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Background Reading
Optional

I Chapter 1 of Data analysis with SAS: What’s going on and
how would you say it to a client?

I Chapter 1 of Davison’s Statistical models: Data, and
probability models for data.
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Steps in the process of statistical analysis
One possible approach

I Consider a fairly realistic example or problem
I Decide on a statistical model
I Perhaps decide sample size
I Acquire data
I Examine and clean the data; generate displays and

descriptive statistics
I Estimate parameters, perhaps by maximum likelihood
I Carry out tests, compute confidence intervals, or both
I Perhaps re-consider the model and go back to estimation
I Based on the results of estimation and inference, draw

conclusions about the example or problem
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Coffee taste test

A fast food chain is considering a change in the blend of coffee
beans they use to make their coffee. To determine whether their
customers prefer the new blend, the company plans to select a
random sample of n = 100 coffee-drinking customers and ask
them to taste coffee made with the new blend and with the old
blend, in cups marked “A” and “B.” Half the time the new
blend will be in cup A, and half the time it will be in cup B.
Management wants to know if there is a difference in preference
for the two blends.
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Statistical model

Letting θ denote the probability that a consumer will choose the
new blend, treat the data Y1, . . . , Yn as a random sample from a
Bernoulli distribution. That is, independently for i = 1, . . . , n,

P (yi|θ) = θyi(1− θ)1−yi

for yi = 0 or yi = 1, and zero otherwise.

Note that Y =
∑n

i=1 Yi is the number of consumers who choose
the new blend. Because Y ∼ B(n, θ), the whole experiment
could also be treated as a single observation from a Binomial.
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Find the MLE of θ
Show your work

Denoting the likelihood by L(θ) and the log likelihood by
`(θ) = log L(θ), maximize the log likelihood.
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Setting the derivative to zero and solving

I θ =
Pn

i=1 yi

n = y = p

I Second derivative test: ∂2 log `
∂θ2 = −n

(
1−y

(1−θ)2
+ y

θ2

)
< 0

I Concave down, maximum, and the MLE is the sample
proportion.
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Numerical estimate

Suppose 60 of the 100 consumers prefer the new blend. Give a
point estimate the parameter θ. Your answer is a number.

> p = 60/100; p
[1] 0.6
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Carry out a test to answer the question
Is there a difference in preference for the two blends?

Start by stating the null hypothesis

I H0 : θ = 0.50
I H1 : θ 6= 0.50
I A case could be made for a one-sided test, but we’ll stick

with two-sided.
I α = 0.05 as usual.
I Central Limit Theorem says θ̂ = Y is approximately

normal with mean θ and variance θ(1−θ)
n .
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Several valid test statistics for H0 : θ = θ0 are available
Two of them are

Z1 =
√

n(Y − θ0)√
θ0(1− θ0)

and

Z2 =
√

n(Y − θ0)√
Y (1− Y )

What is the critical value? Your answer is a number.

> alpha = 0.05
> qnorm(1-alpha/2)
[1] 1.959964
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Calculate the test statistic and the p-value for each test
Note: The R code uses p for the sample proportion

> theta0 = .5; p = .6; n = 100
> Z1 = sqrt(n)*(p-theta0)/sqrt(theta0*(1-theta0)); Z1
[1] 2
> pval1 = 2 * (1-pnorm(Z1)); pval1
[1] 0.04550026
>
> Z2 = sqrt(n)*(p-theta0)/sqrt(p*(1-p)); Z2
[1] 2.041241
> pval2 = 2 * (1-pnorm(Z2)); pval2
[1] 0.04122683
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Conclusions
I Do you reject H0? Yes, just barely.
I Isn’t the α = 0.05 significance level pretty arbitrary? Yes,

but if people insist on a Yes or No answer, this is what you
give them.

I What do you conclude, in symbols? θ 6= 0.50. Specifically,
θ > 0.50.

I What do you conclude, in plain language? Your answer is a
statement about coffee. More consumers prefer the new
blend of coffee beans.

I Can you really draw directional conclusions when all you
did was reject a non-directional null hypothesis? Yes.
Decompose the two-sided size α test into two one-sided
tests of size α/2. This approach works in general.

It is very important to state directional conclusions, and state
them clearly in terms of the subject matter. Say what
happened! If you are asked state the conclusion in plain
language, your answer must be free of statistical mumbo-jumbo.

12 / 38



What about negative conclusions?
What would you say if Z = 1.84?

Here are two possibilities, in plain language.

I “This study does not provide clear evidence that
consumers prefer one blend of coffee beans over the other.”

I “The results are consistent with no difference in preference
for the two coffee bean blends.”

