Multivariate Linear Model For Between-Within Designs Same study can have both between and within-cases factors Example: Grapefruit sales

- Cases are stores
- Sales measured at every store with three different price levels (Random order)
- Three price levels: Within-stores factor
- Incentive program for produce managers (Yes-No): Between-stores factor

$\mathbf{Y} = \mathbf{X}\mathbf{B} + \boldsymbol{\epsilon},$

where

- **Y** is an $n \times k$ random matrix, with one response variable in each column.
- X is an $n \times p$ matrix of fixed, observable constants. There is one (between-cases) explanatory variable in each column.
- **B** is a $p \times k$ matrix of unknown parameters (regression coefficients).
- $\boldsymbol{\epsilon}$ is an $n \times k$ random matrix. The rows of $\boldsymbol{\epsilon}$ are independent multivariate normals with expected value **0** and $k \times k$ variance-covariance matrix $\boldsymbol{\Sigma}$).

One Column of **B** for Each Response Variable

$$\mathbf{B} = \begin{pmatrix} \beta_{0,1} & \beta_{0,2} & \cdots & \beta_{0,k} \\ \beta_{1,1} & \beta_{1,2} & \cdots & \beta_{1,k} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{(p-1),1} & \beta_{(p-1),2} & \cdots & \beta_{(p-1),k} \end{pmatrix}$$

 $\hat{B} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$ (a $p \times k$ matrix), so MLEs are what one would get from k univariate regressions.

- **L** is $r \times p$ with $r \leq p$.
- **B** is $p \times k$.
- **M** is $k \times q$ with $q \leq k$.
- With $\mathbf{M} = \mathbf{I}$, have
 - All the usual linear null hypotheses
 - Simultaneously for all k response variables
 - Same null hypothesis for each response variable
- The matrix **M** specifies linear combinations of the response variables (not obvious).

Linear Combinations of the Response Variables

$\mathbf{Y} = \mathbf{X}\mathbf{B} + \boldsymbol{\epsilon} \Rightarrow \mathbf{Y}\mathbf{M} = \mathbf{X}\mathbf{B}\mathbf{M} + \boldsymbol{\epsilon}\mathbf{M}$

- Each column of \mathbf{M} yields a linear combination of the k response variables.
- New " \mathbf{Y} " = $\mathbf{Y}\mathbf{M}$
- New " \mathbf{B} " = $\mathbf{B}\mathbf{M}$
- New " ϵ " = $\epsilon \mathbf{M}$
- Rows of new " ϵ " are independent $N_q(\mathbf{0}, \mathbf{M}' \mathbf{\Sigma} \mathbf{M})$

- Can easily carry out multivariate tests on collections of linear combinations of the response variables
- Multiple response variables could represent measurements at levels of one or more within-cases factors (think 3 Grapefruit Sales numbers)
- Linear combinations can correspond to main effects, interactions of within-cases factors