
Random Vectors and Matrices 

A random matrix is just a matrix of random 
variables. Their joint probability distribution is 
the distribution of the random matrix. Random 
matrices with just one column (say, px1) may be  
called random vectors. 



Expected Value 

•  The expected value of a matrix is defined as 
the matrix of expected values. 

•  Denoting the pxc random matrix X by [Xi,j],      
E(X) = [E(Xi,j)] 



Immediately we have natural 
properties like 

E(X + Y) = E([Xi,j ] + [Yi,j ])
= [E(Xi,j + Yi,j)]
= [E(Xi,j) + E(Yi,j)]
= [E(Xi,j)] + [E(Yi,j)]
= E(X) + E(Y).



Let A = [ai,j ] be an r × p matrix of constants, while X is still a
p× c random matrix. Then

E(AX) = E

([
p∑

k=1

ai,kXk,j

])

=

[
E

(
p∑

k=1

ai,kXk,j

)]

=

[
p∑

k=1

ai,kE(Xk,j)

]

= AE(X).

Similarly, have E(AXB) = AE(X)B



Variance‐Covariance Matrices 

Let X be a px1 random vector with E(X)=mu. The variance‐covariance  
matrix of X (sometimes just called the covariance matrix), denoted  
by V(X), is defined as 

V (X) = E {(X− µ)(X− µ)′}



V (X) = E {(X− µ)(X− µ)′}

V (X) = E









X1 − µ1

X2 − µ2

X3 − µ3



 [
X1 − µ1 X2 − µ2 X3 − µ3

]





= E









(X1 − µ1)2 (X1 − µ1)(X2 − µ2) (X1 − µ1)(X3 − µ3)
(X2 − µ2)(X1 − µ1) (X2 − µ2)2 (X2 − µ2)(X3 − µ3)
(X3 − µ3)(X1 − µ1) (X3 − µ3)(X2 − µ2) (X3 − µ3)2










=




E{(X1 − µ1)2} E{(X1 − µ1)(X2 − µ2)} E{(X1 − µ1)(X3 − µ3)}
E{(X2 − µ2)(X1 − µ1)} E{(X2 − µ2)2} E{(X2 − µ2)(X3 − µ3)}
E{(X3 − µ3)(X1 − µ1)} E{(X3 − µ3)(X2 − µ2)} E{(X3 − µ3)2}





=




V (X1) Cov(X1, X2) Cov(X1, X3)
Cov(X1, X2) V (X2) Cov(X2, X3)
Cov(X1, X3) Cov(X2, X3) V (X3)



 .

So, it's a pxp symmetric matrix with variances on the main diagonal and covariances on  
the off‐diagonals. 



Analogous to Var(aX) = a2 Var(X) 

V (AX) = E {(AX−Aµ)(AX−Aµ)′}
= E

{
A(X− µ) (A(X− µ))′}

= E {A(X− µ)(X− µ)′A′}
= AE{(X− µ)(X− µ)′}A′

= AV (X)A′

= AΣA′



Multivariate Normal 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2. Let X be a random matrix, and B be a matrix of constants. Show E(XB) = E(X)B.
Recall the definition AB = [

∑
k ai,kbk,j].

3. If the p× 1 random vector X has variance-covariance matrix Σ and A is an m× p
matrix of constants, prove that the variance-covariance matrix of AX is AΣA′.
Start with the definition of a variance-covariance matrix:

V (Z) = E(Z− µz)(Z− µz)
′.

4. If the p× 1 random vector X has mean µ and variance-covariance matrix Σ, show
Σ = E(XX′)− µµ′.

5. Let the p × 1 random vector X have mean µ and variance-covariance matrix Σ,
and let c be a p × 1 vector of constants. Find V (X + c). Show your work. This
is important because it tells us we can always pretend the mean equals zero when
calculating covariance matrices.

6. Let X be a p× 1 random vector with mean µx and variance-covariance matrix Σx,
and let Y be a q × 1 random vector with mean µy and variance-covariance matrix
Σy. Recall that C(X,Y) is the p× q matrix C(X,Y) = E

(
(X− µx)(Y − µy)

′).

(a) What is the (i, j) element of C(X,Y)?

(b) Find an expression for V (X+Y) in terms of Σx, Σy and C(X,Y). Show your
work.

(c) Simplify further for the special case where Cov(Xi, Yj) = 0 for all i and j.

(d) Let c be a p× 1 vector of constants and d be a q× 1 vector of constants. Find
C(X + c,Y + d). Show your work.

A.3.2 The Multivariate Normal Distribution

The p × 1 random vector X is said to have a multivariate normal distribution, and we
write X ∼ N(µ,Σ), if X has (joint) density

f(x) =
1

|Σ| 1
2 (2π)

p
2

exp

[
−1

2
(x− µ)′Σ−1(x− µ)

]
,

where µ is p× 1 and Σ is p× p symmetric and positive definite. Positive definite means
that for any non-zero p× 1 vector a, we have a′Σa > 0.

