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Background Reading: Davison’s Statistical models

For completeness, look at Section 2.1, which presents some
basic applied statistics in an advanced way.

Especially see Section 2.2 (Pages 28-37) on convergence.

Section 3.3 (Pages 77-90) goes more deeply into simulation
than we will. At least skim it.
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Sample Space Ω, ω ∈ Ω

Observe whether a single individual is male or female:
Ω = {F,M}
Pair of individuals; observe their genders in order:
Ω = {(F, F ), (F,M), (M,F ), (M,M)}
Select n people and count the number of females:
Ω = {0, . . . , n}

For limits problems, the points in Ω are infinite sequences.
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Random variables are functions from Ω into the set of
real numbers

Pr{X ∈ B} = Pr({ω ∈ Ω : X(ω) ∈ B})
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Random Sample X1(ω), . . . , Xn(ω)

T = T (X1, . . . , Xn)

T = Tn(ω)

Let n→∞ to see what happens for large samples
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Modes of Convergence

Almost Sure Convergence

Convergence in Probability

Convergence in Distribution
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Almost Sure Convergence

We say that Tn converges almost surely to T , and write Tn
a.s.→ T

if

Pr{ω : lim
n→∞

Tn(ω) = T (ω)} = 1.

Acts like an ordinary limit, except possibly on a set of
probability zero.

All the usual rules apply.

Called convergence with probability one or sometimes
strong convergence.
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Strong Law of Large Numbers

Let X1, . . . , Xn be independent with common expected value µ.

Xn
a.s.→ E(Xi) = µ

The only condition required for this to hold is the existence of
the expected value.
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Probability is long run relative frequency

Statistical experiment: Probability of “success” is θ

Carry out the experiment many times independently.

Code the results Xi = 1 if success, Xi = 0 for failure,
i = 1, 2, . . .
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Sample proportion of successes converges to the
probability of success
Recall Xi = 0 or 1.

E(Xi) =
1∑

x=0

xPr{Xi = x}

= 0 · (1− θ) + 1 · θ
= θ

Relative frequency is

1

n

n∑
i=1

Xi = Xn
a.s.→ θ
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Simulation

Estimate almost any probability that’s hard to figure out

Power

Weather model

Performance of statistical methods

Confidence intervals for the estimate
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A hard elementary problem

Roll a fair die 13 times and observe the number each time.

What is the probability that the sum of the 13 numbers is
divisible by 3?

13 / 56



Foundations LLN Consistency CLT Convergence of random vectors Delta Method

Simulate from a multinomial

> # Roll the die 13 times, count number of 1s, 2s etc.

> result = rmultinom(1,13,die); result

[,1]

[1,] 5

[2,] 1

[3,] 1

[4,] 4

[5,] 0

[6,] 2

> cbind(result,1:6,result*(1:6))

[,1] [,2] [,3]

[1,] 5 1 5

[2,] 1 2 2

[3,] 1 3 3

[4,] 4 4 16

[5,] 0 5 0

[6,] 2 6 12

> # Sum of the 13 rolls

> sum(result*(1:6))

[1] 38
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Check if the sum is divisible by 3

> tot = sum(rmultinom(1,13,die)*(1:6))

> tot

[1] 42

> tot/3 == floor(tot/3)

[1] TRUE

> 42/3

[1] 14
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Estimated Probability

> nsim = 1000 # nsim is the Monte Carlo sample size

> set.seed(9999) # So I can reproduce the numbers if desired.

> kount = numeric(nsim)

> for(i in 1:nsim)

+ {

+ tot = sum(rmultinom(1,13,die)*(1:6))

+ kount[i] = (tot/3 == floor(tot/3))

+ # Logical will be converted to numeric

+ }

> kount[1:20]

[1] 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

> xbar = mean(kount); xbar

[1] 0.329

16 / 56



Foundations LLN Consistency CLT Convergence of random vectors Delta Method

Confidence Interval
X ± zα/2

√
X(1−X)

n

> z = qnorm(0.995); z

[1] 2.575829

> pnorm(z)-pnorm(-z) # Just to check

[1] 0.99

> margerror99 = sqrt(xbar*(1-xbar)/nsim)*z; margerror99

[1] 0.03827157

> cat("Estimated probability is ",xbar," with 99% margin of error ",

+ margerror99,"\n")

Estimated probability is 0.329 with 99% margin of error 0.03827157

> cat("99% Confidence interval from ",xbar-margerror99," to ",

+ xbar+margerror99,"\n")

