Linear Regression
Y = X3 + €

e X is an n X p matrix of known constants
e 3is ap x 1 vector of unknown constants

e ¢ ~ N(0,0°I,) , where 0° > 0 is an unknown constant.

B =(X'X)"'X'Y Y =Xg3
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Regression Means Going Back

Francis Galton (1822-1911) studied
“Hereditary Genius” (1869) and other traits

Heights of fathers and sons

— Sons of the tallest fathers tended to be taller than
average, but shorter than their fathers

— Sons of the shortest fathers tended to be shorter
than average, but taller than their fathers

This kind of thing was observed for lots of
traits.

Galton was deeply concerned about
“regression to mediocrity.”



Measure the same thing twice, with error

Yl — X T- €1
Y2 = X + €9
X ~ N(p,0%)

e1 and ey independent N (0, 0?)




Conditional distribution of Y, given Y,=y,

So E(Y>|Y; :291) =+ p(y1 — ),

h —
where p = ——*—5.
X e




E(Y2|Y1 =y1) = p+ p(yr — 1)

If y, is above the mean, average y, will also be
above the mean

But only a fraction (rho) as far above as y,.

If y, is below the mean, average y, will also be
below the mean

But only a fraction (rho) as far below as y,.

This exactly the “regression toward the mean”
that Galton observed.



Regression toward the mean

* Does not imply systematic change over time

e |s a characteristic of the bivariate normal and
other joint distributions

e Can produce very misleading results,
especially in the evaluation of social programs



Regression Artifact

Measure something important, like performance
in school or blood pressure.

Select an extreme group, usually those who do
worst on the baseline measure.

Do something to help them, and measure again.

E(YzYr =y1) = p+ p(yr — 1)

If the treatment does nothing, they are expected
to do worse than average, but better than they
did the first time — completely artificial!



A simulation study

Measure something twice with error: 500
observations

Select the best 50 and the worst 50
Do two-sided matched t-tests at alpha = 0.05

What proportion of the time do the worst 50
show significant average improvement?

What proportion of the time do the worst 50
show significant average deterioration?



sig2x = 10; sig2e = 10; n = 500; set.seed(9999)

X = rnorm(n,100,sqrt(sig2x))

el = rnorm(n,0,sqrt(sig2e)); e2 = rnorm(n,0,sqrt(sig2e))
Y1 = X+el; Y2 = X+e2; D = Y2-Y1 # D measures "improvement"
low50 = D[rank(Y1)<=50]; hi50 = D[rank(Y1)>450]

t.test (low50)

V V V V V V

One Sample t-test

data: 1lowb0
t = 7.025, df = 49, p-value = 6.068e-09
alternative hypothesis: true mean is not equal to O
95 percent confidence interval:
2.874234 5.177526
sample estimates:

mean of x
4.02588



> t.test (hi50)

One Sample t-test

data: hibO0
t = -5.3417, df = 49, p-value = 2.373e-06
alternative hypothesis: true mean is not equal to O
95 percent confidence interval:

-4.208760 -1.907709

sample estimates:

mean of x
-3.058234



> t.test(lowb0)$p.value
[1] 6.068008e-09
> t.test(lowb0)$estimate
mean of x
4.02588
> t.test(lowb0)3Pp.value<0.05 && t.test(lowb0)$estimate>0
[1] TRUE



> # Estimate probability of artificial difference
> M = 100 # Monte Carlo sample size

> dsig = numeric(M)

> for(i in 1:M)

+ {

+ X = rnorm(n,100,sqrt(sig2x))

+ el = rnorm(n,0,sqrt(sig2e)); e2 = rnorm(n,0,sqrt(sig2e))

+ Y1 = X+el; Y2 = X+e2; D = Y2-Y1 # D measures "improvement"
+ low50 = D[rank(Y1)<=50]

+ ttest = t.test(lowb0)

+ dsigl[i] = ttest$p.value<0.05 && ttest$estimate>0

+ }

> dsig



Summary

* Source of the term “Regression”

* Regression artifact
— Very serious
— People keep re-inventing the same mistake
— Can’t really blame the policy makers

— At least the statistician should be able to warn
them

— The solution is random assignment

— Taking difference from a baseline measurement
may still be useful



Analysis of Variance



Analysis of Variance

* Variation to explain: Total Sum of Squares
SSTO = » (V; —Y)?