In this course, we will not just casually accept the null
hypothesis.
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Confidence Intervals
Approximately for large n,

1− α = Pr{−zα/2 < Z < zα/2}

≈ Pr

−zα/2 <

√
n(Y − θ)√
Y (1− Y )

< zα/2


= Pr

Y − zα/2

√
Y (1− Y )

n
< θ < Y + zα/2

√
Y (1− Y )

n


I Could express this as Y ± zα/2

√
Y (1−Y )

n

I zα/2

√
Y (1−Y )

n is sometimes called the margin of error.
I If α = 0.05, it’s the 95% margin of error.
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Give a 95% confidence interval for the taste test data.
The answer is a pair of numbers. Show some work.

(
y − zα/2

√
y(1− y)

n
, y + zα/2

√
y(1− y)

n

)

=

(
0.60− 1.96

√
0.6× 0.4

100
, 0.60 + 1.96

√
0.6× 0.4

100

)

= (0.504, 0.696)

In a report, you could say
I The estimated proportion preferring the new coffee bean

blend is 0.60± 0.096, or
I “Sixty percent of consumers preferred the new blend.

These results are expected to be accurate within 10
percentage points, 19 times out of 20.”
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Meaning of the confidence interval

I We calculated a 95% confidence interval of (0.504, 0.696)
for θ.

I Does this mean Pr{0.504 < θ < 0.696} = 0.95?
I No! The quantities 0.504, 0.696 and θ are all constants, so

Pr{0.504 < θ < 0.696} is either zero or one.
I The endpoints of the confidence interval are random

variables, and the numbers 0.504 and 0.696 are realizations
of those random variables, arising from a particular
random sample.

I Meaning of the probability statement: If we were to
calculate an interval in this manner for a large number of
random samples, the interval would contain the true
parameter around 95% of the time.

I So we sometimes say that we are “95% confident” that
0.504 < θ < 0.696.
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Confidence intervals (regions) correspond to tests
Recall Z1 =

√
n(Y−θ0)√
θ0(1−θ0)

and Z2 =
√

n(Y−θ0)√
Y (1−Y )

.

From the derivation of the confidence interval,

−zα/2 < Z2 < zα/2

if and only if

Y − zα/2

√
Y (1− Y )

n
< θ0 < Y + zα/2

√
Y (1− Y )

n

I So the confidence interval consists of those parameter
values θ0 for which H0 : θ = θ0 is not rejected.

I That is, the null hypothesis is rejected at significance level
α if and only if the value given by the null hypothesis is
outside the (1− α)× 100% confidence interval.

I There is a confidence interval corresponding to Z1 too.
I In general, any test can be inverted to obtain a confidence

region.
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Selecting sample size

I Where did that n = 100 come from?
I Probably off the top of someone’s head.
I We can (and should) be more systematic.
I Sample size can be selected

I To achieve a desired margin of error
I To achieve a desired statistical power
I In other reasonable ways
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Power

The power of a test is the probability of rejecting H0 when H0

is false.

I More power is good.
I Power is not just one number. It is a function of the

parameter(s).
I Usually,

I For any n, the more incorrect H0 is, the greater the power.
I For any parameter value satisfying the alternative

hypothesis, the larger n is, the greater the power.
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Statistical power analysis
To select sample size

I Pick an effect you’d like to be able to detect – a parameter
value such that H0 is false. It should be just over the
boundary of interesting and meaningful.

I Pick a desired power, a probability with which you’d like to
be able to detect the effect by rejecting the null hypothesis.

I Start with a fairly small n and calculate the power.
Increase the sample size until the desired power is reached.

There are two main issues.

I What is an “interesting” or “meaningful” parameter value?
I How do you calculate the probability of rejecting H0?
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Calculating power for the test of a single proportion
True parameter value is θ

Power ≈ 1− Pr{−zα/2 < Z2 < zα/2}

= 1− Pr

8><>:−zα/2 <

√
n(Y − θ0)q
Y (1− Y )

< zα/2

9>=>;
= . . .

