLT says
√
n
(
Yn − µ

) d→ Y ∼ N (0,Σ)

So Tn = Yn and θ = µ.

Sample variance-covariance matrix is good enough for
Σ̂n

p→ Σ

Write H0 : µ1 = µ2 = µ3 = µ4 as Lµ = h
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H0 : Lθ = h
To test equality of four means

L µ = 0 1 −1 0 0
0 1 −1 0
0 0 1 −1




µ1
µ2
µ3
µ4

 =

 0
0
0


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Read the data

> statclass = read.table("http://www.utstat.toronto.edu/~brunner/appliedf14/code_n_data/lecture/statclass.data",header=T)

> head(statclass)

S E Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 C1 C2 C3 C4 C5 C6 C7 C8 C9 MT Final

1 1 2 9 1 7 8 4 3 5 2 6 10 10 10 5 0 0 0 0 55 43

2 0 2 10 10 5 9 10 8 6 8 10 10 8 9 9 9 9 10 10 66 79

3 1 2 10 10 5 10 10 10 9 8 10 10 10 10 10 10 9 10 10 94 67

4 1 2 10 10 8 9 10 7 10 9 10 10 10 9 10 10 9 10 10 81 65

5 1 1 10 6 7 9 8 8 5 7 10 9 10 9 5 6 4 8 10 57 52

6 0 1 10 9 5 8 9 8 5 6 8 7 5 6 10 6 5 9 9 77 64

> attach(statclass)
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Process the data a bit
And take a look

> quiz = 10 * (Q1+Q2+Q3+Q4+Q5+Q6+Q7+Q8)/8

> computer = 10 * (C1+C2+C3+C4+C5+C6+C7+C8+C9)/9

> midterm = MT

> final = Final

> datta = cbind(quiz,computer,midterm,final); head(round(datta))

quiz computer midterm final

[1,] 49 46 55 43

[2,] 82 93 66 79

[3,] 90 99 94 67

[4,] 91 98 81 65

[5,] 75 79 57 52

[6,] 75 72 77 64

> ybar = apply(datta,2,mean); ybar

quiz computer midterm final

72.58621 83.98467 68.87931 49.44828
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Boxplots
boxplot(datta); title("Score out of 100 Percent")

quiz computer midterm final
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Covariances and Correlations

> sigmahat = var(datta); sigmahat

quiz computer midterm final

quiz 120.66130 62.369765 60.31760 71.736993

computer 62.36977 134.894281 27.68233 6.272098

midterm 60.31760 27.682328 223.37114 99.633999

final 71.73699 6.272098 99.63400 272.777979

> cor(datta)

quiz computer midterm final

quiz 1.0000000 0.48886995 0.3674063 0.39541626

computer 0.4888700 1.00000000 0.1594749 0.03269726

midterm 0.3674063 0.15947489 1.0000000 0.40363552

final 0.3954163 0.03269726 0.4036355 1.00000000
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Scatterplot matrix
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Calculate Wn = n (LTn − h)>
(
LΣ̂nL

>
)−1

(LTn − h)

To test H0 : Lµ = 0

> L = rbind(c(1,-1,0,0),

+ c(0,1,-1,0),

+ c(0,0,1,-1) )

> n = length(quiz); n

[1] 58

> Wn = n * t(L %*% ybar) %*% solve(L%*%sigmahat%*%t(L)) %*% L%*%ybar

> Wn

[,1]

[1,] 176.8238

> Wn = as.numeric(Wn)

> pvalue = 1-pchisq(Wn,df=3); pvalue

[1] 0

Conclude that the four means are not all equal. Which ones are
different from one another? Need follow-up tests.

19 / 45



Large-Sample Chi-square Within cases Multiple comparisons Between cases

The R function Wtest
“Estimated” asymptotic covariance matrix V̂n = 1

n
Σ̂n

Wn = n (LTn − h)>
(
LΣ̂nL

>
)−1

(LTn − h)

= (LTn − h)>
(
LV̂nL

>
)−1

(LTn − h)

Wtest = function(L,Tn,Vn,h=0) # H0: L theta = h

# Note Vn is the estimated asymptotic covariance matrix of Tn,

# so it’s Sigma-hat divided by n. For Wald tests based on numerical

# MLEs, Tn = theta-hat, and Vn is the inverse of the Hessian.

{

Wtest = numeric(3)

names(Wtest) = c("W","df","p-value")

r = dim(L)[1]

W = t(L%*%Tn-h) %*% solve(L%*%Vn%*%t(L)) %*%

(L%*%Tn-h)

W = as.numeric(W)

pval = 1-pchisq(W,r)

Wtest[1] = W; Wtest[2] = r; Wtest[3] = pval

Wtest

} # End function Wtest
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Illustrate the Wtest function

For H0 : µ1 = µ2 = µ3 = µ4, got Wn = 176.8238, df = 3, p ≈ 0.

