Likelihood 2: Wald (and Score) Tests¹ STA442/2101 Fall 2012

¹See last slide for copyright information.

Background Reading

Davison Chapter 4, especially Sections 4.3 and 4.4

Vector of MLEs is Asymptotically Normal That is, Multivariate Normal

This yields

- ► Confidence intervals
- Z-tests of $H_0: \theta_j = \theta_0$
- ► Wald tests
- ► Score Tests
- ▶ Indirectly, the Likelihood Ratio tests

Under Regularity Conditions (Thank you, Mr. Wald)

• A $k \times k$ matrix

$$\boldsymbol{\mathcal{I}}(\boldsymbol{\theta}) = \left[E[-\frac{\partial^2}{\partial \theta_i \partial \theta_j} \log f(Y; \boldsymbol{\theta})] \right]$$

• The Fisher Information in the whole sample is $n\mathcal{I}(\boldsymbol{\theta})$

•

$H_0: \mathbf{L}\boldsymbol{\theta} = \mathbf{h}$

Suppose $\boldsymbol{\theta} = (\theta_1, \dots, \theta_7)$, and the null hypothesis is

$$\theta_1 = \theta_2 \theta_6 = \theta_7 \frac{1}{3} (\theta_1 + \theta_2 + \theta_3) = \frac{1}{3} (\theta_4 + \theta_5 + \theta_6)$$

We can write null hypothesis in matrix form as

Suppose $H_0: \mathbf{L}\boldsymbol{\theta} = \mathbf{h}$ is True, and $\widehat{\mathcal{I}}(\widehat{\boldsymbol{\theta}})_n \xrightarrow{p} \mathcal{I}(\boldsymbol{\theta})$ By Slutsky 6a (Continuous mapping),

$$\sqrt{n}(\mathbf{L}\widehat{\boldsymbol{\theta}}_n - \mathbf{L}\boldsymbol{\theta}) = \sqrt{n}(\mathbf{L}\widehat{\boldsymbol{\theta}}_n - \mathbf{h}) \stackrel{d}{\to} \mathbf{L}\mathbf{T} \sim N_k \left(\mathbf{0}, \mathbf{L}\boldsymbol{\mathcal{I}}(\boldsymbol{\theta})^{-1}\mathbf{L}'\right)$$

and

$$\widehat{\mathcal{I}(\boldsymbol{\theta})}_n^{-1} \stackrel{p}{\to} \mathcal{I}(\boldsymbol{\theta})^{-1}.$$

Then by Slutsky's (6c) Stack Theorem,

$$\left(\begin{array}{c}\sqrt{n}(\mathbf{L}\widehat{\boldsymbol{\theta}}_n - \mathbf{h})\\ \widehat{\boldsymbol{\mathcal{I}}(\boldsymbol{\theta})}_n^{-1}\end{array}\right) \stackrel{d}{\to} \left(\begin{array}{c}\mathbf{L}\mathbf{T}\\ \boldsymbol{\mathcal{I}}(\boldsymbol{\theta})^{-1}\end{array}\right).$$

Finally, by Slutsky 6a again,

$$W_n = n(\mathbf{L}\widehat{\boldsymbol{\theta}} - \mathbf{h})'(\mathbf{L}\widehat{\boldsymbol{\mathcal{I}}(\boldsymbol{\theta})}_n^{-1}\mathbf{L}')^{-1}(\mathbf{L}\widehat{\boldsymbol{\theta}} - \mathbf{h})$$

$$\stackrel{d}{\to} W = (\mathbf{L}\mathbf{T} - \mathbf{0})'(\mathbf{L}\boldsymbol{\mathcal{I}}(\boldsymbol{\theta})^{-1}\mathbf{L}')^{-1}(\mathbf{L}\mathbf{T} - \mathbf{0}) \sim \chi^2(r)$$

The Wald Test Statistic $W_n = n(\mathbf{L}\widehat{\theta}_n - \mathbf{h})'(\mathbf{L}\widehat{\mathcal{I}(\theta)}_n^{-1}\mathbf{L}')^{-1}(\mathbf{L}\widehat{\theta}_n - \mathbf{h})$

- Again, null hypothesis is $H_0: \mathbf{L}\boldsymbol{\theta} = \mathbf{h}$
- Matrix **L** is $r \times k$, $r \leq k$, rank r
- All we need is a consistent estimator of $\mathcal{I}(\boldsymbol{\theta})$
- $\mathcal{I}(\widehat{\theta})$ would do
- But it's inconvenient
- ▶ Need to compute partial derivatives and expected values in

$$\boldsymbol{\mathcal{I}}(\boldsymbol{\theta}) = \left[E[-\frac{\partial^2}{\partial \theta_i \partial \theta_j} \log f(Y; \boldsymbol{\theta})] \right]$$