99% Confidence interval from 0.2907284 to 0.3672716
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Recall the Change of Variables formula: Let Y = g(X)

E(Y ) =

∫ ∞
−∞

y f
Y

(y) dy =

∫ ∞
−∞

g(x) f
X

(x) dx

Or, for discrete random variables

E(Y ) =
∑
y

y p
Y

(y) =
∑
x

g(x) p
X

(x)

This is actually a big theorem, not a definition.
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Applying the change of variables formula
To approximate E[g(X)]

1

n

n∑
i=1

g(Xi) =
1

n

n∑
i=1

Yi
a.s.→ E(Y )

= E(g(X))
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So for example

1

n

n∑
i=1

Xk
i

a.s.→ E(Xk)

1

n

n∑
i=1

U 2
i ViW

3
i

a.s.→ E(U 2VW 3)

That is, sample moments converge almost surely to population
moments.

20 / 56



Foundations LLN Consistency CLT Convergence of random vectors Delta Method

Approximate an integral:
∫∞
−∞ h(x) dx

Where h(x) is a nasty function.

Let f(x) be a density with f(x) > 0 wherever h(x) 6= 0.

∫ ∞
−∞

h(x) dx =

∫ ∞
−∞

h(x)

f(x)
f(x) dx

= E

[
h(X)

f(X)

]
= E[g(X)],

So

Sample X1, . . . , Xn from the distribution with density f(x)

Calculate Yi = g(Xi) = h(Xi)
f(Xi)

for i = 1, . . . , n

Calculate Y n
a.s.→ E[Y ] = E[g(X)]
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Convergence in Probability

We say that Tn converges in probability to T , and write Tn
P→ T

if for all ε > 0,

lim
n→∞

P{|Tn − T | < ε} = 1

Convergence in probability (say to a constant θ) means no
matter how small the interval around θ, for large enough n
(that is, for all n > N1) the probability of getting that close to
θ is as close to one as you like.
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Weak Law of Large Numbers

Xn
p→ µ

Almost Sure Convergence implies Convergence in
Probability

Strong Law of Large Numbers implies Weak Law of Large
Numbers
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Consistency
T = T (X1, . . . , Xn) is a statistic estimating a parameter θ

The statistic Tn is said to be consistent for θ if Tn
P→ θ.

lim
n→∞

P{|Tn − θ| < ε} = 1

The statistic Tn is said to be strongly consistent for θ if Tn
a.s.→ θ.

Strong consistency implies ordinary consistency.
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Consistency is great but it’s not enough.

It means that as the sample size becomes indefinitely large,
you probably get as close as you like to the truth.

It’s the least we can ask. Estimators that are not
consistent are completely unacceptable for most purposes.

Tn
a.s.→ θ ⇒ Un = Tn +

100, 000, 000

n

a.s.→ θ
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Consistency of the Sample Variance

σ̂2n =
1

n

n∑
i=1

(Xi −X)2

=
1

n

n∑
i=1

X2
i −X

2

By SLLN, Xn
a.s.→ µ and 1

n

∑n
i=1X

2
i
a.s.→ E(X2) = σ2 + µ2.

Because the function g(x, y) = x− y2 is continuous,

σ̂2n = g

(
1

n

n∑
i=1

X2
i , Xn

)
a.s.→ g(σ2 + µ2, µ) = σ2 + µ2 − µ2 = σ2
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Convergence in Distribution
Sometimes called Weak Convergence, or Convergence in Law

Denote the cumulative distribution functions of T1, T2, . . . by
F1(t), F2(t), . . . respectively, and denote the cumulative
distribution function of T by F (t).

We say that Tn converges in distribution to T , and write

Tn
d→ T if for every point t at which F is continuous,

lim
n→∞

Fn(t) = F (t)
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Univariate Central Limit Theorem

Let X1, . . . , Xn be a random sample from a distribution with
expected value µ and variance σ2. Then

Zn =

√
n(Xn − µ)

σ

d→ Z ∼ N(0, 1)
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Connections among the Modes of Convergence

Tn
a.s.→ T ⇒ Tn

p→ T ⇒ Tn
d→ T .

If a is a constant, Tn
d→ a⇒ Tn

p→ a.
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Sometimes we say the distribution of the sample mean
is approximately normal, or asymptotically normal.

This is justified by the Central Limit Theorem.

But it does not mean that Xn converges in distribution to
a normal random variable.

