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Background Reading

Davison Chapter 4, especially Sections 4.3 and 4.4
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Vector of MLEs is Asymptotically Normal
That is, Multivariate Normal

This yields

I Confidence intervals

I Z-tests of H0 : θj = θ0

I Wald tests

I Score Tests

I Indirectly, the Likelihood Ratio tests
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Under Regularity Conditions
(Thank you, Mr. Wald)

I θ̂n
a.s.→ θ

I
√
n(θ̂n − θ)

d→ T ∼ Nk

(
0,I(θ)−1

)
I So we say that θ̂n is asymptotically Nk

(
θ, 1nI(θ)−1

)
.

I I(θ) is the Fisher Information in one observation.

I A k × k matrix

I(θ) =

[
E[− ∂2

∂θi∂θj
log f(Y ;θ)]

]
I The Fisher Information in the whole sample is nI(θ)
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H0 : Lθ = h

Suppose θ = (θ1, . . . θ7), and the null hypothesis is

I θ1 = θ2

I θ6 = θ7

I 1
3 (θ1 + θ2 + θ3) = 1

3 (θ4 + θ5 + θ6)

We can write null hypothesis in matrix form as

 1 −1 0 0 0 0 0
0 0 0 0 0 1 −1
1 1 1 −1 −1 −1 0




θ1
θ2
θ3
θ4
θ5
θ6
θ7


=

 0
0
0


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Suppose H0 : Lθ = h is True, and Î(θ)n
p→ I(θ)

By Slutsky 6a (Continuous mapping),

√
n(Lθ̂n − Lθ) =

√
n(Lθ̂n − h)

d→ LT ∼ Nk

(
0,LI(θ)−1L′

)
and

Î(θ)
−1
n

p→ I(θ)−1.

Then by Slutsky’s (6c) Stack Theorem,( √
n(Lθ̂n − h)

Î(θ)
−1
n

)
d→
(

LT
I(θ)−1

)
.

Finally, by Slutsky 6a again,

Wn = n(Lθ̂ − h)′(LÎ(θ)
−1
n L′)−1(Lθ̂ − h)

d→ W = (LT− 0)′(LI(θ)−1L′)−1(LT− 0) ∼ χ2(r)
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The Wald Test Statistic
Wn = n(Lθ̂n − h)′(LÎ(θ)

−1

n L′)−1(Lθ̂n − h)

I Again, null hypothesis is H0 : Lθ = h

I Matrix L is r × k, r ≤ k, rank r

I All we need is a consistent estimator of I(θ)

I I(θ̂) would do

I But it’s inconvenient

I Need to compute partial derivatives and expected values in

I(θ) =

[
E[− ∂2

∂θi∂θj
log f(Y ;θ)]

]
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Observed Fisher Information

I To find θ̂n, minimize the minus log likelihood.

I Matrix of mixed partial derivatives of the minus log
likelihood is[

− ∂2

∂θi∂θj
`(θ,Y)

]
=

[
− ∂2

∂θi∂θj

n∑
i=1

log f(Yi;θ)

]

I So by the Strong Law of Large Numbers,

J n(θ) =

[
1

n

n∑
i=1

− ∂2

∂θi∂θj
log f(Yi;θ)

]
a.s.→

[
E

(
− ∂2

∂θi∂θj
log f(Y ;θ)

)]
= I(θ)
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A Consistent Estimator of I(θ)
Just substitute θ̂n for θ

J n(θ̂n) =

[
1

n

n∑
i=1

− ∂2

∂θi∂θj
log f(Yi;θ)

]
θ=θ̂n

a.s.→
[
E

(
− ∂2

∂θi∂θj
log f(Y ;θ)

)]
= I(θ)

I Convergence is believable but not trivial.

I Now we have a consistent estimator, more convenient than

I(θ̂n): Use Î(θ)n = J n(θ̂n)
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Approximate the Asymptotic Covariance Matrix

I Asymptotic covariance matrix of θ̂n is 1
nI(θ)−1.

