Random Vectors and Matrices

A random matrix is just a matrix of random
variables. Their joint probability distribution is
the distribution of the random matrix. Random
matrices with just one column (say, px1) may be
called random vectors.



Expected Value

* The expected value of a matrix is defined as
the matrix of expected values.

* Denoting the pxc random matrix X by [X; ],
E(X) = [E(Xi,j)]



Immediately we have natural
properties like
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Let A = [a; ;| be an 7 X p matrix of constants, while X is still a
p X ¢ random matrix. Then
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Similarly, have F(AXB) = AFE(X)B



Variance-Covariance Matrices

Let X be a px1 random vector with E(X)=mu. The variance-covariance
matrix of X (sometimes just called the covariance matrix), denoted
by V(X), is defined as

V(X)) =E{(X—p)(X—p)}
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So, it's a pxp symmetric matrix with variances on the main diagonal and covariances on
the off-diagonals.



Analogous to Var(aX) = a2 Var(X)
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Multivariate Normal

The p x 1 random vector X is said to have a multivariate normal distribution, and we
write X ~ N(u,X), if X has (joint) density
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where p is p X 1 and X is p X p symmetric and positive definite. Positive definite means
that for any non-zero p x 1 vector a, we have a’>a > 0.
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e Since the one-dimensional random variable Y = Zle a; X; may be written as Y =
a’X and Var(Y) = V(a’X) = a’¥a, it is natural to require that 3 be positive
definite. All it means is that every non-zero linear combination of X values has a
positive variance.

e X positive definite is equivalent to X' positive definite.



Analogies

e Univariate Normal
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e Multivariate Normal
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Distance: Suppose 2 = |,
(X - p)E (X — p)
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The multivariate normal reduces to the univariate normal when p = 1. Other properties
of the multivariate normal include the following.
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E(X)=p
V(X)=X
. If ¢ is a vector of constants, X + ¢ ~ N(c + p, X)

If A is a matrix of constants, AX ~ N(Au, AXA’)

. All the marginals (dimension less than p) of X are (multivariate) normal, but it is

possible in theory to have a collection of univariate normals whose joint distribution
is not multivariate normal.

. For the multivariate normal, zero covariance implies independence. The multivariate

normal is the only continuous distribution with this property.

The random variable (X — p)’Y7'(X — p) has a chi-square distribution with p
degrees of freedom.

. After a bit of work, the multivariate normal likelihood may be written as
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where ¥ = 23" (x; — X)(x; — X)' is the sample variance-covariance matrix (it
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would be unbiased if divided by n — 1).



Proof of (7):
(X-p) Z1(X-p)~Chisquare(p)

e LetY = X-pn~ N(0,%)

« 7= 312y~ N(0, 22 ¥ 51/2)
= N(O, [2-1/2 21/2][21/22-1/2])
= N(0,1)

e Y'Y =2Z'Z ~Chisquare(p)



Independence of X-bar and S?
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Show Cov (X, (X; — X)) =0fori=1,...,n. (Exercise)

X1 — X
Y, = : = BY and X = CY are independent.

Xo1—X

So §? = g(Y3) and X are independent. W