The Law of Large Numbers says that Xn converges in
distribution to a constant, µ.

So Xn converges to µ in distribution as well.
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Why would we say that for large n, the sample mean is
approximately N(µ, σ

2

n )?

Have Zn =
√
n(Xn−µ)

σ
d→ Z ∼ N(0, 1).

Pr{Xn ≤ x} = Pr

{√
n(Xn − µ)

σ
≤
√
n(x− µ)

σ

}
= Pr

{
Zn ≤

√
n(x− µ)

σ

}
≈ Φ

(√
n(x− µ)

σ

)

Suppose Y is exactly N(µ, σ
2

n ):

Pr{Y ≤ x} = Pr

{√
n(Y − µ)

σ
≤
√
n(x− µ)

σ

}
= Pr

{
Zn ≤

√
n(x− µ)

σ

}
= Φ

(√
n(x− µ)

σ

)
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Convergence of random vectors I

1 Definitions (All quantities in boldface are vectors in Rm unless

otherwise stated )

? Tn
a.s.→ T means P{ω : limn→∞Tn(ω) = T(ω)} = 1.

? Tn
P→ T means ∀ε > 0, limn→∞ P{||Tn −T|| < ε} = 1.

? Tn
d→ T means for every continuity point t of FT,

limn→∞ FTn
(t) = FT(t).

2 Tn
a.s.→ T⇒ Tn

P→ T⇒ Tn
d→ T.

3 If a is a vector of constants, Tn
d→ a⇒ Tn

P→ a.

4 Strong Law of Large Numbers (SLLN): Let X1, . . .Xn be independent
and identically distributed random vectors with finite first moment,
and let X be a general random vector from the same distribution.
Then Xn

a.s.→ E(X).

5 Central Limit Theorem: Let X1, . . . ,Xn be i.i.d. random vectors with
expected value vector µ and covariance matrix Σ. Then

√
n(Xn − µ)

converges in distribution to a multivariate normal with mean 0 and
covariance matrix Σ.
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Convergence of random vectors II

6 Slutsky Theorems for Convergence in Distribution:

1 If Tn ∈ Rm, Tn
d→ T and if f : Rm → Rq (where q ≤ m) is

continuous except possibly on a set C with P (T ∈ C) = 0,

then f(Tn)
d→ f(T).

2 If Tn
d→ T and (Tn −Yn)

P→ 0, then Yn
d→ T.

3 If Tn ∈ Rd, Yn ∈ Rk, Tn
d→ T and Yn

P→ c, then(
Tn

Yn

)
d→
(

T
c

)

33 / 56



Foundations LLN Consistency CLT Convergence of random vectors Delta Method

Convergence of random vectors III

7 Slutsky Theorems for Convergence in Probability:

1 If Tn ∈ Rm, Tn
P→ T and if f : Rm → Rq (where q ≤ m) is

continuous except possibly on a set C with P (T ∈ C) = 0,

then f(Tn)
P→ f(T).

2 If Tn
P→ T and (Tn −Yn)

P→ 0, then Yn
P→ T.

3 If Tn ∈ Rd, Yn ∈ Rk, Tn
P→ T and Yn

P→ Y, then(
Tn

Yn

)
P→
(

T
Y

)
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Convergence of random vectors IV

8 Delta Method (Theorem of Cramér, Ferguson p. 45): Let g : Rd → Rk

be such that the elements of ġ(x) =
[
∂gi
∂xj

]
k×d

are continuous in a

neighborhood of θ ∈ Rd. If Tn is a sequence of d-dimensional random

vectors such that
√
n(Tn − θ)

d→ T, then
√
n(g(Tn)− g(θ))

d→ ġ(θ)T.

In particular, if
√
n(Tn − θ)

d→ T ∼ N(0,Σ), then
√
n(g(Tn)− g(θ))

d→ Y ∼ N(0, ġ(θ)Σġ(θ)′).
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An application of the Slutsky Theorems

Let X1, . . . , Xn
i.i.d.∼ ?(µ, σ2)

By CLT, Yn =
√
n(Xn − µ)

d→ Y ∼ N(0, σ2)

Let σ̂n be any consistent estimator of σ.

Then by 6.3, Tn =

(
Yn
σ̂n

)
d→
(
Y
σ

)
= T

The function f(x, y) = x/y is continuous except if y = 0
so by 6.1,

f(Tn) =

√
n(Xn − µ)

σ̂n

d→ f(T) =
Y

σ
∼ N(0, 1)
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Univariate delta method

In the multivariate Delta Method 8, the matrix ġ(θ) is a
Jacobian. The univariate version of the delta method says

√
n (g(Tn)− g(θ))

d→ g′(θ)T.

