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Background Reading: Davison’s Statistical models

@ Section 3.2 is on the normal model, including the
multivariate normal.

o Pages 62-68 are on the univariate normal, leading to the ¢
and F' distributions.

@ Section 3.2.3 is multivariate, starting with some basic
results that apply to all multivariate distributions.

o Mild notational differences, especially €2 instead of 3 for
the covariance matrix.



Overview

@ Definitions and Basic Results

© Multivariate Normal
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Definitions and Basic Results

Random Vectors and Matrices

A random matriz is just a matrix of random variables. Their
joint probability distribution is the distribution of the random
matrix. Random matrices with just one column (say, p x 1)
may be called random vectors.



Definitions and Basic Results

Expected Value

The expected value of a matrix is defined as the matrix of
expected values. Denoting the p x ¢ random matrix X by [X; ],

E(X) = [E(Xi;)].
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Immediately we have natural properties like
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Definitions and Basic Results

Moving a constant through the expected value sign

Let A = [a; ;] be an 7 x p matrix of constants, while X is still a
p X ¢ random matrix. Then

E(AX) = E(

Similar calculations yield E(AXB) = AE(X)B.



Variance-Covariance Matrices

Let X be a p x 1 random vector with F(X) = p. The
variance-covariance matriz of X (sometimes just called the
covariance matriz), denoted by V(X), is defined as

V(X) = E{(X - pu)(X - p)'}.



v = E{[X

X3 — 3

6%
(X3*u3

E{(X1—m)?

—p1) (X2 —p2)? (X2 — p2)(X3 — p3)
— ) (X3 —p3) (X2 —p2) (X3 —p3)?
} E{(X1 —p1)(X2 —p2)} E{(X1—p1)(X
b EBE{(X2 *H2)2} BE{(X2 *uz)(X
B{(X3 —p3)(X1 — )} B{(X3 —p3)(Xz2 —p2)}  E{(X3—p3)}

V(X1)
Cov(X1, X2)
Cov(X1, X3)

So, the covariance matrix V(X

= [ E{(X2*M2)(X1 p1)

:| —p1 Xo—p2 X3#3}}

(X1 —p)(X2 —p2) (X1 —p1)(X3 — p3)

V(Xa2) Cov(X2, X3)

Cov(X1,X2) Cov(X1,X3)
Cov(X2,X3) V(X3)

) is a p X p symmetric matrix with variances on the

main diagonal and covariances on the off-diagonals.
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Matrix of covariances between two random vectors

Let X be a p x 1 random vector with F(X) = p,, and let Y be
a ¢ x 1 random vector with E(Y) = p,. The p X ¢ matrix of
covariances between the elements of X and the elements of Y is

CX,Y) = BE{(X — p)(Y —p,)'}.
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Definitions and Basic Results

Adding a constant has no effect

On variances and covariances

o V(X +a)=V(X)
e C(X+a,Y+b)=CX)Y)

It’s clear from the definitions:
°o V(X)=E{(X—p)(X—pn)}
g C(XvY) =K {(X - H’m)(Y - “’y)/}

So sometimes it is useful to let a = —p, and b= —p,,.
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Definitior

Analogous to Var(a X) = a? Var(X)

Let X be a p x 1 random vector with E(X) = p and V(X) = X,
while A = [a; ;] is an 7 X p matrix of constants. Then

V(AX)

E{(AX — Ap)(AX — Ap)'}
E{AX - p)(AX - p))'}
E{AX - p)(X - p)A"}
AB{(X — p)(X — p) 1A
AV (X)A/

AZA



Normal

The Multivariate Normal Distribution

The p x 1 random vector X is said to have a multivariate normal
distribution, and we write X ~ N(u, X), if X has (joint) density

1 1 _
= 1 p €XP —sx—p)'= 1(X_N) )
|X[2(2m)>2 2

where p is p X 1 and X is p X p symmetric and positive definite.

f(x)



Multivariate Normal

3} positive definite

o Positive definite means that for any non-zero p x 1 vector
a, we have a’Ya > 0.

e Since the one-dimensional random variable Y = Y% 4, X;
may be written as Y = a’X and Var(Y) = V(a’X) = a'Xa,
it is natural to require that 3 be positive definite.

o All it means is that every non-zero linear combination of X
values has a positive variance.

e And recall ¥ positive definite is equivalent to X! positive
definite.