Observed Fisher Information

- To find $\widehat{\theta}_n$, minimize the minus log likelihood.
- Matrix of mixed partial derivatives of the minus log likelihood is

$$\left[-\frac{\partial^2}{\partial\theta_i\partial\theta_j}\ell(\boldsymbol{\theta},\mathbf{Y})\right] = \left[-\frac{\partial^2}{\partial\theta_i\partial\theta_j}\sum_{i=1}^n\log f(Y_i;\boldsymbol{\theta})\right]$$

▶ So by the Strong Law of Large Numbers,

$$\mathcal{J}_{n}(\boldsymbol{\theta}) = \left[\frac{1}{n}\sum_{i=1}^{n} -\frac{\partial^{2}}{\partial\theta_{i}\partial\theta_{j}}\log f(Y_{i};\boldsymbol{\theta})\right]$$

$$\stackrel{a.s.}{\rightarrow} \left[E\left(-\frac{\partial^{2}}{\partial\theta_{i}\partial\theta_{j}}\log f(Y;\boldsymbol{\theta})\right)\right] = \mathcal{I}(\boldsymbol{\theta})$$

A Consistent Estimator of $\mathcal{I}(\boldsymbol{\theta})$ Just substitute $\hat{\boldsymbol{\theta}}_n$ for $\boldsymbol{\theta}$

$$\mathcal{J}_{n}(\widehat{\boldsymbol{\theta}}_{n}) = \left[\frac{1}{n}\sum_{i=1}^{n} -\frac{\partial^{2}}{\partial\theta_{i}\partial\theta_{j}}\log f(Y_{i};\boldsymbol{\theta})\right]_{\boldsymbol{\theta}=\widehat{\boldsymbol{\theta}}_{n}}$$

$$\stackrel{a.s.}{\rightarrow} \left[E\left(-\frac{\partial^{2}}{\partial\theta_{i}\partial\theta_{j}}\log f(Y;\boldsymbol{\theta})\right)\right] = \mathcal{I}(\boldsymbol{\theta})$$

- Convergence is believable but not trivial.
- ▶ Now we have a consistent estimator, more convenient than $\mathcal{I}(\widehat{\theta}_n)$: Use $\widehat{\mathcal{I}(\theta)}_n = \mathcal{J}_n(\widehat{\theta}_n)$

Approximate the Asymptotic Covariance Matrix

• Asymptotic covariance matrix of $\hat{\theta}_n$ is $\frac{1}{n}\mathcal{I}(\theta)^{-1}$.

► Approximate it with

$$\begin{aligned} \widehat{\mathbf{V}}_n &= \frac{1}{n} \mathcal{J}_n(\widehat{\boldsymbol{\theta}}_n)^{-1} \\ &= \frac{1}{n} \left(\frac{1}{n} \left[-\frac{\partial^2}{\partial \theta_i \partial \theta_j} \ell(\boldsymbol{\theta}, \mathbf{Y}) \right]_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}_n} \right)^{-1} \\ &= \left(\left[-\frac{\partial^2}{\partial \theta_i \partial \theta_j} \ell(\boldsymbol{\theta}, \mathbf{Y}) \right]_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}_n} \right)^{-1} \end{aligned}$$

Compare

Hessian and (Estimated) Asymptotic Covariance Matrix

•
$$\widehat{\mathbf{V}}_n = \left(\left[-\frac{\partial^2}{\partial \theta_i \partial \theta_j} \ell(\boldsymbol{\theta}, \mathbf{Y}) \right]_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}_n} \right)^{-1}$$

• Hessian at MLE is $\mathbf{H} = \left[-\frac{\partial^2}{\partial \theta_i \partial \theta_j} \ell(\boldsymbol{\theta}, \mathbf{Y}) \right]_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}_n}$

- ▶ So to estimate the asymptotic covariance matrix of θ , just invert the Hessian.
- ▶ The Hessian is usually available as a by-product of numerical search for the MLE.

Connection to Numerical Optimization

- Suppose we are minimizing the minus log likelihood by a direct search.
- ▶ We have reached a point where the gradient is close to zero. Is this point a minimum?
- ▶ The Hessian is a matrix of mixed partial derivatives. If all its eigenvalues are positive at a point, the function is concave up there.
- ▶ Its *the* multivariable second derivative test.
- ► The Hessian at the MLE is exactly the observed Fisher information matrix.
- Partial derivatives are often approximated by the slopes of secant lines – no need to calculate them.

So to find the estimated asymptotic covariance matrix

- ▶ Minimize the minus log likelihood numerically.
- ▶ The Hessian at the place where the search stops is exactly the observed Fisher information matrix.
- Invert it to get $\widehat{\mathbf{V}}_n$.
- ▶ This is so handy that sometimes we do it even when a closed-form expression for the MLE is available.

