Wald-Like Tests

- Distribution free
- Basic idea is like a large-sample Z-test
- Example: X_1 , ..., X_n a random sample from a distribution with mean μ and variance σ^2
- $H_0: \mu = \mu_0$

$$Z_n = \frac{\sqrt{n}(\overline{X}_n - \mu_0)}{\widehat{\sigma}_n}$$

• W = Z² is Chisquare(1)

• Suppose

$$\mathbf{Y}_n = \sqrt{n} (\mathbf{T}_n - \boldsymbol{\theta}) \stackrel{d}{\to} \mathbf{Y} \sim N_k(\mathbf{0}, \boldsymbol{\Sigma})$$

- And *H*₀: *C***9** = *h* is true.
- Then asymptotically (approximately, for large n) $\sqrt{n}(\mathbf{CT}_n - \mathbf{h}) \sim N_r(\mathbf{0}, \mathbf{C\SigmaC'})$

and

$$W = \sqrt{n} (\mathbf{CT}_n - \mathbf{h})' \left(\mathbf{C}\widehat{\boldsymbol{\Sigma}}_n \mathbf{C}'\right)^{-1} \sqrt{n} (\mathbf{CT}_n - \mathbf{h})$$
$$= n (\mathbf{CT}_n - \mathbf{h})' \left(\mathbf{C}\widehat{\boldsymbol{\Sigma}}_n \mathbf{C}'\right)^{-1} (\mathbf{CT}_n - \mathbf{h})$$
$$\sim \chi^2(r)$$

Can be made rigorous

$$\mathbf{Y}_n = \sqrt{n} (\mathbf{T}_n - \boldsymbol{\theta}) \xrightarrow{d} \mathbf{Y} \sim N_k(\mathbf{0}, \boldsymbol{\Sigma}) \qquad \widehat{\boldsymbol{\Sigma}}_n \xrightarrow{p} \boldsymbol{\Sigma}$$

By Slutsky 6a (continuous mapping), $\mathbf{CY}_n \xrightarrow{d} \mathbf{CY} \sim N_r(\mathbf{0}, \mathbf{C\Sigma C'})$ By Slutsky 7a (continuous mapping),

$$\left(\mathbf{C}\widehat{\boldsymbol{\Sigma}}_{n}\mathbf{C}'\right)^{-1} \xrightarrow{p} \left(\mathbf{C}\boldsymbol{\Sigma}\mathbf{C}'\right)^{-1}$$

By Slutsky 6c,

$$\left(egin{array}{c} \mathbf{C}\mathbf{Y}_n \ \left(\mathbf{C}\widehat{\mathbf{\Sigma}}_n\mathbf{C}'\right)^{-1} \end{array}
ight) \stackrel{d}{
ightarrow} \left(egin{array}{c} \mathbf{C}\mathbf{Y} \ \left(\mathbf{C}\mathbf{\Sigma}\mathbf{C}'\right)^{-1} \end{array}
ight)$$

And if $H_0: \mathbf{C}\boldsymbol{\theta} = \mathbf{h}$ is true, by By Slutsky 6a (continuous mapping),

$$(\mathbf{C}\mathbf{Y}_{n})' \left(\mathbf{C}\widehat{\boldsymbol{\Sigma}}_{n}\mathbf{C}'\right)^{-1} (\mathbf{C}\mathbf{Y}_{n}) = n(\mathbf{C}\mathbf{T}_{n} - \mathbf{h})' \left(\mathbf{C}\widehat{\boldsymbol{\Sigma}}_{n}\mathbf{C}'\right)^{-1} (\mathbf{C}\mathbf{T}_{n} - \mathbf{h})$$

$$\stackrel{d}{\rightarrow} (\mathbf{C}\mathbf{Y})' (\mathbf{C}\boldsymbol{\Sigma}\mathbf{C}')^{-1} (\mathbf{C}\mathbf{Y}) \sim \chi^{2}(r)$$

Example

- Customers can purchase a computer with up to 10 extra options, such as a bigger monitor, more RAM, larger hard drive, printer, etc.
- Options selected were recorded for a sample of 400 customers.
- Data are binary (Yes-No) but correlated.
- Data file looks like this

ID	1	2	3	4	5	6	7	8	9	10
1	0	0	1	0	1	1	0	0	1	0
2	0	0	0	0	0	1	0	0	0	1
3	1	1	0	0	1	0	0	0	1	0
					Etc.					

Want to Test

- Null hypothesis is all selection probabilities are equal
- If rejected, which ones are different from each other? (Pairwise comparisons)
- But the full 2x2x ...x2 = 2¹⁰ = 1024-cell contingency table has too many parameters to estimate.
- However, the multivariate Central Limit Theorem applies, and the sample variancecovariance matrix is a consistent estimator of Σ.

Independent groups (Between cases)

- Have *n* cases, separated into *k* groups: Maybe occupation of main wage earner in family
- $n_1 + n_2 + ... + n_k = n$
- Dependent variable is either binary or amount of something, like annual energy consumption
- No reason to believe normality
- No reason to believe equal variances
- $H_0: C\mu = h$
- For example, H_0 : $\mu_1 = \dots = \mu_k$

Basic Idea

The k group means are independent random variables. Asymptotically,

•
$$\overline{X}_j \sim N(\mu_j, \frac{\sigma_j^2}{n_j})$$

- The $k \times 1$ random vector $\overline{\mathbf{X}}_n \sim N(\boldsymbol{\mu}, \mathbf{V})$,
- Where V is a $k \times k$ diagonal matrix with jth diagonal element $\frac{\sigma_j^2}{n_j}$.

•
$$\mathbf{C}\overline{\mathbf{X}}_n \sim N_r(\mathbf{C}\boldsymbol{\mu}, \mathbf{CVC'})$$

- Approximate V with the diagonal matrix $\hat{\mathbf{V}}$, jth diagonal element $\frac{\hat{\sigma}_j^2}{n_j}$
- And if $H_0: \mathbf{C}\boldsymbol{\mu} = \mathbf{h}$ is true,

$$W = (\mathbf{C}\overline{\mathbf{X}}_n - \mathbf{h})' \left(\mathbf{C}\widehat{\mathbf{V}}\mathbf{C}'\right)^{-1} (\mathbf{C}\overline{\mathbf{X}}_n - \mathbf{h}) \sim \chi^2(r)$$

One little technical issue

- More than one n_i is going to infinity
- The rates at which they go to infinity can't be too different
- In particular, if $n = n_1 + \dots + n_k$
- Then each n_j/n must converge to a non-zero constant (in probability).