=1

e Variation that is still unexplained: Error

Sum of Squares o
=1

* Variation that is explained: Regression (or
Model) Sum of Squares

SSR=SSTO-SSE = » (¥; — Y)?

i=1



ANOVA Summary Table

Analysis of Variance

Sum of Mean
Source DF sSquares Square F Value Prob>F

Model p-—1 SSR MSR = SSR/(p—1) F = H:f p-value
Error n —p SSE MSE = SSE/(n — p)
Total n-—1 SSTO

Hy:p1=02=...=0,-1=0



Proportion of variation in the
dependent variable that is explained
by the independent variables

~ SSR
~ SSTO




Hypothesis Testing

Overall F test for all the IVs at once,

T-tests for each regression coefficient: Controlling
for all the others, does that IV matter?

Test a collection of IVs controlling for another
collection,

Most general: Testing whether sets of linear
combinations of regression coefficients differ
from specified constants.



Controlling for mother’s education and
father’s education, are (any of) total family
income, assessed value of home and total
market value of all vehicles owned by the

family related to High School GPA?

EY|X =x| = By + frx1 + -+ + Bs525

H 0 - .,'33 — 34 — 35 = 0

(A false promise because of measurement error in education)



Full vs. Reduced Model

You have 2 sets of variables, A and B
Want to test B controlling for A

Fit a model with both A and B: Call it the Full
Model

Fit a model with just A: Call it the Reduced
Model

2 2
R% > R}



When you add independent variables,
R% can only go up

* By how much? Basis of F test.

* Same as testing H,: All betas in set B (there are d
of them) equal zero

* General Hy: LB = h (L is dxp, row rank d)

(SSRr — SSRR)/d
MSEp
(LB — h)(L(X'X)~'L/)"}(L3 — h)
dMSEF




F test is based not just on change in R?,
but upon

Ry — Ry
1 — R%

( —=

Increase in explained variation expressed as a fraction
of the variation that the reduced model does not explain.



P= () ()

* For any given sample size, the bigger a is, the
bigger F becomes.

* For any a #0, F increases as a function of n.

* So you can get a large F from strong results
and a small sample, or from weak results and

a large sample.



Can express a in terms of F

dF’
n—p-+dF

a —

e Often, scientific journals just report F, numerator df
= d, denominator df = (n-p), and a p-value.

* You can tell if it’s significant, but how strong are the
results? Now you can calculate it.

* This formula is less prone to rounding error than the
one in terms of R-squared values



When you add independent variables
to a model (with observational data)

Statistical significance can appear when it was
not present originally

Statistical significance that was originally
present can disappear

Even the signs of the b coefficients can
change, reversing the interpretation of how
their variables are related to the dependent
variable.

This is explained by the earlier discussion of
omitted variables.



A few More Points
Yi = 0o+ b1z + -+ Bp_1Tip—1 + €

* Are the x values really constants?
* Experimental versus observational data
 Omitted variables

* Measurement error in the independent
variables



Recall Double Expectation
E{Y} = E{E{Y|X}}

E{Y}is a constant. E{Y|X} is a random variable, a function of X.

BIE(Y|X)} = [ E{Y|X =2} f(x) ds



Beta-hat is (conditionally) unbiased
E{BIX =x} =0
Unbiased unconditionally, too

F{B} = E{E{B|X}} = F{B} =



Perhaps Clearer

B{E{BX})
[ [ BBIX = x) £(x) ax

[ [Br000s
3 [ [ s
3.-1=2

E{B}



Conditional size a test, Critical region A

Pr{Fec AX =x}=a

Pr{F € A} = /---/PT{FEA\X:X}f(X)dX

— /--o/af(x)dx
— a/---/f(x)dx



Omitted variables

True model:

Yi =00+ 51 X1+ B X0+ €

independently for i = 1,...,n, where ¢; ~ N(0,0?)

_Xi,l_NN Cpr || d1n d12
X2 pe |7 P12 @22

with €; independent of X, ; and Xj ».