= 1− Pr

8><>:
√

n(θ0 − θ)p
θ(1− θ)

− zα/2

vuutY (1− Y )

θ(1− θ)
<

√
n(Y − θ)p
θ(1− θ)

<

√
n(θ0 − θ)p
θ(1− θ)

+ zα/2

vuutY (1− Y )

θ(1− θ)

9>=>;
≈ 1− Pr

(√
n(θ0 − θ)p
θ(1− θ)

− zα/2 < Z <

√
n(θ0 − θ)p
θ(1− θ)

+ zα/2

)

= 1− Φ

 √
n(θ0 − θ)p
θ(1− θ)

+ zα/2

!
+ Φ

 √
n(θ0 − θ)p
θ(1− θ)

− zα/2

!
,

where Φ(·) is the cumulative distribution function of the
standard normal.
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An R function to calculate approximate power
For the test of a single proportion

Power = 1− Φ

(√
n(θ0 − θ)√
θ(1− θ)

+ zα/2

)
+ Φ

(√
n(θ0 − θ)√
θ(1− θ)

− zα/2

)

Z2power = function(theta,n,theta0=0.50,alpha=0.05)
{
effect = sqrt(n)*(theta0-theta)/sqrt(theta*(1-theta))
z = qnorm(1-alpha/2)
Z2power = 1 - pnorm(effect+z) + pnorm(effect-z)
Z2power
} # End of function Z2power
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Some numerical examples

> Z2power(0.50,100) # Should be alpha = 0.05
[1] 0.05
>
> Z2power(0.55,100)
[1] 0.1713209
> Z2power(0.60,100)
[1] 0.5324209
> Z2power(0.65,100)
[1] 0.8819698
> Z2power(0.40,100)
[1] 0.5324209
> Z2power(0.55,500)
[1] 0.613098
> Z2power(0.55,1000)
[1] 0.8884346
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Find smallest sample size needed to detect θ = 0.60 as
different from θ0 = 0.50 with probability at least 0.80

> samplesize = 1
> power=Z2power(theta=0.60,n=samplesize); power
[1] 0.05478667
> while(power < 0.80)
+ {
+ samplesize = samplesize+1
+ power = Z2power(theta=0.60,n=samplesize)
+ }
> samplesize
[1] 189
> power
[1] 0.8013024
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What is required of the scientist
Who wants to select sample size by power analysis

The scientist must specify
I Parameter values that he or she wants to be able to detect

as different from H0 value.
I Desired power (probability of detection)

It’s not always easy for a scientist to think in terms of the
parameters of a statistical model.
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Using the non-central chi-squared distribution
For power and sample size calculations

If X ∼ N(µ, σ2), then

I Z =
(

X−µ
σ

)2
∼ χ2(1)

I Y = X2

σ2 is said to have a non-central chi-squared
distribution with degrees of freedom one and non-centrality
parameter λ = µ2

σ2 .
I Write Y ∼ χ2(1, λ)
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Facts about the non-central chi-squared distribution
With one df

Y ∼ χ2(1, λ), where λ ≥ 0

I Pr{Y > 0} = 1, of course.
I If λ = 0, the non-central chi-squared reduces to the

ordinary central chi-squared.
I The distribution is “stochastically increasing” in λ,

meaning that if Y1 ∼ χ2(1, λ1) and Y2 ∼ χ2(1, λ2) with
λ1 > λ2, then Pr{Y1 > y} > Pr{Y2 > y} for any y > 0.

I limλ→∞ Pr{Y > y} = 1
I There are efficient algorithms for calculating non-central

chi-squared probabilities. R’s pchisq function does it.
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An example
Back to the coffee taste test

Y1, . . . , Yn
i.i.d.∼ B(1, θ)

H0 : θ = θ0 = 1
2

Reject H0 if |Z2| =
∣∣∣∣√n(Y−θ0)√

Y (1−Y )

∣∣∣∣ > zα/2

Suppose that in the population, 60% of consumers would prefer
the new blend. If we test 100 consumers, what is the
probability of obtaining results that are statistically significant?

That is, if θ = 0.60, what is the power for n = 100? Earlier, got
0.53 with a direct standard normal calculation.
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Recall that if X ∼ N(µ, σ2), then X2

σ2 ∼ χ2(1, µ2

σ2 ).

Reject H0 if

|Z2| =

∣∣∣∣∣∣
√

n(Y − θ0)√
Y (1− Y )

∣∣∣∣∣∣ > zα/2 ⇔ Z2
2 > z2

α/2 = χ2
α(1)

For large n, X = Y − θ0 is approximately normal, with
µ = θ − θ0 and σ2 = θ(1−θ)

n . So,

Z2
2 =

(Y − θ0)2

Y (1− Y )/n
≈ (Y − θ0)2

θ(1− θ)/n
=

X2

σ2

approx∼ χ2

(
1, n

(θ − θ0)2

θ(1− θ)

)
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We have found that
The Wald chi-squared test statistic of H0 : θ = θ0

Z2
2 =

n(Y − θ0)2

Y (1− Y )

has an asymptotic non-central chi-squared distribution with
df = 1 and non-centrality parameter

λ = n
(θ − θ0)2

θ(1− θ)

Notice the similarity, and also that
I If θ = θ0, then λ = 0 and Z2

2 has a central chi-squared
distribution.

