Student Number _

Name Jerry

STA 442/2101 f2012 Quiz 1

1. (2 points) Let $\mathbf{z} = (z_1, \ldots, z_n)'$ be a vector of real constants. Show $\mathbf{z}'\mathbf{z} \ge 0$.

$$Z'Z = \sum_{i=1}^{n} Z_i^2 \ge 0$$

2. (4 points) Recall the definition of linear independence. The columns of **A** are said to be *linearly independent* if the only column vector **v** with $\mathbf{A}\mathbf{v} = \mathbf{0}$ is $\mathbf{v} = \mathbf{0}$. That is, $\mathbf{A}\mathbf{v} = \mathbf{0}$ implies $\mathbf{v} = \mathbf{0}$.

Let X be an $n \times p$ matrix of constants. Show that if the columns of X are linearly independent, then the columns of X'X are also linearly independent.

$$X'X_{v} = 0 \implies v'X'X_{v} = (X_{v})'X_{v} =$$

= $Z'Z = 0$ with $Z = X_{v}$, so $X_{v} = 0$
So $v = 0$ by linear independence of the cols
of X.

- 3. (4 points) Let Y_1, \ldots, Y_n be a random sample from a normal distribution with mean μ and variance σ^2 , so that $T = \frac{\sqrt{n}(\overline{Y}-\mu)}{S} \sim t(n-1)$. You may use this fact without proof.
 - (a) Derive a $(1-\alpha)100\%$ confidence interval for μ . "Derive" means show all the high school algebra. Use the symbol $t_{\alpha/2}$ for the number satisfying $Pr(T > t_{\alpha/2}) = \alpha/2$.

$$\begin{aligned} 1-\lambda &= P(-t_{a_{12}} < T < t_{a_{12}}) \\ &= P(-t_{a_{12}} < \frac{\sqrt{n}(\overline{Y}-\mu)}{s} < t_{a_{12}}) \\ &= P(-t_{a_{12}} \frac{S}{\ln s} < \overline{Y}-\mu < t_{a_{12}} \frac{S}{\ln s}) \\ &= P(-\overline{Y}-t_{a_{12}} \frac{S}{\ln s} < -\mu < -\overline{Y}+t_{a_{12}} \frac{S}{\ln s}) \\ &= P(\overline{Y}+t_{a_{12}} \frac{S}{\ln s} > \mu > \overline{Y}-t_{a_{12}} \frac{S}{\ln s}) \\ &= P(\overline{Y}-t_{a_{12}} \frac{S}{\ln s} < \mu < \overline{Y}+t_{a_{12}} \frac{S}{\ln s}) \\ &= P(\overline{Y}-t_{a_{12}} \frac{S}{\ln s} < \mu < \overline{Y}+t_{a_{12}} \frac{S}{\ln s}) \\ &= P(\overline{Y}-t_{a_{12}} \frac{S}{\ln s} < \mu < \overline{Y}+t_{a_{12}} \frac{S}{\ln s}) \\ &= P(\overline{Y}-t_{a_{12}} \frac{S}{\ln s} < \mu < \overline{Y}+t_{a_{12}} \frac{S}{\ln s}) \\ &= P(\overline{Y}-t_{a_{12}} \frac{S}{\ln s} < \mu < \overline{Y}+t_{a_{12}} \frac{S}{\ln s}) \\ &= P(\overline{Y}-t_{a_{12}} \frac{S}{\ln s} < \mu < \overline{Y}+t_{a_{12}} \frac{S}{\ln s}) \\ &= P(\overline{Y}-t_{a_{12}} \frac{S}{\ln s} < \mu < \overline{Y}+t_{a_{12}} \frac{S}{\ln s}) \\ &= P(\overline{Y}-t_{a_{12}} \frac{S}{\ln s} < \mu < \overline{Y}+t_{a_{12}} \frac{S}{\ln s}) \\ &= P(\overline{Y}-t_{a_{12}} \frac{S}{\ln s} < \mu < \overline{Y}+t_{a_{12}} \frac{S}{\ln s}) \\ &= P(\overline{Y}-t_{a_{12}} \frac{S}{\ln s} < \mu < \overline{Y}+t_{a_{12}} \frac{S}{\ln s}) \\ &= P(\overline{Y}-t_{a_{12}} \frac{S}{\ln s} < \mu < \overline{Y}+t_{a_{12}} \frac{S}{\ln s}) \\ &= P(\overline{Y}-t_{a_{12}} \frac{S}{\ln s} < \mu < \overline{Y}+t_{a_{12}} \frac{S}{\ln s}) \\ &= P(\overline{Y}-t_{a_{12}} \frac{S}{\ln s} < \mu < \overline{Y}+t_{a_{12}} \frac{S}{\ln s}) \\ &= P(\overline{Y}-t_{a_{12}} \frac{S}{\ln s} < \mu < \overline{Y}+t_{a_{12}} \frac{S}{\ln s}) \\ &= P(\overline{Y}-t_{a_{12}} \frac{S}{\ln s} < \mu < \overline{Y}+t_{a_{12}} \frac{S}{\ln s}) \\ &= P(\overline{Y}-t_{a_{12}} \frac{S}{\ln s} < \mu < \overline{Y}+t_{a_{12}} \frac{S}{\ln s}) \\ &= P(\overline{Y}-t_{a_{12}} \frac{S}{\ln s} < \mu < \overline{Y}+t_{a_{12}} \frac{S}{\ln s}) \\ &= P(\overline{Y}-t_{a_{12}} \frac{S}{\ln s} < \mu < \overline{Y}+t_{a_{12}} \frac{S}{\ln s}) \\ &= P(\overline{Y}-t_{a_{12}} \frac{S}{\ln s} < \mu < \overline{Y}+t_{a_{12}} \frac{S}{\ln s}) \\ &= P(\overline{Y}-t_{a_{12}} \frac{S}{\ln s} < \mu < \overline{Y}+t_{a_{12}} \frac{S}{\ln s}) \\ &= P(\overline{Y}-t_{a_{12}} \frac{S}{\ln s} < \mu < \overline{Y}+t_{a_{12}} \frac{S}{\ln s}) \\ &= P(\overline{Y}-t_{a_{12}} \frac{S}{\ln s} < \mu < \overline{Y}+t_{a_{12}} \frac{S}{\ln s}) \\ &= P(\overline{Y}-t_{a_{12}} \frac{S}{\ln s} < \mu < \overline{Y}+t_{a_{12}} \frac{S}{\ln s}) \\ &= P(\overline{Y}-t_{a_{12}} \frac{S}{\ln$$

(b) A random sample with n = 23 yields $\overline{Y} = 2.57$ and a sample variance of $S^2 = 5.85$. Calculate the test statistic for testing $H_0: \mu = 2$. Show some work. Your answer is a number.

$$T = \frac{\sqrt{23^{7}(2.57-2)}}{\sqrt{5.85^{7}}} = 1.13$$