If T ∼ N(0, σ2), it says

√
n (g(Tn)− g(θ))

d→ Y ∼ N
(
0, g′(θ)2 σ2

)
.
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A variance-stabilizing transformation
An application of the delta method

Because the Poisson process is such a good model, count
data often have approximate Poisson distributions.

Let X1, . . . , Xn
i.i.d∼ Poisson(λ)

E(Xi) = V ar(Xi) = λ

Zn =
√
n(Xn−λ)√

Xn

d→ Z ∼ N(0, 1)

An approximate large-sample confidence interval for λ is

Xn ± zα/2

√
Xn

n

Can we do better?
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Variance-stabilizing transformation continued

CLT says
√
n(Xn − λ)

d→ T ∼ N(0, λ).

Delta method says
√
n
(
g(Xn)− g(λ)

) d→ g′(λ)T = Y ∼ N
(
0, g′(λ)2 λ

)

If g′(λ) = 1√
λ

, then Y ∼ N(0, 1).
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An elementary differential equation: g′(x) = 1√
x

Solve by separation of variables

dg

dx
= x−1/2

⇒ dg = x−1/2 dx

⇒
∫
dg =

∫
x−1/2 dx

⇒ g(x) =
x1/2

1/2
+ c = 2x1/2 + c
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We have found

√
n
(
g(Xn)− g(λ)

)
=
√
n
(

2X
1/2
n − 2λ1/2

)
d→ Z ∼ N(0, 1)

So,

We could say that
√
Xn is asymptotically normal, with

(asymptotic) mean
√
λ and (asymptotic) variance 1

4n .

This calculation could justify a square root transformation
for count data.

How about a better confidence interval for λ?
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Seeking a better confidence interval for λ

1− α = Pr{−zα/2 < Z < zα/2}

≈ Pr{−zα/2 < 2
√
n
(
X

1/2
n − λ1/2

)
< zα/2}

= Pr

{√
Xn −

zα/2

2
√
n
<
√
λ <

√
Xn +

zα/2

2
√
n

}
= Pr

{(√
Xn −

zα/2

2
√
n

)2

< λ <

(√
Xn +

zα/2

2
√
n

)2
}
,

where the last equality is valid provided
√
Xn −

zα/2
2
√
n
≥ 0.
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Compare the confidence intervals

Variance-stabilized CI is((√
Xn −

zα/2

2
√
n

)2

,

(√
Xn +

zα/2

2
√
n

)2
)

=

(
Xn − 2

√
Xn

zα/2

2
√
n

+
z2α/2

4n
, Xn + 2

√
Xn

zα/2

2
√
n

+
z2α/2

4n

)

=

Xn − zα/2

√
Xn

n
+
z2α/2

4n
, Xn + zα/2

√
Xn

n
+
z2α/2

4n


Compare to the ordinary (Wald) CIXn − zα/2

√
Xn

n
, Xn + zα/2

√
Xn

n


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Variance-stabilized CI is just like the ordinary CI

Except shifted to the right by
z2
α/2

4n .

If there is a difference in performance, we will see it for
small n.

Try some simulations.

Is the coverage probability closer?
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Try n = 10, True λ = 1
Illustrate the code first

> # Variance stabilized Poisson CI

> n = 10; lambda=1; m=10; alpha = 0.05; set.seed(9999)

> z = qnorm(1-alpha/2)

> cover1 = cover2 = NULL

> for(sim in 1:m)

+ {

+ x = rpois(n,lambda); xbar = mean(x); xbar

+ a1 = xbar - z*sqrt(xbar/n); b1 = xbar + z*sqrt(xbar/n)

+ shift = z^2/(4*n)

+ a2 = a1+shift; b2 = b1+shift

+ cover1 = c(cover1,(a1 < lambda && lambda < b1))

+ cover2 = c(cover2,(a2 < lambda && lambda < b2))

+ } # Next sim

> rbind(cover1,cover2)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

cover1 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE

cover2 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE

> mean(cover1)

[1] 0.9
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Code for Monte Carlo sample size = 10,000 simulations

# Now the real simulation

n = 10; lambda=1; m=10000; alpha = 0.05; set.seed(9999)

z = qnorm(1-alpha/2)

cover1 = cover2 = NULL

for(sim in 1:m)