> V = sigmahat / length(final)

> # Asymptotic covariance matrix of Y-bar is Sigma/n

> LL = rbind( c(1,-1,0,0),

+ c(0,1,-1,0),

+ c(0,0,1,-1) )

> Wtest(LL,ybar,V)

W df p-value

176.8238 3.0000 0.0000

>

> ybar

quiz computer midterm final

72.58621 83.98467 68.87931 49.44828

Is average quiz score different from midterm?

> L1 = rbind(c(1,0,-1,0)); n = length(final)

> Wtest(L=L1,Tn=ybar,Vn=sigmahat/n)

W df p-value

3.56755878 1.00000000 0.05891887

Test the other pairwise differences between means.
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Another application: Mean index numbers

In a study of consumers’ opinions of 5 popular TV programmes,
240 consumers who watch all the shows at least once a month
completed a computerized interview. On one of the screens,
they indicated how much they enjoyed each programme by
mouse-clicking on a 10cm line. One end of the line was labelled
“Like very much,” and the other end was labelled “Dislike very
much.” So each respondent contributed 5 ratings, on a
continuous scale from zero to ten.

The study was commissioned by the producers of one of the
shows, which will be called “Programme E.” Ratings of
Programmes A through D were expressed as percentages of the
rating for Programme E, and these were described as “Liking
indexed to programme E.”
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In statistical language

We have Xi,1, . . . Xi,5 for i = 1, . . . , n, and we calculate

Yi,j = 100
Xi,j

Xi,5

We want confidence intervals for the 4 mean index
numbers, and tests of differences between means.

Observations from the same respondent are definitely not
independent.

What is the distribution?

What is a reasonable model?

23 / 45



Large-Sample Chi-square Within cases Multiple comparisons Between cases

Model

Let Y1, . . . ,Yn be a random sample from an unknown
multivariate distribution F with expected value µ and
covariance matrix Σ.

One way to think about it is

The parameter is the unknown distribution F .

The parameter space is a space of distribution functions.

µ and Σ are functions of F .

We’re only interested in µ.
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We have the tools we need

√
n(Yn − µ)

d→ Y ∼ N (0,Σ) and

For Σ̂n
p→ Σ, use the sample covariance matrix.

H0 : Lµ = h

Wn = n
(
LYn − h

)> (
LΣ̂nL

>
)−1 (

LYn − h
)
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Read the data

> Y = read.table("http://www.utstat.toronto.edu/~brunner/appliedf14/code_n_data/lecture/TVshows.data")

> Y[1:4,]

A B C D

1 101.3 81.0 101.8 89.6

2 94.0 85.3 76.3 100.8

3 145.4 138.7 151.0 148.3

4 72.0 86.1 96.1 96.3

> n = dim(Y)[1]; n

[1] 240
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Confidence intervals: Y ± zα/2 S√
n

> ave = apply(Y,2,mean); ave

A B C D

101.65958 98.50167 99.39958 103.94167

> v = apply(Y,2,var) # Sample variances with n-1

> stderr = sqrt(v/n)

> me95 = 1.96*stderr

> lower95 = ave-me95

> upper95 = ave+me95

> Z = (ave-100)/stderr

> rbind(ave,marginerror95,lower95,upper95,Z)

A B C D

ave 101.659583 98.501667 99.3995833 103.941667

marginerror95 1.585652 1.876299 1.7463047 1.469928

lower95 100.073931 96.625368 97.6532786 102.471739

upper95 103.245236 100.377966 101.1458880 105.411594

Z 2.051385 -1.565173 -0.6738897 5.255814
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What if we “assume” normality and use t?