I The probability of exceeding any critical value (power) can
be made as large as desired by making λ bigger.

I There are 2 ways to make λ bigger.
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Power calculation with R
For n = 100, θ0 = 0.50 and θ = 0.60

> # Power for Wald chisquare test of H0: theta=theta0
> n=100; theta0=0.50; theta=0.60
> lambda = n * (theta-theta0)^2 / (theta*(1-theta))
> critval = qchisq(0.95,1)
> power = 1-pchisq(critval,1,lambda); power
[1] 0.5324209

Earlier, had

> Z2power(0.60,100)
[1] 0.5324209
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Check power calculations by simulation
First develop and illustrate the code

# Try a simulation to test it.
set.seed(9999) # Set seed for "random" number generation
theta = 0.50; theta0 = 0.50; n = 100; m = 10
critval = qchisq(0.95,1); critval
p = rbinom(m,n,theta)/n; p
Z2 = sqrt(n)*(p-theta0)/sqrt(p*(1-p))
rbind(p,Z2)
sig = (Z2^2>critval); sig
sum(sig)/n
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Output from the last slide

> # Try a simulation to test it.

> set.seed(9999) # Set seed for "random" number generation

> theta = 0.50; theta0 = 0.50; n = 100; m = 10

> critval = qchisq(0.95,1); critval

[1] 3.841459

> p = rbinom(m,n,theta)/n; p

[1] 0.40 0.56 0.47 0.57 0.47 0.50 0.58 0.48 0.40 0.53

> Z2 = sqrt(n)*(p-theta0)/sqrt(p*(1-p))

> rbind(p,Z2)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

p 0.400000 0.560000 0.4700000 0.570000 0.4700000 0.5 0.580000 0.4800000 0.400000

Z2 -2.041241 1.208734 -0.6010829 1.413925 -0.6010829 0.0 1.620882 -0.4003204 -2.041241

[,10]

p 0.5300000

Z2 0.6010829

> sig = (Z2^2>critval); sig

[1] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

> sum(sig)/n

[1] 0.02
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Now the real simulation
First estimated probability should equal about 0.05 because θ = θ0

> # Check Type I error rate
> set.seed(9999)
> theta = 0.50; theta0 = 0.50; n = 100; m = 10000
> critval = qchisq(0.95,1)
> p = rbinom(m,n,theta)/n
> Z2 = sqrt(n)*(p-theta0)/sqrt(p*(1-p))
> sig = (Z2^2>critval)
> sum(sig)/m
[1] 0.0574

> # Power calculation for theta=0.60 said power = 0.5324209
> set.seed(9998)
> theta = 0.60; theta0 = 0.50; n = 100; m = 10000
> critval = qchisq(0.95,1)
> p = rbinom(m,n,theta)/n
> Z2 = sqrt(n)*(p-theta0)/sqrt(p*(1-p))
> sig = (Z2^2>critval)
> sum(sig)/m
[1] 0.5353 34 / 38



Conclusions from the power analysis

I Power with n = 100 is pathetic.
I As Fisher said, “To call in the statistician after the

experiment is done may be no more than asking him to
perform a postmortem examination: he may be able to say
what the experiment died of.”

I n = 200 is better.
> n=200; theta0=0.50; theta=0.60
> lambda = n * (theta-theta0)^2 / (theta*(1-theta))
> power = 1-pchisq(qchisq(0.95,1),1,lambda); power
[1] 0.8229822

I What sample size is required for power of 90%?
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What sample size is required for power of 90%?

> # Find sample size needed for power = 0.90
> theta0=0.50; theta=0.60; critval = qchisq(0.95,1)
> effectsize = (theta-theta0)^2 / (theta*(1-theta))
> n = 0
> power=0
> while(power < 0.90)
+ {
+ n = n+1
+ lambda = n * effectsize
+ power = 1-pchisq(critval,1,lambda)
+ }
> n; power
[1] 253
[1] 0.9009232
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General non-central chi-squared

Let X1, . . . , Xn be independent N(µi, σ
2
i ). Then

Y =
n∑

i=1

X2
i

σ2
i

∼ χ2(n, λ), where λ =
n∑

i=1

µ2
i

σ2
i

I Density is a bit messy.
I Reduces to central chi-squared when λ = 0.
I Generalizes to Y ∼ χ2(ν, λ), where ν > 0 as well as λ > 0
I Stochastically increasing in λ, meaning Pr{Y > y} can be

increased by increasing λ.
I limλ→∞ Pr{Y > y} = 1
I Probabilities are easy to calculate numerically.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The
LATEX source code is available from the course website:
http://www.utstat.toronto.edu/∼brunner/oldclass/appliedf12
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