Sample Space QQ, w €Q

Observing whether a single individual is male or
female:

O ={F M)
Pair of individuals: observe their genders in

order:
(1 = {(FvF)a(F7M)7(M7F)7(M7M)}

Select n people and count the number of
females:

Q={0,...,n}

For limits problems, the points in Q are infinite
sequences



Random variables are functions
from Q into the set of real numbers

Pr{X e B} =Pr({w e Q: X(w) € B}



Random sample X;(w),..., X, (w)
T=T(X1,...,X,)
T ="T,(w)

Let n — o

To see what happens for large samples



Modes of Convergence

* Almost Sure Convergence
* Convergence in Probability
* Convergence in Distribution



Almost Sure Convergence

a.s.

We say that 1), converges almost surely to T', and write 1,, — if

Priw: lim T,(w) =T(w)} = 1.

n—=o0

Acts like an ordinary limit, except possibly on a set of probability zero.

All the usual rules apply.



Strong Law of Large Numbers

X, = E(X;) = u

The only condition required for this to hold is the existence of the expected value.



Probability is long run relative
frequency

» Statistical experiment: Probability of “success”
IS p

e Carry out the experiment many times
independently.

* Code the results X=1 if success, X.=0 for
failure,i=1, 2, ...



= 0-(1-p)+1-p
= p

Relative frequency is

%En:Xz :yn Gi.p
1=1



Simulation

Weather model
Performance of statistical methods

Estimate almost any probability that's hard to
figure out

Confidence intervals for the estimate



A hard elementary problem

 Roll a fair die 13 times and observe the
number each time.

 What is the probability that the sum of the
numbers is divisible by 3?



> die = c(1,1,1,1,1,1)/6; die
[1] 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667
> rmultinom(1,1,die)

[,1]
[1,] 0
[2,] 0
[3,] 1
[4,] 0
[5,] 0
[6,] 0
> rmultinom(1,13,die)

[,1]
[1,] 5
[2,] 2
[3,] 1
[4,] 2
[5,] 2
[6,] 1



> tot = sum(rmultinom(1,13,die)*(1:6))
> tot

[1] 42

> tot/3 == floor(tot/3)

[1] TRUE

> 42/3

[1] 14



Estimated Probability

> nsim = 1000 # nsim is the Monte Carlo sample size

> set.seed(9999) # So I can reproduce the numbers if desired.
> kount = numeric(nsim)

> for(i in 1:nsim)

{

tot = sum(rmultinom(1,13,die)*(1:6))

kount [i] = (tot/3 == floor(tot/3))

# Logical will be converted to numeric

+

+ + + + +

> kount[1:20]
[1] 00011 0000000000O0OO0ODO0OT1DO

> xbar = mean(kount); xbar
[1] 0.329



Confidence Interval

> z = gqnorm(0.995); z

[1] 2.575829

> pnorm(z)-pnorm(-z) # Just to check
[1] 0.99

> margerror99 = sqrt(xbar*x(l-xbar)/nsim)*z; margerror99
[1] 0.03827157

> cat("Estimated probability is ",xbar," with 997 margin of error ",
+ margerror99,"\n")

Estimated probability is 0.329 with 997 margin of error 0.03827157

> cat("99% Confidence interval from ",xbar-margerror99," to ",
+ xbar+margerror99, "\n")

99% Confidence interval from 0.2907284 to 0.3672716



Recall the Change of Variables
formula: Let Y = g(X)

EV) = [ wh@idy= [ @) fo@)ds
Or, for discrete random variables

E(Y)=) yp,(y) = g(x)p,(z)



Let X, ..., X, be independent and identically
distributed random variables; let X be a general
random variable from this same distribution,
and Y=g(X)

%Zg(Xi)

1 =<, as
~ ) Y, B E(Y)
nz’zl

E(g9(X))



So for example

1 « 0.5
—» X B(XF)
nizl

1 < a.s
— N UV,W? S E(UVW?)
T

1
1=1

That is, sample moments converge almost surely to population moments.



Convergence in Probability

We say that 1), converges in probability to T, and write 1, L T if for all € > 0,
lim P{|T, —T|<e}=1
n—oo

Convergence in probability (say to a constant 6) means no matter
how small the interval around 6, for large enough n (n>N,) the
probability of getting that close to 6 is as close to one as you like.

