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Background Reading: Davison’s Statistical models

e For completeness, look at Section 2.1, which presents some
basic applied statistics in an advanced way.

e Especially see Section 2.2 (Pages 28-37) on convergence.

e Section 3.3 (Pages 77-90) goes more deeply into simulation
than we will. At least skim it.
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Overview

@ Foundations
© LLN
© Consistency
Q CLT

@ Convergence of random vectors



Foundations

Sample Space 2, w € ()

@ Observe whether a single individual is male or female:
Q={F M}

o Pair of individuals; observe their genders in order:
Q= {(F7F)>(FaM)a (M7F)7 (M7M)}

@ Select n people and count the number of females:
Q={0,...,n}

For limits problems, the points in ) are infinite sequences.



Random variables are functions from €2 into the set of

real numbers

Pr{X e B} =Pr{weQ: X(w) € B})



Found s

Random Sample X;(w),..., X, (w)

o T=T(X1,...,Xn)
o T =T,(w)

o Let n — oo to see what happens for large samples



Fou

Modes of Convergence

o Almost Sure Convergence
o Convergence in Probability

» Convergence in Distribution



Foundations

Almost Sure Convergence

We say that T, converges almost surely to T, and write T}, “3 T

if
Priw: TLILH;O Th(w)=T(w)} = 1.

o Acts like an ordinary limit, except possibly on a set of
probability zero.

o All the usual rules apply.

o Called convergence with probability one or sometimes
strong convergence.



LLN

Strong Law of Large Numbers

Let X3,..., X, be independent with common expected value pu.

X, B EX)=u

The only condition required for this to hold is the existence of
the expected value.



LLN

Probability is long run relative frequency

o Statistical experiment: Probability of “success” is
o Carry out the experiment many times independently.

o Code the results X; = 1 if success, X; = 0 for failure,
1=1,2,...
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LLN

Sample proportion of successes converges to the

probability of success
Recall X; =0 or 1.

E(X;) = Y aPr{X; =z}

= 0-(1-0)+1-0
= 0
Relative frequency is
RS as
—ZXZ-:XHAH



Simulation

Using pseudo-random number generation by computer

Estimate almost any probability that’s hard to figure out
o Power
Weather model

Performance of statistical methods

Need confidence intervals for estimated probabilities.



LLN

Estimating power by simulation

Recall the one versus two-sample ¢ test example (chimney vent
damper)

e With paired data and a positive correlation, we suspected
that the two-sample test would have diminished power.

e Maybe wrong Type I error probability, too.

o Power of the correct test can be obtained analytically —
more later.

e Power and Type I error probability of the wrong test can
be more challenging.



LLN

Strategy for estimating power by simulation
Similar approach for probability of Type I error

o Generate a large number of random data sets under the
alternative hypothesis.

o For each data set, test Hy.

o Estimated power is the proportion of times Hj is rejected.



LLN

Power of the t-tests by Simulation

An example

(-]

(X;,Y;) bivariate normal

(]

Equal Variances: 0} = 05 =02 =1

\,ul — ,u2| = %, solet g =1,u3 =1.5
Corr(X;,Y;) = +0.50
e n=25

e What is the power of the correct test and the incorrect
test?
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LLN

Simulate From a Multivariate Normal

rmvn <- function(nn,mu,sigma)
# Returns an nn by kk matrix, rows are independent
# MVN(mu,sigma)
{
kk <- length(mu)
dsig <- dim(sigma)
if (dsig[1] !'= dsig[2]) stop("Sigma must be square.")
if (dsigl[1] != kk)
stop("Sizes of sigma and mu are inconsistent.")
ev <- eigen(sigma,symmetric=T)
sqrl <- diag(sqrt(ev$values))
PP <- ev$vectors
ZZ <- rnorm(nn*kk) ; dim(ZZ) <- c(kk,nn)
rmvn <- t(PP%*%sqrl¥%*%ZZ+mu)
rmvn