• Since the one-dimensional random variable Y =
∑p

i=1 aiXi may be written as Y =
a′X and V ar(Y ) = V (a′X) = a′Σa, it is natural to require that Σ be positive
definite. All it means is that every non-zero linear combination of X values has a
positive variance.

• Σ positive definite is equivalent to Σ−1 positive definite.



Analogies 

• Univariate Normal

– f(x) = 1
σ
√

2π
exp

[
− 1

2
(x−µ)2

σ2

]

– (x−µ)2

σ2 is the squared Euclidian distance between x and µ, in a space
that is stretched by σ2.

– (X−µ)2

σ2 ∼ χ2(1)

• Multivariate Normal

– f(x) = 1

|Σ|
1
2 (2π)

k
2

exp
[
− 1

2 (x− µ)′Σ−1(x− µ)
]

– (x−µ)′Σ−1(x−µ) is the squared Euclidian distance between x and
µ, in a space that is warped and stretched by Σ.

– (X− µ)′Σ−1(X− µ) ∼ χ2(k)



Distance:  Suppose Σ = I2 
d2 = (X− µ)′Σ−1(X− µ)

=
[

x1 − µ1, x2 − µ2

] [
1 0
0 1

] [
x1 − µ1

x2 − µ2

]

=
[

x1 − µ1, x2 − µ2

] [
x1 − µ1

x2 − µ2

]

= (x1 − µ1)2 + (x2 − µ2)2

d =
√

(x1 − µ1)2 + (x2 − µ2)2

(µ1, µ2)

(x1, x2)

x1 − µ1

x2 − µ2
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The multivariate normal reduces to the univariate normal when p = 1. Other properties
of the multivariate normal include the following.

1. E(X) = µ

2. V (X) = Σ

3. If c is a vector of constants, X + c ∼ N(c + µ,Σ)

4. If A is a matrix of constants, AX ∼ N(Aµ,AΣA′)

5. All the marginals (dimension less than p) of X are (multivariate) normal, but it is
possible in theory to have a collection of univariate normals whose joint distribution
is not multivariate normal.

6. For the multivariate normal, zero covariance implies independence. The multivariate
normal is the only continuous distribution with this property.

7. The random variable (X − µ)′Σ−1(X − µ) has a chi-square distribution with p
degrees of freedom.

8. After a bit of work, the multivariate normal likelihood may be written as

L(µ, Σ) = |Σ|−n/2(2π)−np/2 exp−n

2

{
tr(Σ̂Σ

−1
) + (x− µ)′Σ−1(x− µ)

}
, (A.15)

where Σ̂ = 1
n

∑n
i=1(xi − x)(xi − x)′ is the sample variance-covariance matrix (it

would be unbiased if divided by n− 1).

Exercises A.3.2

1. Let X1 be Normal(µ1, σ2
1), and X2 be Normal(µ2, σ2

2), independent of X1. What is
the joint distribution of Y1 = X1 + X2 and Y2 = X1 −X2? What is required for Y1

and Y2 to be independent?

2. Let X = (X1, X2, X3)′ be multivariate normal with

µ =




1
0
6



 and Σ =




1 0 0
0 2 0
0 0 1



 .

Let Y1 = X1 + X2 and Y2 = X2 + X3. Find the joint distribution of Y1 and Y2.

3. Let Y = Xβ + ε, where X is an n×p matrix of known constants, β is a p×1 vector
of unknown constants, and ε is multivariate normal with mean zero and covariance
matrix σ2In, where σ2 > 0 is a constant. In the following, it may be helpful to recall
that (A−1)′ = (A′)−1.

(a) What is the distribution of Y?



Proof of (7):  
(X‐μ)`Σ‐1(X‐μ)~Chisquare(p) 

•  Let Y = X‐μ ~ N(0,Σ) 
•  Z =  Σ‐1/2Y ~ N(0, Σ‐1/2 Σ Σ‐1/2)  
                     = N(0, [Σ‐1/2 Σ1/2][Σ1/2Σ‐1/2])                         
                     = N(0,I) 

•  Y`Σ‐1Y = Z`Z  ~Chisquare(p) 



Independence of X‐bar and S2 

X =




X1
...

Xn



 Y =





X1 −X
...

Xn−1 −X

X




= AX

Show Cov
(
X, (Xi −X)

)
= 0 for i = 1, . . . , n. (Exercise)

Y2 =




X1 −X

...
Xn−1 −X



 = BY and X = CY are independent.

So S2 = g(Y2) and X are independent. !