I Approximate it with

V̂n =
1

n
J n(θ̂n)−1

=
1

n

(
1

n

[
− ∂2

∂θi∂θj
`(θ,Y)

]
θ=θ̂n

)−1

=

([
− ∂2

∂θi∂θj
`(θ,Y)

]
θ=θ̂n

)−1

10 / 20



Compare
Hessian and (Estimated) Asymptotic Covariance Matrix

I V̂n =

([
− ∂2

∂θi∂θj
`(θ,Y)

]
θ=θ̂n

)−1
I Hessian at MLE is H =

[
− ∂2

∂θi∂θj
`(θ,Y)

]
θ=θ̂n

I So to estimate the asymptotic covariance matrix of θ, just
invert the Hessian.

I The Hessian is usually available as a by-product of
numerical search for the MLE.
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Connection to Numerical Optimization

I Suppose we are minimizing the minus log likelihood by a
direct search.

I We have reached a point where the gradient is close to
zero. Is this point a minimum?

I The Hessian is a matrix of mixed partial derivatives. If all
its eigenvalues are positive at a point, the function is
concave up there.

I Its the multivariable second derivative test.

I The Hessian at the MLE is exactly the observed Fisher
information matrix.

I Partial derivatives are often approximated by the slopes of
secant lines – no need to calculate them.
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So to find the estimated asymptotic covariance matrix

I Minimize the minus log likelihood numerically.

I The Hessian at the place where the search stops is exactly
the observed Fisher information matrix.

I Invert it to get V̂n.

I This is so handy that sometimes we do it even when a
closed-form expression for the MLE is available.
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Estimated Asymptotic Covariance Matrix V̂n is Useful

I Asymptotic standard error of θ̂j is the square root of the
jth diagonal element.

I Denote the asymptotic standard error of θ̂j by S
θ̂j

.

I Thus

Zj =
θ̂j − θj
S
θ̂j

is approximately standard normal.
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Confidence Intervals and Z-tests

Have Zj =
θ̂j−θj
S
θ̂j

approximately standard normal, yielding

I Confidence intervals: θ̂j ± Sθ̂jzα/2
I Test H0 : θj = θ0 using

Z =
θ̂j − θ0
S
θ̂j
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And Wald Tests
Recalling V̂n = 1

n
J n(θ̂n)

−1

Wn = n(Lθ̂n − h)′(LÎ(θ)
−1
n L′)−1(Lθ̂n − h)

= n(Lθ̂n − h)′(LJ n(θ̂n)−1L′)−1(Lθ̂n − h)

= n(Lθ̂n − h)′
(
L(nV̂n)L′

)−1
(Lθ̂n − h)

= n(Lθ̂n − h)′
1

n

(
LV̂nL

′
)−1

(Lθ̂n − h)

= (Lθ̂n − h)′
(
LV̂nL

′
)−1

(Lθ̂n − h)
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Score Tests
Thank you Mr. Rao

I θ̂ is the MLE of θ, size k × 1

I θ̂0 is the MLE under H0, size k × 1

I u(θ) = ( ∂`
∂θ1

, . . . ∂`∂θk )′ is the gradient.

I u(θ̂) = 0

I If H0 is true, u(θ̂0) should also be close to zero.

I Under H0 for large N , u(θ̂0) ∼ Nk(0,J (θ)),
approximately.

I And,

S = u(θ̂0)
′J (θ̂0)

−1u(θ̂0) ∼ χ2(r)

Where r is the number of restrictions imposed by H0
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Three Big Tests

I Score Tests: Fit just the restricted model

I Wald Tests: Fit just the unrestricted model

I Likelihood Ratio Tests: Fit Both
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Comparing Likelihood Ratio and Wald

I Asymptotically equivalent under H0, meaning
(Wn −Gn)

p→ 0

I Under H1,
I Both have approximately the same distribution (non-central

chi-square)
I Both go to infinity as n→∞
I But values are not necessarily close

I Likelihood ratio test tends to get closer to the right Type I
error rate for small samples.

I Wald can be more convenient when testing lots of
hypotheses, because you only need to fit the model once.

I Wald can be more convenient if it’s a lot of work to write
the restricted likelihood.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The
LATEX source code is available from the course website:
http://www.utstat.toronto.edu/∼brunner/oldclass/appliedf12
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