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Suggested Reading

* Davison’s Statistical Models, Chapter 8

 The general mixed linear model is defined in
Section 9.4, where it is first applied.



General Mixed Linear Model

Y = X8 + Zb + €

X is an n X p matrix of known constants
3 is a p X 1 vector of unknown constants.
Z is an n X ¢ matrix of known constants

b ~ N,(0,3;) with 3; unknown

e ~ N(0,0°1,) , where 0 > 0 is an unknown constant.



Fixed Effects Linear Regression

Y = X3 + €

e X is an n X p matrix of known constants
e 3is ap x 1 vector of unknown constants

e ¢ ~ N(0,0°%1,) , where 0° > 0 is an unknown constant.

AN A

B =(X'X)"'X'Y Y =Xg3
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Regression Means Going Back

Francis Galton (1822-1911) studied
“Hereditary Genius” (1869) and other traits

Heights of fathers and sons

— Sons of the tallest fathers tended to be taller than
average, but shorter than their fathers

— Sons of the shortest fathers tended to be shorter
than average, but taller than their fathers
This kind of thing was observed for lots of
traits.

Galton was deeply concerned about
“regression to mediocrity.”



Measure the same thing twice, with error

Yl — X T €1
Y2 = X + €9
X ~ N(p,0%)

e1 and ey independent N (0, o?)




Conditional distribution of Y, given Y,=y,
for a general bivariate normal

092
N (Mz | o p(y1 —M1)7(1—P2)U§)

= N (u+pyr—p),(1—p*)(os+02))

So E(Ya|Y1 = y1) = p+ p(y1 — ),
where p =

XL
2 2 .
ax—l—ae



E(Y2|Y1 =y1) = p+ p(yr — 1)

If y, is above the mean, average y, will also be
above the mean

But only a fraction (rho) as far above as y,.

If y, is below the mean, average y, will also be
below the mean

But only a fraction (rho) as far below as y;,.

This exactly the “regression toward the mean”
that Galton observed.



Regression toward the mean

* Does not imply systematic change over time

e |s a characteristic of the bivariate normal and
other joint distributions

e Can produce very misleading results,
especially in the evaluation of social programs



Regression Artifact

Measure something important, like performance
in school or blood pressure.

Select an extreme group, usually those who do
worst on the baseline measure.

Do something to help them, and measure again.

E(YzY1r =y1) = p+ p(yr — 1)

If the treatment does nothing, they are expected
to do worse than average, but better than they
did the first time — completely artificial!



A simulation study

Measure something twice with error: 500
observations

Select the best 50 and the worst 50
Do two-sided matched t-tests at alpha = 0.05

What proportion of the time do the worst 50
show significant average improvement?

What proportion of the time do the best 50
show significant average deterioration?



sig2x = 10; sig2e = 10; n = 500; set.seed(9999)

X = rnorm(n,100,sqrt(sig2x))

el = rnorm(n,0,sqrt(sig2e)); e2 = rnorm(n,0,sqrt(sig2e))
Y1 = X+el; Y2 = X+e2; D = Y2-Y1 # D measures "improvement"
low50 = D[rank(Y1)<=50]; hi50 = D[rank(Y1)>450]

t.test (low50)

V V V V V V

One Sample t-test

data: 1lowb0
t = 7.025, df = 49, p-value = 6.068e-09
alternative hypothesis: true mean is not equal to O
95 percent confidence interval:
2.874234 5.177526
sample estimates:

mean of x
4.02588



> t.test (hi50)

One Sample t-test

data: hibO
t = -5.3417, df = 49, p-value = 2.373e-06
alternative hypothesis: true mean is not equal to O
95 percent confidence interval:

-4.208760 -1.907709

sample estimates:

mean of x
-3.058234



> t.test(lowb0)$p.value
[1] 6.068008e-09
> t.test(lowb0)3$estimate
mean of x
4.02588
> t.test(lowb0)3Pp.value<0.05 && t.test(lowb0)$estimate>0
[1] TRUE



> # Estimate probability of artificial difference
> M = 100 # Monte Carlo sample size

> dsig = numeric(M)

> for(i in 1:M)

+ {

+ X = rnorm(n,100,sqrt(sig2x))