Almost sure convergence means no matter how small the interval
around 6, for large enough n (n>N,) the probability of getting that
close to O equals one.

Almost Sure Convergence => Convergence in Probability
Strong Law of Large Numbers => Weak Law of Large Numbers



Convergence in Distribution

Denote the cumulative distribution functions of 11,75, ... by Fi(t), Fa(?),. ..
respectively, and denote the cumulative distribution function of T" by F'(t).

We say that 1), converges in distribution to 1', and write T, % T if for every
point ¢t at which F' is continuous,

lim F,(t) = F(t)

n—oeo

Univariate Central Limit Theorem says

X, —
7, — Y 14y N0, 1)

O




Connections among the Modes of
Convergence

o T “ST=T ZT7=T 4T

. d P
e If a is a constant, 7,, — a = T,, — a.



Consistency

r.=T(X, .., X )is a statistic estimating a parameter 6

The statistic 7}, is said to be consistent for 6 if T, Lo

lim P{|T,, — 0| <e} =1

The statistic T}, is said to be strongly consistent for 0 if T,, ©3 6.

Strong consistency implies ordinary consistency.



Consistency of the Sample Variance

Q)
S N
| |
S |~ S |~
EM: M-
N F
| ><

By SLLN, X,, =3 pand 1 >0 | X2 ™5 F(X?) =02 + p?

Because the function g(z,y) = x — y 1s continuous,

ZX n) 3 glo? + P p) =0+t — pP =07



Convergence of Random Vectors

. Definitions (All quantities in boldface are vectors in R™ unless otherwise stated )
x T, “5 T means P{w : lim,_ Tp(w) = T(w)} = 1.
% T, - T means Ve > 0, lim,_ . P{||T, — T|| < e} = 1.

« T, % T means for every continuity point t of Frp, lim, Fr, (t) = Fr(t).
T, T=T,>T=T,>T

. d P
. If a is a vector of constants, T,, — a= T, — a.

. Strong Law of Large Numbers (SLLN): Let Xy,...X,, be independent and identi-
cally distributed random vectors with finite first moment, and let X be a general
random vector from the same ditribution. Then X,, =% E(X).

. Central Limit Theorem: Let Xi,...,X, be ii.d. random vectors with expected
value vector pu and covariance matrix ¥. Then /n(X,, — ) converges in distribution
to a multivariate normal with mean 0 and covariance matrix 3.



6. Slutsky Theorems for Convergence in Distribution:
(a) If T, e R™, T, T and if f: R™ — RY (where ¢ < m) is continuous except
possibly on a set C' with P(T € C') =0, then f(T,) <, f(T).
(b) ¥ T, % T and (T, — Y,) = 0, then Y,, % T.
() f T, eRY Y, eRF T, T and Y, 4, c, then

T, d T
(v)* ()
7. Slutsky Theorems for Convergence in Probability:
(a) If T, e R™ T, L T and if f: R™ — R (where ¢ < m) is continuous except
possibly on a set C' with P(T € C) =0, then f(T,) i f(T).
(b) If T, LT and (T, —Y,) 20, then Y, & T.
(c) If T, €R% Y, €RF, T, 5 Tand Y, =Y, then

(v) " (%)

8. Delta Method (Theorem of Cramér, Ferguson p. 45): Let g : R? — R¥ be such that

the elements of g(x) = [%} Ly € continuous in a neighborhood of 8 € R?. If T,
71 Ex

is a sequence of d-dimensional random vectors such that /n(T, — ) <, T, then

vn(g(T,) — g(0)) < g(@)T. In particular, if \/n(T, — 0) LT ~ N(0,3X), then
d : :

Vi(9(Ts) —g(0)) = Y ~ N(0,5(6)%5(8)").



An application of the Slutsky Theorems

Let Xq,...,X,, ~ ?(u,0°)

By CLT; Y, = \/ﬁ(yn - ,LL) i Y ~ N(0702)

Let 0,, be any consistent estimator of o.

ThenbyGC,Tn:(¥”>i<Y>:T

On o

The function f(x,y) = x/y is continuous except if y = 0
so by 6a,




Because

 The multivariate CLT establishes convergence
to a multivariate normal, and

* Vectors of MLEs are approximately normal for
large samples

e We need to look at random vectors and the
multivariate normal distribution.