{

x = rpois(n,lambda); xbar = mean(x); xbar

a1 = xbar - z*sqrt(xbar/n); b1 = xbar + z*sqrt(xbar/n)

shift = z^2/(4*n)

a2 = a1+shift; b2 = b1+shift

cover1 = c(cover1,(a1 < lambda && lambda < b1))

cover2 = c(cover2,(a2 < lambda && lambda < b2))

} # Next sim

p1 = mean(cover1); p2 = mean(cover2)

# 99 percent margins of error

me1 = qnorm(0.995)*sqrt(p1*(1-p1)/m); me1 = round(me1,3)

me2 = qnorm(0.995)*sqrt(p1*(1-p1)/m); me2 = round(me2,3)

cat("Coverage of ordinary CI = ",p1,"plus or minus ",me1,"\n")

cat("Coverage of variance-stabilized CI = ",p2,

"plus or minus ",me2,"\n") 46 / 56
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Results for n = 10, λ = 1 and 10,000 simulations

Coverage of ordinary CI = 0.9292 plus or minus 0.007

Coverage of variance-stabilized CI = 0.9556 plus or minus 0.007

> p2-me2

[1] 0.9486
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Results for n = 100
λ = 1 and 10,000 simulations

Coverage of ordinary CI = 0.9448 plus or minus 0.006

Coverage of variance-stabilized CI = 0.9473 plus or minus 0.006

> p1+me1

[1] 0.9508
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The arcsin-square root transformation
For proportions

Sometimes, variable values consist of proportions, one for each
case.

For example, cases could be hospitals.

The variable of interest is the proportion of patients who
came down with something unrelated to their reason for
admission – hospital-acquired infection.

This is an example of aggregated data.
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The advice you often get

When a proportion is the response variable in a regression, use
the arcsin square root transformation.

That is, if the proportions are P1, . . . , Pn, let

Yi = sin−1(
√
Pi)

and use the Yi values in your regression.

Why?
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It’s a variance-stabilizing transformation.

The proportions are little sample means: Pi = 1
m

∑m
j=1Xi,j

Drop the i for now.

X1, . . . , Xm may not be independent, but let’s pretend.

P = Xm

Approximately, Xm ∼ N
(
θ, θ(1−θ)m

)
Normality is good.

Variance that depends on the mean θ is not so good.
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Apply the delta method

Central Limit Theorem says

√
m(Xm − θ)

d→ T ∼ N (0, θ(1− θ))

Delta method says

√
m
(
g(Xm)− g(θ)

) d→ Y ∼ N
(
0, g′(θ)2 θ(1− θ)

)
.

Want a function g(x) with

g′(x) =
1√

x(1− x)

Try g(x) = sin−1 (
√
x).

52 / 56



Foundations LLN Consistency CLT Convergence of random vectors Delta Method

Chain rule to get d
dx sin−1 (

√
x)

“Recall” that d
dx sin−1(x) = 1√

1−x2 . Then,

d

dx
sin−1

(√
x
)

=
1√

1−
√
x
2
· 1

2
x−1/2

=
1

2
√
x(1− x)

.

Conclusion:

√
m

(
sin−1

(√
Xm

)
− sin−1

(√
θ
))

d→ Y ∼ N
(

0,
1

4

)
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So the arcsin-square root transformation stabilizes the
variance

The variance no longer depends on the probability that the
proportion is estimating.

Does not quite standardize the proportion, but that’s okay
for regression.

Potentially useful for non-aggregated data too.

If we want to do a regression on aggregated data, the point
we have reached is that approximately,

Yi ∼ N

(
sin−1

(√
θi

)
,

1

4mi

)
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That was fun, but it was all univariate.

Because

The multivariate CLT establishes convergence to a
multivariate normal, and

Vectors of MLEs are approximately multivariate normal for
large samples, and

The multivariate delta method can yield the asymptotic
distribution of useful functions of the MLE vector,

We need to look at random vectors and the multivariate normal
distribution.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The
LATEX source code is available from the course website:
http://www.utstat.toronto.edu/∼brunner/oldclass/appliedf12

56 / 56

http://www.utstat.toronto.edu/~brunner
http://creativecommons.org/licenses/by-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-sa/3.0/deed.en_US
http://www.utstat.toronto.edu/~brunner/oldclass/appliedf12

	Foundations
	LLN
	Consistency
	CLT
	Convergence of random vectors
	Delta Method