+ el = rnorm(n,0,sqrt(sig2e)); e2 = rnorm(n,0,sqrt(sig2e))

+ Y1 = X+el; Y2 = X+e2; D = Y2-Y1 # D measures "improvement"
+ low50 = D[rank(Y1)<=50]

+ ttest = t.test(lowb0)

+ dsigl[i] = ttest$p.value<0.05 && ttest$estimate>0

+ }

> dsig



Summary

* Source of the term “Regression”

* Regression artifact
— Very serious
— People keep re-inventing the same mistake
— Can’t really blame the policy makers

— At least the statistician should be able to warn
them

— The solution is random assignment

— Taking difference from a baseline measurement
may still be useful



Multiple Linear Regression

Yi =00+ bixii+ ...+ Pp—1Tip—1 + €



Statistical MODEL

* There are p-1 explanatory variables

* For each combination of explanatory
variables, the conditional distribution of the
response variable Y is normal, with
constant variance

* The conditional population mean of Y
depends on the x values, as follows:

E[Y\X — 33] = Po + D11+ ...+ Pp_12p_1



Control means hold constant

EY|X =x| = 0o + B1x1 + Boxa + B33 + Baxy

0
a—xSE[Y\X = x| = s

So B, is the rate at which E[Y[x] changes as
a function of x; with all other variables
held constant at fixed levels.



Increase x; by one unit
holding other variables constant

Bo + Bix1 + Bexa  +03(w3 + 1) Baxy

— (50 + Bi1x1 + Pawa +B3 73 54554)
= [3(wg +1) — Baxs
= 03

So B, is the amount that E[Y[x] changes when
X5 is increased by one unit and all other
variables are held constant at fixed levels.



It’s model-based control

* To “hold x, constant” at some particular value,

like x,=14, you don’t even need data at that
value.

* Ordinarily, to estimate E(Y|X,;=14,X,=x), you
would need a lot of data at X,=14.
* But look:

AN

?:304‘31‘14"‘6233



Statistics b estimate parameters beta

E[Y|X = ZL‘] Bo + )81.”171 + Boxo + ,4'33-’133 + ,84.1'4

~
|

b() == [)1.”1,'1 -1 bgfI}Q - bgfL‘g + [)4.’134



Categorical Explanatory Variables

X=1 means Drug, X=0 means Placebo
Population meanis  E|Y|X = x| = [y + fiz

For patients getting the drug, mean response is
E[Y|X = 1] = B0 + 51

For patients getting the placebo, mean response
IS

E[Y|X = 0] = S



Sample regression coefficients for a
binary explanatory variable

* X=1 means Drug, X=0 means Placebo

AN

* Predictedresponseis Y = by + b1

* For patients getting the drug, predicted response is
Y =bp+01 =Y

* For patients getting the placebo, predicted response is

Y =by =Y,



Regression test of b,

* Same as an independent t-test
e Same as a oneway ANOVA with 2 categories
* Same t, same F, same p-value.



Drug A, Drug B, Placebo

X, =1 if Drug A, Zero otherwise

X, =1 if Drug B, Zero otherwise
EY|X = x| = (o + frx1 + (222

Fill in the table

Group | 1 | wa | By + (121 + Poaxg
A M1 =—
B Mo —

Placebo [l3 =




Drug A, Drug B, Placebo

* x, =1if Drug A, Zero otherwise
* X, =1if Drug B, Zero otherwise

s FY|X =x| = [+ frx1 + [axo

Group | z1 | T2 | Bo + 121 + Poxo
A 1 0 nr = Bo + Gi
B 0 1 to = Bo + B2
Placebo | 0 0 | us = B

Regression coefficients are contrasts with the category
that has no indicator — the reference category



Indicator dummy variable coding with
Intercept

* Need p-1 indicators to represent a
categorical explanatory variable with p
categories

* |f you use p dummy variables, trouble

* Regression coefficients are contrasts with
the category that has no indicator

e Call this the reference category



Now add a quantitative variable

(covariate)
* X, = Age
* X, =1if Drug A, Zero otherwise
* X3 =1if Drug B, Zero otherwise

* E)Y|X = x| = fo + 121 + B2x2 + (313

Drug Ty | 3 | Po + Brx1 + Pax2 + B33
A 1 |0 (Bo + B2) + Biz1
B 0 | 1 (Bo + Bs) + P11
Placebo | 0 0 Bo +01z1

Parallel regression lines



Effect coding

p-1 dummy variables for p categories
Include an intercept

Last category gets -1 instead of zero

What do the regression coefficients mean?