}# End of function rmvn s



LLN

Simulation Code

set.seed(9999)
n=25; r =0.5; nsim=1000
critl = qt(0.975,n-1); crit2 = qt(0.975,2%(n-1))
Mu = c(1,1.5); Sigma = rbind(c(1l,r),
c(r,1))
nsigl = nsig2 = 0
for(sim in 1:nsim)
{
dat = rmvn(n,Mu,Sigma); X = dat[,1]; Y = dat[,2]
sigl = t.test(x=X,y=Y,paired=T)$p.value<0.05
if(sigl) nsigl=nsigl+l
sig2 = t.test(x=X,y=Y,var.equal=T)$p.value<0.05
if(sig2) nsig2=nsig2+1
}
cat (" \n")
cat(" Based on ",nsim," simulations, Estimated Power \n")
cat (" Matched t-test: ",round(nsigl/nsim,3),"\n")

cat(" Two-sample t-test: ",round(nsig2/nsim,3),"\n")
mm= 1\ A



Output

Based on 1000 simulations, Estimated Power
Matched t-test: 0.675
Two-sample t-test: 0.385

Mu = c(1,1) # HO is true -- estimate significance level

Based on 1000 simulations, Estimated Power
Matched t-test: 0.063
T-sample t-test: 0.006

Based on 10000 simulations, Estimated Power
Matched t-test: 0.053
Two-sample t-test: 0.007



LLN

Recall the Change of Variables formula: Let Y = g(X)

Or, for discrete random variables

E(Y)=> yp,(y) =) glx)py(z)

This is actually a big theorem, not a definition.



LLN

Applying the change of variables formula

To approximate E[g(X)]




LLN

So for example

1 < 0.
=3 X/ % B(XY
n 4
1=1
l a.s
EZUEV}WE’ Y E(UVW?)
=1

That is, sample moments converge almost surely to population
moments.



LLN

Approximate an integral: [~ h(

Where h(z) is a nasty function.

Let f(x) be a density with f(x) > 0 wherever h(x) # 0.

/_o;h(‘rm - / f&f
- [X)}
X)

7

So
e Sample X1,..., X, from the distribution with density f(z)

e Calculate YV; = g(X;) = ?gig fori=1,...,n

o Calculate Y, % E[Y] = E[g(X)]

e Confidence interval for ;4 = E[g(X)] is routine.




LLN

Convergence in Probability

We say that T,, converges in probability to T', and write T, B

if for all € > 0,

lim P{|T,, —T| <e}=1
n—oo

Convergence in probability (say to a constant ) means no
matter how small the interval around 6, for large enough n
(that is, for all n > Nj) the probability of getting that close to
f is as close to one as you like.



LLN

Weak Law of Large Numbers

X, 5

@ Almost Sure Convergence implies Convergence in
Probability

o Strong Law of Large Numbers implies Weak Law of Large
Numbers
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Consistency

T =T(X1,...,X,) is a statistic estimating a parameter 0

The statistic T, is said to be consistent for 0 if T, .

lim P{|T,, — 0| <e} =1

n—oo

a.s.

The statistic T, is said to be strongly consistent for 0 if T,, =5 6.

Strong consistency implies ordinary consistency.
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Consistency is great but it’s not enough.

o It means that as the sample size becomes indefinitely large,
you probably get as close as you like to the truth.

o It’s the least we can ask. Estimators that are not
consistent are completely unacceptable for most purposes.

100, 000, 000 4.
T,“560=U,=T,+ %0
n




cy

Consistency of the Sample Variance

1< -
~2 L 2
52 = n;l(Xz X)
1 n
= Y x2-X
n
i=1

By SLLN, X, ©% pand 1 37 | X2 % BE(X?) = 02 + 2.

