Wald (and Score) Tests
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Vector of MLEs is Asymptotically Normal

That is, Multivariate Normal

This yields
» Confidence intervals
> Z-tests of Hy : 0; = 09
» Wald tests
» Score Tests
» Indirectly, the Likelihood Ratio tests
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Under Regularity Conditions
(Thank you, Mr. Wald)

> 0,%0

> (0, —6) LT ~ N, (0,Z(6)7?)

» So we say that 0., is asymptotically Nj (9, %I(G)_l).
» Z(0) is the Fisher Information in one observation.

» A k X k matrix
2

1(6) = | El- 00,00,

log f(Y;0)]

» The Fisher Information in the whole sample is nZ(6)



H()Icezh

Suppose 0 = (61, ...67), and the null hypothesis is
> 01 =0y
> g =07
> 5 (01+ 02+ 03) = 5 (024 05 + 06)
We can write null hypothesis in matrix form as
R
D)
0 0 0 0 03

=

1 -1 -1 0 || 6
06
07

0
0 0 0 1 —1]]|6]=
1



Suppose Hy : CO = h is True, and Z(0),, 2 Z(0)
By Slutsky 6a (Continuous mapping),
Vn(CH,, — CO) = \/n(CH, —h) % CT ~ N, (0,CZ()"'C)
and .
7(0), LI(6)"
Then by Slutsky’s (6¢) Stack Theorem,
V/n(C8, - h) ) 4 ( CT )
7(9), O )

Finally, by Slutsky 6a again,

n(C8 — h)(CZ(9), C')~}(CB - h)

W, =
L W =(CT - 0)(CZ(6)"'C") }(CT - 0) ~ *(r)



The Wald Test Statistic
Wi = n(C8., —h) (CZ(9), C)~*(CB. —h)

Again, null hypothesis is Hy : CO = h
Matrix Cisr x k, r < k, rank r

All we need is a consistent estimator of Z(8)
Z(6) would do

But it’s inconvenient

vV vV v vV VvY

Need to compute partial derivatives and expected values in
2

1(6) = |El- 90,00;

log f(Y;0)]
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Observed Fisher Information

» To find /G\n, minimize the minus log likelihood.

» Matrix of mixed partial derivatives of the minus log
likelihood is

82
{‘aaiaef(e’Y)] - [ 00,00, Zlogf ¥i:0)

» So by the Strong Law of Large Numbers,

1 & 0?
Tn(0) = [n;—(mlogﬂyi,g)

- [E< 89829 tog 7Y 0))] 7o)



A Consistent Estimator of Z(8)

Just substitute 5,1 for 6

= [E < aaage tog F(¥ 0))} 6::(0)

» Convergence is believable but not trivial.

~ 1 & 02
Tn(0,) = [n;—mlogﬂyi,e)

» Now we have a consistent estimator, more convenient than

I(B )E Usel'( ) = T n(0 n)



Approximate the Asymptotic Covariance Matrix

» Asymptotic covariance matrix of 8, is 17(6)~1

» Approximate it with

Vn

I
- Lg.00

(i { aaage “e. Y)] e:5n>

1
—1
( 90,00, 89 )} 9:§n>

-1




Compare

Hessian and (Estimated) Asymptotic Covariance Matrix

-1

S

» Hessian at MLE is H = [ 80 60 /e, Y)] 5

» So to estimate the asymptotic covariance matrix of 8, just
invert the Hessian.

» The Hessian is usually available as a by-product of
numerical search for the MLE.
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Connection to Numerical Optimization

Suppose we are minimizing the minus log likelihood by a
direct search.

We have reached a point where the gradient is close to
zero. Is this point a minimum?

The Hessian is a matrix of mixed partial derivatives. If all
its eigenvalues are positive at a point, the function is
concave up there.

» Its the multivariable second derivative test.
» The Hessian at the MLE is exactly the observed Fisher

information matrix.

Partial derivatives are often approximated by the slopes of
secant lines — no need to calculate them.



So to find the estimated asymptotic covariance matrix

» Minimize the minus log likelihood numerically.

» The Hessian at the place where the search stops is exactly
the observed Fisher information matrix.

» Invert it to get \A/'n

» This is so handy that sometimes we do it even when a
closed-form expression for the MLE is available.



Estimated Asymptotic Covariance Matrix \A/n is Useful

» Asymptotic standard error of é\j is the square root of the
jth diagonal element.

» Denote the asymptotic standard error of 5] by S5 .
J
» Thus

ng

is approximately standard normal.
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Confidence Intervals and Z-tests

Have Z; = agioj approximately standard normal, yielding
%

» Confidence intervals: 5] + 55 za2
J

» Test Hy : 0; = 0y using

b6

53,

VA
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And Wald Tests

Recalling V, = %J,,,(an)fl

W, = n(C8, - h)(CZ(@), C')"'(C8, —h)
= n(CH, —h)(CT,(6,)"'C)"(CH, —h)
— n(CH, —h) (C(n\A/n)C’> ~(Ch, — 1)
= n(CH, - h)’% (CVnC’>_1 (C8,, — h)

= (C9,—hy (CV,C) (G, 1)



Score Tests
Thank you Mr. Rao

v

6 is the MLE of 0, size k x 1
> /éo is the MLE under Hy, size k x 1

» u(f) = (aa—ggl, . aa—gi)’ is the gradient.

» u(@) =0
» If Hy is true, u(ag) should also be close to zero.

» Under Hj for large NV, u(ag) ~ N;(0,7(0)),
approximately.

» And,
S =u(60)' T (80) "u(Bo) ~ x*(r)

Where r is the number of restrictions imposed by Hg



Three Big Tests

» Score Tests: Fit just the restricted model
» Wald Tests: Fit just the unrestricted model
» Likelihood Ratio Tests: Fit Both
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Comparing Likelihood Ratio and Wald

» Asymptotically equivalent under Hy, meaning
(Wn — Gp) 50
» Under Hi,
» Both have approximately the same distribution (non-central
chi-square)
» Both go to infinity as n — oo
» But values are not necessarily close
» Likelihood ratio test tends to get closer to the right Type I
error rate for small samples.

» Wald can be more convenient when testing lots of
hypotheses, because you only need to fit the model once.

» Wald can be more convenient if it’s a lot of work to write
the restricted likelihood.
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