Group | z1 | 2o | E[Y|X = x| = [y + Sra1 + Paxo
A 1 0 1 = B30 + ',31
B 0 L | po = By + B2

Placebo | -1 | -1 | pus3 = By — 51 — 3




Meaning of the regression

coefficients
Group | z; | 2o | E[Y|X =] = [y + fra1 + Paxo
A 1 0| pp = 3o + ‘31
B O 1 Ho = 13() -+ dz
Placebo | -1 | -1 | pus3 = By — 51 — 3
1

= g(ﬂ1+ﬂ2 + p3) = Bo

The grand mean



With effect coding

Intercept is the Grand Mean

Regression coefficients are deviations of group
means from the grand mean.

They are the non-redundant effects.

Equal population means is equivalent to zero
coefficients for all the dummy variables

Last category is not a reference category

Group | z1 | 2o | E[Y|X = x| = [y + Sra1 + Paxo

A 1 0 1 = ,".'3() -1 ,.1'31

B () 1 o = ."'3() + ',532

Placebo | -1 | -1 | pus3 = By — 51 — 3




Add a covariate: Age = x,

Group | z9 | 3 | E[Y|X =] = By + 121 + Poxo + P33

A 1 0 1 = 3o + ,,32 + B1x1

B 0 1 o = ,"3() -+ .,l'33 -4 3 11

l)la(zeb O -1 -1 M3 = ,"3() — ..~'32 — ,"33 -1 ,.*'31 €L

Regression coefficients are deviations from the average
conditional population mean (conditional on x,).

So if the regression coefficients for all the dummy
variables equal zero, the categorical explanatory variable
is unrelated to the response variable, controlling for the
covariate(s).



Effect coding is very useful when there is
more than one categorical explanatory
variable and we are interested in interactions
--- ways in which the relationship of an
explanatory variable with the response
variable depends on the value of another

explanatory variable.

Interaction terms correspond to products of
dummy variables.



Analysis of Variance

And testing



Analysis of Variance

e Variation to explain: Total Sum of Squares

SSTO =) (Vi —Y)’
i=1
e Variation that is still unexplained: Error

Sum of Squares o
. SSE =Y (V; - Y;)?

=1
e Variation that is explained: Regression (or
Model) Sum of Squares

SSR=SSTO-SSE = Y (¥, - Y)?

1=1



ANOVA Summary Table

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model p-—1 SSR MSR = SSR/(p—1) F = f” Sk value
Error n-—p SSE MSE = SSE/(n — p)
Total n-—-1  SSTO

Hy:p1=02=...=0,-1=0



Proportion of variation in the
response variable that is explained
by the explanatory variables

~ SSR
~ SSTO




Hypothesis Testing

Overall F test for all the explanatory variables at
once,

t-tests for each regression coefficient: Controlling
for all the others, does that explanatory variable
matter?

Test a collection of explanatory variables
controlling for another collection,

Most general: Testing whether sets of linear
combinations of regression coefficients differ
from specified constants.



Controlling for mother’s education and
father’s education, are (any of) total family
income, assessed value of home and total
market value of all vehicles owned by the
family related to High School GPA?

EY|X =x| = [y + f1x1 + -+ + Bs525

Hy: 083 =04=05=0

(A false promise because of measurement error in education)



Full vs. Reduced Model

You have 2 sets of variables, A and B
Want to test B controlling for A

Fit a model with both A and B: Call it the Full
Model

Fit a model with just A: Call it the Reduced
Model

It’s a likelihood ratio test (exact)

2 2
R% > R



When you add r more explanatory
variables, R? can only go up

By how much? Basis of F test.

(SSRr — SSRR)/r
MSEr

F =

Denominator MSE = SSE/df for full model.

Anything that reduces MSE of full model
increases F

Same as testing H,: All betas in set B (there are r
of them) equal zero



General Hy: LB = h (L is rxp, row rank r)

(SSRr — SSRR)/r
MSEy

(LB - h)(L(X’X)"'L/) "' (L3 — h)

T‘MSEF

Distribution theory is well within reach.