X, is not observed



Since X, is not observed, it is absorbed

Bo+ 51Xi1+ PXi2+ €

= (6o + Bapa2) + B1Xi1 -
By + 01 X1+ €

- (52X7;,2 — Bapio + €;)

Of course there could be more than one

omitted variable. They wo

uld all get

swallowed by the intercept and error term,

the garbage bins of regres

sion analysis.



Cov(X;1,6;) = Cov(Xiq,(82Xi2— Popio+€))
= [a12

So if there are omitted independent variables
that are related to both the dependent
variable and the independent variables in

the model, the covariance between

independent variables and the error term
IS hon-zero.

Cov(X;1,Y:) = Cov(X;1,(B)+ 51 Xi1+¢€))
— 51Var(Xi,1) —+ COU(XZ'J, 62)
=  [B1011 + B2012



Try to estimate 3, using the mis-specified model

N e AE Al §
> (X1 — Xq)?

O'a;y
=2
O-ZU

a.s. Ogy

2
Ox

B1o11 + Bad12
P11

B P12
= 1+ Ba— e




Moral of the story

In an observational study, if there are omitted
variables that are related to both the DV and

IVs in the model, the results of a regression
analysis have no necessary relation to reality.

This is almost always the case.
Still okay for pure prediction.

In an experimental study, variables whose
values are randomly assigned are unrelated to
the omitted variables, and things are much
better.



What if you measure all possible independent
variables and “control” for them?

Control: Hold x, constant

Y = [o+ iz + Paxa + ¢
EY|x) = po+ Biz1 + Bz
OE(Y|x)

oz =



What if you measure all possible
independent variables and “control”
them?

for

* Okay, as long as you can measure them all
without error

e Otherwise the situation is similar to omitted
variables.

e If IVs are measured with error, related to DV
and correlated with IVs of interest - disaster

e Solution: Take measurement error into
account in the data collection and the
statistical model.



Watch out for measurement error in
the independent variables

* When we test for a relationship “controlling” for
some set of variables, we are seeking it in the
conditional distributions - conditional on the
values of the variables for which we are
controlling.

e |f the control variables are measured with error,
the conditional distributions given the observed
variables need not be the same as the conditional
distributions given the true variables .



Suppose you are testing the relationship of age to
BMI, controlling for exercise and calorie intake.

Questionnaire measures are known to be inaccurate.
People mis-report, and not by a constant amount.

And, age is related to both independent variables,
especially exercise

Can’t see the control variables clearly to hold them
constant

So even if age is unrelated to BMI for every
combination of true exercise and true calorie intake, a
relationship can exist conditionally upon observed
exercise and observed calorie intake.



Want to test B controlling for A: The
poison combination

A is related to the dependent variable
A and B are related to each other, and
A is measured with error

Estimation of B’s relationship with Y is biased

Type | error can be badly inflated (Brunner and
Austin, 2009)

Large sample size makes it worse!

For observational studies, all three conditions
usually are present.



Especially a problem in
observational medical research

Seek to assess potential risk factors, controlling
for known risk factors

The known risk factors do matter
Known and potential risk factors are correlated

Known risk factors are difficult to measure
without error

Experimental research is essential to confirm
findings - and it often does not.



But all is not lost

As long as you are interested in prediction rather than
interpretation, there is no problem. Test for whether age is
a useful predictor is still valid, even if its usefulness comes
from its correlation with true exercise.

The problem comes from trying to use regression as a
causal model for observational data.

If one or more categorical independent variables are
experimentally manipulated, analysis of covariance can
help reduce MSE and makes the analysis more precise,

even if the covariates (control variables) are measured with
error.

No inflation of Type | error rate for ANCOVA - because

random assignment breaks up the association between A
and B.



If it’s an observational study, just ask

How did you control for ?

How did you take measurement error into account?
(There are ways, but if it were easy people would do
it more often. Nature of data collection is involved,

not just statistical analysis.)

If they say “Oh, there was just a little measurement
error,” observe that if the sample is large enough, no
amount of measurement error is safe. Brunner and
Austin (2009) give a proof.

If they say “Well, it’s the best we could do,” you could
ask whether it’s better to say something incorrect, or
to be silent.



In this course

* We will carry out classical regression analysis
on observational data only when our primary
purpose is prediction.

 We will be very careful about the way we
describe the results.

 We will use regression methods extensively on
experimental data.