> rbind(ave,lower95,upper95,Z)

A B C D

ave 101.659583 98.501667 99.3995833 103.941667

lower95 100.073931 96.625368 97.6532786 102.471739

upper95 103.245236 100.377966 101.1458880 105.411594

Z 2.051385 -1.565173 -0.6738897 5.255814

> attach(Y) # So A, B, C, D are available

> t.test(A,mu=100)

One Sample t-test

data: A

t = 2.0514, df = 239, p-value = 0.04132

alternative hypothesis: true mean is not equal to 100

95 percent confidence interval:

100.0659 103.2533

sample estimates:

mean of x

101.6596
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Test equality of means

> S = var(Y); S

A B C D

A 157.0779 110.77831 106.56220 109.6234

B 110.7783 219.93950 95.66686 100.3585

C 106.5622 95.66686 190.51937 106.2501

D 109.6234 100.35851 106.25006 134.9867

> cor(Y)

A B C D

A 1.0000000 0.5959991 0.6159934 0.7528355

B 0.5959991 1.0000000 0.4673480 0.5824479

C 0.6159934 0.4673480 1.0000000 0.6625431

D 0.7528355 0.5824479 0.6625431 1.0000000

>

> L4 = rbind( c(1,-1, 0, 0),

+ c(0, 1,-1, 0),

+ c(0, 0, 1,-1) )

> Wtest(L=L4,Tn=ave,Vn=S/n)

W df p-value

7.648689e+01 3.000000e+00 2.220446e-16
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Pairwise comparisons
Where is the effect coming from?

Set it up.

> testmatrix = diag(1,4,4) # Start with an identity matrix.

> labelz = colnames(Y)

> rownames(testmatrix) = labelz; colnames(testmatrix) = labelz

> testmatrix

A B C D

A 1 0 0 0

B 0 1 0 0

C 0 0 1 0

D 0 0 0 1
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Fill the matrix

> for(i in 1:3)

+ {

+ for(j in (i+1):4)

+ {

+ LL = rbind(c(0,0,0,0))

+ LL[i]=1; LL[j]=-1

+ print(LL) # Just to check

+ W = Wtest(L=LL,Tn=ave,Vn=S/n)

+ testmatrix[i,j] = W[1]; testmatrix[j,i]=W[3]

+ } # Next j

+ } # Next i

[,1] [,2] [,3] [,4]

[1,] 1 -1 0 0

[,1] [,2] [,3] [,4]

[1,] 1 0 -1 0

[,1] [,2] [,3] [,4]

[1,] 1 0 0 -1

[,1] [,2] [,3] [,4]

[1,] 0 1 -1 0

[,1] [,2] [,3] [,4]

[1,] 0 1 0 -1

[,1] [,2] [,3] [,4]

[1,] 0 0 1 -1
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Look at the
(

4
2

)
pairwise comparisons

> # Test statistics (chisq with 1 df) are in the upper triangle,

> # p-values in lower

> round(testmatrix,4)

A B C D

A 1.0000 15.3954 9.1158 17.1647

B 0.0001 1.0000 0.8831 46.0573

C 0.0025 0.3474 1.0000 43.8147

D 0.0000 0.0000 0.0000 1.0000

> ave

A B C D

101.65958 98.50167 99.39958 103.94167

Average reported enjoyment was greatest for Program D,
followed by A. The results are consistent with no difference
between B and C.
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Multiple Comparisons
The problem

Most hypothesis tests are designed to be carried out in
isolation.

But if you do a lot of tests and all the null hypotheses are
true, the chance of rejecting at least one of them can be a
lot more than α. This is inflation of the Type I error
probability.

Otherwise known as the curse of a thousand t-tests.

Multiple comparison procedures (sometimes called
follow-up tests, post hoc tests, probing) try to offer a
solution.
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Multiple Comparisons
A solution

Protect a family of tests against Type I error at some joint
significance level α.

If all the null hypotheses are true, the probability of
rejecting at least one is no more than α.

Many methods are available; we’ll consider just one for
now: Bonferroni.
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Bonferroni multiple comparisons

Based on Bonferroni’s inequality:

Pr
{
∪kj=1Aj

}
≤

k∑
j=1

Pr{Aj}

Applies to any collection of k tests.

Assume that all k null hypotheses are true.

Event Aj is that null hypothesis j is rejected.

Do the tests as usual.

Adjust the significance level, and reject each H0 if p < α/k.

Pr
{
∪kj=1Aj

}
≤

k∑
j=1

Pr{Aj} =

k∑
j=1

α/k = α

Or, adjust the p-values. Multiply them by k, and reject if
pk < α.
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TV show example

A B C D

A 1.0000 15.3954 9.1158 17.1647

B 0.0001 1.0000 0.8831 46.0573

C 0.0025 0.3474 1.0000 43.8147

D 0.0000 0.0000 0.0000 1.0000

There are
(
4
2

)
= 6 = k tests in the family.