Distribution theory for tests, confidence
intervals and prediction intervals

Remember
o If X ~ Ni(pt,3), then (X — )’ H(X — p) ~ x2(k)
e Zero covariance implies independence for the multivariate normal.

e For the regression model Y = X3 + €,

AN

B=XX)"'X'Y ~ N, (8,0*(X'X)" 1)
e=Y —

Y =Y — XB 1s multivariate normal.
SSE = €e.



It’s like the independence of X and S?

~1 ~1

~ ~1
Cle,B)=E(ef)—E(e)E(B) =E(eB) =0
S0 B AND e are independent.
So B AND SSE = €’e are independent.

Test statistic is

(LB —h) (LX'X)~'L) (L3 — h)

rMSE

Numerator and denominator are independent.




Independent chi-squares

7 LB—h)(LX'X) L) "' (LB—h)/r
MSFE

If Hy: LB = h is true, then L3 ~ N, (h, Lo?(X'X)"'L’), and

(LB — h) (Lo*(X'X)"'L/) "' (LB - h)
1

= (LB - h)(LX'X)"'L) (LB ~ h) ~ ().

So if SSE/o? ~ x*(n — p), we have a ratio of independent
chi-squares, each divided by its degrees of freedom.



SSE/c? is chi-squared
Y ~ N, (XB,0°L,), so

(Y - XB) (0°L,) " (Y — XB)
1

0'2

~ x°(n)

(Y = XB)'(Y — XB)

This is the sum of two independent random variables,
one of which is chi-squared.



Add and subtract Y

(Y~ XB) (Y~ XB)

%(Y—XB + XB-XB)(Y-XB + XB - XB)

Because 8 ~ N, (B,0%(X’X)™!), the second term is x*(p).



S

Have 5 (Y — XA8)(Y - X8) = Lele + (B - B) (LX'X) (B - B)

o)

° C = A + B
e A and B are independent.
o C~x*(n)

e B~ x*(p)
SSE

e So by a homework problem, A = 25~ ~ x> (n — p)

(LB — h)'(L(X'X)"'L)) "' (L3 — h)/r
- MSE ~
22 (LB — h)' (L(X'X)"'L') "' (L3 — h)/r
4 e'e/(n — p)




Notice the similarity: Hy : LO = h

—~ ~ —1 ~
W, = (L6, —h) (LVnL’) (L6, — h)

(LB — h)(L(X'X)~'L/)" (LB — h)/r
- MSE -
= (LB —h)/(Le*(X'X)"'L) "1 (LB — h)/r




Prediction interval

Given a sample of size n, have E and MSE
Have a vector of explanatory variables x,, 11
Define Y, 11 = X;H_l,@

Want an interval that will contain Y, 1 with
high probability, say 0.95.

Call it a 95% prediction interval.



/ AN
Y’fH-l o Xn—|—113

T =
VMSE(Q+ %, (X'X) Xp11)

~ t(n —p)

l—a = Pri—ty<T <typ}
Pr {i}n_|_1 — ta/g\/MSE(l + X;1+1(X,X)_1Xn+1)

<Y1 < ?nﬂ + ta/Q\/MSE(l + X;H—l(X/X)_an‘H)}

or

X,/,H_l T la/2 \/MSE(I + X;z—l—l(X/X)_an—H)



Back to full versus reduced model

R% > R%,

(SSRr — SSRR) /7
MSE

F =



F test is based not just on change in R?,
but upon

Ry — Ry
1 — R%

a —

Increase in explained variation expressed as a fraction
of the variation that the reduced model does not explain.



=) ()

* For any given sample size, the bigger a is, the
bigger F becomes.

* For any a #0, F increases as a function of n.

* So you can get a large F from strong results
and a small sample, or from weak results and

a large sample.



Can express a in terms of F

rk
n—p+rk

a —

e Often, scientific journals just report F, numerator df
= r, denominator df = (n-p), and a p-value.

* You can tell if it’s significant, but how strong are the
results? Now you can calculate it.