(2

Because the function g(z,y) =« — y? is continuous,

~ 1 ¢ — \ as
ngg<nZXi2,Xn>(Z—S>g(02+u2,u)202—{—u2—#2:0-2
i=1



Convergence in Distribution

Sometimes called Weak Convergence, or Convergence in Law

Denote the cumulative distribution functions of 77,75, ... by
Fi(t), F(t), ... respectively, and denote the cumulative
distribution function of T by F(t).

We say that T,, converges in distribution to T', and write

T, L7 if for every point ¢ at which F' is continuous,

Tim F,(t) = F(t)
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CLT

Univariate Central Limit Theorem

Let X4,...,X, be a random sample from a distribution with
expected value u and variance 0. Then

7, = VKo=) 4 5 N(0, 1)

o




CLT

Connections among the Modes of Convergence

T T =T, 5T =T, 5T

. d
o If a is a constant, T),, — a = 1T, L .
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CLT

Sometimes we say the distribution of the sample mean

is approximately normal, or asymptotically normal.

This is justified by the Central Limit Theorem.

But it does not mean that X,, converges in distribution to
a normal random variable.

e The Law of Large Numbers says that X,, converges almost
surely (and in probability) to a constant, p.

e So X, converges to u in distribution as well.



CLT

Why would we say that for large n, the sample mean is

approximately N (u, 07—12)7

Have Z, = Y2Xe=) 4 7 N(0,1).

[

PrX <o} = Pr{ﬁz(x—m § \/ﬁ(w—u)}

_ PT{ZHS(M} iy gty

Suppose Y is ezactly N (pu, %2)

Priy <z} = pr{\/ﬁ(y—u)<\/ﬁ(x—u)}

Il
R
=
—
N
AN
2
8
|
=
H,_/
(S
/N
3
8
|
=
N——



nce of random vectors

Convergence of random vectors I

© Definitions (All quantities in boldface are vectors in R™ unless
otherwise stated )

* T, 3 T means P{w : lim, o, T\ (w) = T(w)} = 1.
% T, 5 T means Ve > 0, lim,,_, o P{|T, —T|| <e}=1.
* T, % T means for every continuity point t of Fr,
lim,, 00 Fr, (t) = Fr(t).
9T, 3T=T, 5T=T, 5T
@ If a is a vector of constants, T, La= T, £a

@ Strong Law of Large Numbers (SLLN): Let X4, ...X,, be independent
and identically distributed random vectors with finite first moment,
and let X be a general random vector from the same distribution.
Then X,, 3 E(X).

@ Central Limit Theorem: Let X;,...,X,, be ii.d. random vectors with
expected value vector pu and covariance matrix 3. Then /n(X,, — u)
converges in distribution to a multivariate normal with mean 0 and

covariance matrix 3.



Convergence of random vectors

Convergence of random vectors 11

@ Slutsky Theorems for Convergence in Distribution:

@ If T, eR™, T, 5 T and if f: R™ — R? (where q < m) is
continuous except possibly on a set C with P(T € C) =0,
then f(T,) % £(T).

@ If T, % T and (T, — Y,) 50, then Y,, % T.

@ IfT,cRL Y, cRE T, 4 Tand Y, 5 c, then



Convergence of random vectors

An application of the Slutsky Theorems

o Let Xi,..., X, &2y, 02)

By CLT, Y, = Vn(Xpn — 1) 3 Y ~ N(0,0?)

o Let 7, be any consistent estimator of o.

Thenby6.3,Tn:<}:">i><Y):T

On o

(]

e The function f(x,y) = x/y is continuous except if y =0
so by 6.1,
n(X,, — d Y
fm = Y2 4 ey 2 X v,



Convergence of random vectors

We need more tools

Because

o The multivariate CLT establishes convergence to a
multivariate normal, and

@ Vectors of MLEs are approximately multivariate normal for
large samples, and

@ Most real-life models have multiple parameters,

We need to look at random vectors and the multivariate normal
distribution.
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Convergence of random vectors

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The

IXTEX source code is available from the course website:
http://www.utstat.toronto.edu/~brunner/oldclass/appliedfi14
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