Estimated Asymptotic Covariance Matrix $\widehat{\mathbf{V}}_n$ is Useful

- Asymptotic standard error of $\hat{\theta}_j$ is the square root of the *j*th diagonal element.
- ▶ Denote the asymptotic standard error of $\hat{\theta}_j$ by $S_{\hat{\theta}_j}$.
- ► Thus

$$Z_j = rac{\widehat{ heta}_j - heta_j}{S_{\widehat{ heta}_j}}$$

is approximately standard normal.

Confidence Intervals and Z-tests

Have $Z_j = \frac{\hat{\theta}_j - \theta_j}{S_{\hat{\theta}_j}}$ approximately standard normal, yielding

- Confidence intervals: $\hat{\theta}_j \pm S_{\hat{\theta}_j} z_{\alpha/2}$
- Test $H_0: \theta_j = \theta_0$ using

$$Z = \frac{\widehat{\theta}_j - \theta_0}{S_{\widehat{\theta}_j}}$$

And Wald Tests Recalling $\widehat{\mathbf{V}}_n = \frac{1}{n} \mathcal{J}_n(\widehat{\boldsymbol{\theta}}_n)^{-1}$

$$W_{n} = n(\mathbf{L}\widehat{\boldsymbol{\theta}}_{n} - \mathbf{h})'(\mathbf{L}\widehat{\mathcal{I}(\boldsymbol{\theta})}_{n}^{-1}\mathbf{L}')^{-1}(\mathbf{L}\widehat{\boldsymbol{\theta}}_{n} - \mathbf{h})$$

$$= n(\mathbf{L}\widehat{\boldsymbol{\theta}}_{n} - \mathbf{h})'(\mathbf{L}\mathcal{J}_{n}(\widehat{\boldsymbol{\theta}}_{n})^{-1}\mathbf{L}')^{-1}(\mathbf{L}\widehat{\boldsymbol{\theta}}_{n} - \mathbf{h})$$

$$= n(\mathbf{L}\widehat{\boldsymbol{\theta}}_{n} - \mathbf{h})'\left(\mathbf{L}(n\widehat{\mathbf{V}}_{n})\mathbf{L}'\right)^{-1}(\mathbf{L}\widehat{\boldsymbol{\theta}}_{n} - \mathbf{h})$$

$$= n(\mathbf{L}\widehat{\boldsymbol{\theta}}_{n} - \mathbf{h})'\frac{1}{n}\left(\mathbf{L}\widehat{\mathbf{V}}_{n}\mathbf{L}'\right)^{-1}(\mathbf{L}\widehat{\boldsymbol{\theta}}_{n} - \mathbf{h})$$

$$= (\mathbf{L}\widehat{\boldsymbol{\theta}}_{n} - \mathbf{h})'\left(\mathbf{L}\widehat{\mathbf{V}}_{n}\mathbf{L}'\right)^{-1}(\mathbf{L}\widehat{\boldsymbol{\theta}}_{n} - \mathbf{h})$$

Score Tests Thank you Mr. Rao

- $\widehat{\boldsymbol{\theta}}$ is the MLE of $\boldsymbol{\theta}$, size $k \times 1$
- $\widehat{\theta}_0$ is the MLE under H_0 , size $k \times 1$
- **u**(**θ**) = (^{∂ℓ}/_{∂θ₁},..., ^{∂ℓ}/_{∂θk})' is the gradient.
 u(**θ**) = 0
- $\mathbf{u}(\mathbf{0}) = 0$ • If \mathbf{U} is true $\mathbf{u}(\hat{\mathbf{0}})$ show
- ▶ If H_0 is true, $\mathbf{u}(\widehat{\boldsymbol{\theta}}_0)$ should also be close to zero.
- ► Under H_0 for large N, $\mathbf{u}(\widehat{\boldsymbol{\theta}}_0) \sim N_k(\mathbf{0}, \mathcal{J}(\boldsymbol{\theta}))$, approximately.
- ► And,

$$S = \mathbf{u}(\widehat{\boldsymbol{\theta}}_0)' \mathcal{J}(\widehat{\boldsymbol{\theta}}_0)^{-1} \mathbf{u}(\widehat{\boldsymbol{\theta}}_0) \sim \chi^2(r)$$

Where r is the number of restrictions imposed by H_0

Three Big Tests

- ▶ Score Tests: Fit just the restricted model
- ▶ Wald Tests: Fit just the unrestricted model
- Likelihood Ratio Tests: Fit Both

Comparing Likelihood Ratio and Wald

- ► Asymptotically equivalent under H_0 , meaning $(W_n G_n) \xrightarrow{p} 0$
- Under H_1 ,
 - ▶ Both have approximately the same distribution (non-central chi-square)
 - Both go to infinity as $n \to \infty$
 - ▶ But values are not necessarily close
- ▶ Likelihood ratio test tends to get closer to the right Type I error rate for small samples.
- Wald can be more convenient when testing lots of hypotheses, because you only need to fit the model once.
- ▶ Wald can be more convenient if it's a lot of work to write the restricted likelihood.

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The IAT_EX source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/appliedf12