* This formula is less prone to rounding error than the
one in terms of R-squared values



When you add explanatory variables
to a model (with observational data)

Statistical significance can appear when it was
not present originally

Statistical significance that was originally
present can disappear

Even the signs of the b coefficients can

change, reversing the interpretation of how
their variables are related to the response
variable.

Technically, omitted variables cause
regression coefficients to be inconsistent.



A few More Points

Yi = 0o+ b1z + -+ Bp_1Tip—1 + €

* Are the x values really constants?
* Experimental versus observational data
* Omitted variables

* Measurement error in the explanatory
variables



Recall Double Expectation
E{Y} = E{E{Y|X}}

E{Y}is a constant. E{Y| X} is a random variable, a function of X.

BIE(Y|X}} = [ E{Y|X =2} f(x) ds



Beta-hat is (conditionally) unbiased
E{B|X =x} =7
Unbiased unconditionally, too

F{B} = E{E{B|X}} = F{B} =



Perhaps Clearer

B{E{BX})
[ [ BBIX = x) £(x) ax

[ [oro00s
3 [ [ seoin
3.-1=2

E{B}



Conditional size a test, Critical region A

Pr{Fec AX =x} =a

Pr{F € A} = /---/PT{FEA\X:X}f(X)dX

— /--o/af(x)dx
— a/---/f(x)dx



Why predict a response variable from
an explanatory variable?

* There may be a practical reason for prediction
(buy, make a claim, price of wheat).

* It may be “science.”



Young smokers who buy contraband cigarettes
tend to smoke more.

 What is explanatory variable, response
variable?



Correlation versus causation

Model is Y; =3, + Grxii+ ...+ Bp—1Tip—1 + €

It looks like Y is being produced by a
mathematical function of the explanatory
variables plus a piece of random noise.

And that’s the way people often interpret

their

Peop
healt

Midd

results.

e who exercise more tend to have better
.

e aged men who wear hats are more

likely to be bald.



Correlation is not the same as
causation




Confounding variable: A variable
that is associated with both the
explanatory variable and the
response variable, causing a

misleading relationship between
them.




Mozart Effect

e Babies who listen to classical music tend to do better
in school later on.

* Does this mean parents should play classical music
for their babies?

 Please comment. (What is one possible confounding
variable®?)



Parents’ education

* The question is DOES THIS MEAN. Answer the
guestion. Expressing an opinion, yes or no
gets a zero unless at least one potential
confounding variable is mentioned.

* It may be that it’ s helpful to play classical
music for babies. The point is that this study
does not provide good evidence.



Hypothetical study

Subjects are babies in an orphanage (maybe in Haiti) awaiting
adoption in Canada. All are assigned to adoptive parents, but
are waiting for the paperwork to clear.

They all wear headphones 5 hours a day. Randomly assigned
to classical, rock, hip-hop or nature sounds. Same volume.

Carefully keep experimental condition secret from everyone
Assess academic progress in JK, SJ, Grade 4.

Suppose the classical music babies do better in school later
on. What are some potential confounding variables?



Experimental vs. Observational studies

* Observational: Explanatory, response variable just
observed and recorded

* Experimental: Cases randomly assigned to values of
the explanatory variable

* Only a true experimental study can establish a causal
connection between explanatory variable and
response variable.

Maybe we should talk about observational vs experimental variables.
Watch it: Confounding variables can creep back in.




If you ignore measurement error in
the explanatory variables

e Disaster if the (true) variable for which you are trying
to control is correlated with the variable you're

trying to test.
— Inconsistent estimation
— Inflation of Type | error rate
 Worse when there’s a lot of error in the variable(s)
for which you are trying to control.

° Type | error rate can approach one as n increases.



Example

Even controlling for parents” education and
income, children from a particular racial group
tend to do worse than average in school.

Oh really? How did you control for education
and income?

| did a regression.
How did you deal with measurement error?

Huh?



Sometimes it’s not a problem

* Not as serious for experimental studies,
because random assignment erases
correlation between explanatory variables.

* For pure prediction (not for understanding)
standard tools are fine with observational

data.



More about measurement error

R. J. Carroll et al. (2006) Measurement Error
in Nonlinear Models

W. Fuller (1987) Measurement error models.

P. Gustafson (2004) Measurement error and
misclassification in statistics and epidemiology
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