Adjusted α is 0.05/6 = 0.0083.

Conclusions don’t change in this case.

What if the family includes comparisons with Program E?
Now there are 10 comparisons and H0 is rejected if
p < α/10 = 0.005.
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Include Z tests for comparison with Program E
Adjusted significance level is α/10 = 0.005

> pval = 2*pnorm(-abs(Z))

> rbind(Z,pval)

A B C D

Z 2.05138485 -1.5651734 -0.6738897 5.255814e+00

pval 0.04022948 0.1175423 0.5003815 1.473709e-07

Add to the conclusions: Program D is preferred to E, but E is
in a statistical tie with A, B and C.
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Advantages and disadvantages
Of the Bonferroni method

Advantage: Flexible Applies to any collection of
hypothesis tests.

Advantage: Easy to do.

Disadvantage: Must know what all the tests are before
seeing the data. So we were cheating.

Disadvantage: A little conservative; the true joint
significance level is less than α.
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Practical versus statistical significance
boxplot(Y)
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Between cases: Independent groups
Like a one-factor ANOVA

Have n cases, separated into p groups: Maybe experimental
treatment (say, drug) or occupation of main wage earner in
family.

n1 + n2 + · · ·+ np = n

Response variable is either binary or quantity of something,
like annual energy consumption.

No reason to believe normality.

No reason to believe equal variances.

H0 : Lµ = h

For example, H0 : µ1 = . . . = µp

Or µ2 = µ7
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Basic Idea

The p sample means are independent random variables.
Asymptotically,

Y j ∼ N(µj ,
σ2
j

nj
)

The p× 1 random vector Yn ∼ N(µ,Vn),

Where Vn is a p× p diagonal matrix with jth diagonal

element
σ2
j

nj
.

LYn ∼ Nr(Lµ,LVnL
>)

“Estimate” Vn with the diagonal matrix V̂n, jth diagonal

element
σ̂2
j

nj

And if H0 : Lµ = h is true, then asymptotically

Wn =
(
LYn − h

)> (
LV̂nL

>
)−1 (

LYn − h
)
∼ χ2(r)
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One little technical issue

More than one nj is going to infinity.

The rates at which they go to infinity can’t be too different.

In particular, if n = n1 + n2 + · · ·+ np,

Then each
nj

n must converge to a non-zero constant (in
probability).

Loose asymptotic arguments lose this kind of detail.
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Compare High School marks for students at 3 campuses

Campus n Mean Standard Deviation

SG 3906 84.94 5.59
UTM 1583 79.68 5.82
UTSC 1849 79.96 5.98
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Compute Wn =
(
LYn − h

)> (
LV̂nL

>
)−1 (

LYn − h
)

H0 : µ1 = µ2 = µ3

Campus n Mean Standard Deviation
SG 3906 84.94 5.59
UTM 1583 79.68 5.82
UTSC 1849 79.96 5.98

> source("http://www.utstat.utoronto.ca/~brunner/Rfunctions/Wtest.txt")

> n = c(3906,1583,1849)

> ybar = c(84.94,79.68,79.96)

> Vhat = diag(c(5.59,5.82,5.98)^2/n); Vhat

[,1] [,2] [,3]

[1,] 0.008000026 0.0000000 0.0000000

[2,] 0.000000000 0.0213976 0.0000000

[3,] 0.000000000 0.0000000 0.0193404

> L1 = rbind(c(1,-1,0),

+ c(0,1,-1) )

> Wtest(L1,ybar,Vhat)

W df p-value

1441.58 2.00 0.00
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Test difference between UTM and UTSC

Campus n Mean Standard Deviation
SG 3906 84.94 5.59
UTM 1583 79.68 5.82
UTSC 1849 79.96 5.98

> # UTM vs. UTSC

> Wtest(rbind(c(0,1,-1)),ybar,Vhat)

W df p-value

1.9244931 1.0000000 0.1653622

There are two more pairwise comparisons.

45 / 45



Large-Sample Chi-square Within cases Multiple comparisons Between cases

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The
LATEX source code is available from the course website:
http://www.utstat.toronto.edu/∼brunner/oldclass/appliedf14
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