Multivariate Normal

Analogies

(Multivariate normal reduces to the univariate normal when p = 1)

@ Univariate Normal
o f(x) = dexp -4 O]
E(X) =puV(X) =0
° (X M) NX2(1)

@ Multivariate Normal
o f(x)= W exp [~ (x — ) =7 (x — p)]
o B(X) = b, V(X)
o (X—p)E I (X —p)~x2

I
M
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Multivariate Normal

More properties of the multivariate normal

e If ¢ is a vector of constants, X + ¢ ~ N(c + p, X)
e If A is a matrix of constants, AX ~ N(Au, AXA’)

e Linear combinations of multivariate normals are
multivariate normal.

o All the marginals (dimension less than p) of X are
(multivariate) normal, but it is possible in theory to have a
collection of univariate normals whose joint distribution is
not multivariate normal.

o For the multivariate normal, zero covariance implies
independence. The multivariate normal is the only
continuous distribution with this property.
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ate Normal

An easy example

If you do it the easy way

Let X = (X1, X2, X3)' be multivariate normal with

1 2 1
p=|0] andX=|1 4
6 00

N OO

Let Y1 = X7 + X2 and Y5 = X5 4+ X3. Find the joint
distribution of Y7 and Y5.
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Multivariate Normal

In matrix terms

Yi=X7+Xoand Y5 = Xo + Xgmeans Y = AX

Y = AX ~ N(Ap,ASA)



Multivariate Normal

could do it by hand, but

mu = cbind(c(1,0,6))

Sigma = rbind( c(2,1,0),
c(1,4,0),
c(0,0,2) )

A = rbind( c(1,1,0),

c(0,1,1) ); A
A %*% mu # E(Y)
[,1]

[1,] 1

[2,1] 6

> A Y% Sigma %x% t(A) # V(Y)

[,11 [,2]

[1,] 8 5

[2,] 5 6

vV + VvV + 4+ Vv V



Multivariate Normal

A couple of things to prove

o (X —p)E7H (X —p)~x*p)

e X and S? independent



Recall the square root matrix

Covariance matrix 3 is real and symmetric matrix, so we have
the spectral decomposition

Y = PAP
PA1/2A1/2P/
PA1/21A1/2P/
PA/2P' PA/2P/
»1/2 1/2

So X2 — PAL/2P/



Multivariate Normal

Square root of an inverse
Positive definite = Positive eigenvalues = Inverse exists

PA~2P . PATY2P = PA'P =271,
SO

(2—1)1/2 — PA_l/ZP,.

It’s easy to show
1
o (z7)7= (=)

o Justifying the notation »-1/2



Multivariate Normal

Now we can show (X — pu)'S "X — ) ~ x%(p)

Y=X-p ~ N
Z-=%"3Y ~ N
N

So Z is a vector of p independent standard normals, and

p
YIS =Z7Z=> 7} ~*(p) |
j=1



X and S? independent

Multivariate Normal




Multivariate Normal

Y = AX

In more detail

1 1 1 1 Y
e % Tn X1 X=X
1 1 1 1 B
N I

31
31
31
31
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Multivariate Normal

The argument

@ Y is multivariate normal.

Cov (X, (X; — X)) =0 (Exercise)

@ So X and Y, are independent.

e So X and S? = g(Y3) are independent. M



Multivariate Normal

Leads to the ¢ distribution

If
e Z ~ N(0,1) and
e Y ~ x?(v) and

e Z and Y are independent, then
Z

Y/v

T =

~ i(v)



Multivariate Normal

Random sample from a normal distribution

Let X1,..., X, " N(u,0?). Then
o VUX=W | N(0,1) and
° %wx (n—1) and

o These quantities are independent, so

roo X Wi
B3/ -1)

o2

V(X —w)
= ?Nt(n—l)




Multivariate Normal

Multivariate normal likelihood
For reference

n

) = Loy oo | ate /= )

(M)

= | en e - L {rE ) + k- W= k- W)},

ST_ 1y o\~ =)
where ¥ = = 37" | (x; — X)(x; — X)' is the sample
variance-covariance matrix.



Multivariate Normal

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The

IXTEX source code is available from the course website:
http://www.utstat.toronto.edu/~brunner/oldclass/appliedf12
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