An Old Assignment on Elementary tests

Using the FURNACE data, carry out elementary significance tests to answer these questions. There is not necessarily a separate SAS procedure for each question. In each of your analyses, there is one independent variable and one dependent variable.

- 1. If you observe the shape of a house's chimney, does that improve your ability to predict what type of furnace the house has?
- 2. Is there more average energy consumption with the vent damper active, or inactive?
- 3. Is there a tendency for houses that consume lots of energy with the vent damper inactive to also consume a lot of energy with the vent damper active?

4. Does energy consumption depend on type of vent damper? Your dependent variable should be the *difference* of two variables in the raw data file.

- 5. Does average amount of energy consumption with vent damper inactive depend on type of chimney liner? If the answer is yes, which means are different from each other?
- 6. Do different kinds of house tend to have different types of chimney?
- 7. Make a new variable that is house age at or below the median versus house age above the median (refer to earlier printouts). Using this variable, do older houses tend to use more energy with the vent damper inactive? Why did I ask for this instead of a simple regression?
- 8. What proportion of the variation in chimney height is explained by chimney type?
- 9. What proportion of the variation in energy consumption with vent damper active is explained by type of damper? Is it significant? What do you conclude? Did you do follow-up tests? Why or why not?
- 10. What proportion of the variation in energy consumption with vent damper active is explained by chimney height? Is it significant? What do you conclude?
- 11. Consider the *difference* in energy consumption between damper active and damper inactive. What proportion of the variation in this variable is explained by furnace type? Is it significant? What do you conclude?

/* 1. If you observe the shape of a house's chimney, does that improve your ability to predict what type of furnace the house has? $\ast/$

TABLE OF SHAPE BY TYPFURN

proc freq;

tables shape*typfurn / nopercent nocol chisq expected;

SHAPE(Chimne	y shape)	TYPFU	RN(Type of	furnace)
Frequency Expected Row Pct	 Forced air	Gravity 	Forced water	Total
Round	94.87	3.0674 2.56		39
Square	25 27.326 78.13	5 2.5169 5.63	2 2.1573	32
Rectangular	14 15.371 77.78	1 1.4157 5.56	3 1.2135 16.67	18
Total Frequency Mi	76	+7	+6	89

STATISTICS FOR TABLE OF SHAPE BY TYPFURN

Statistic	DF	Value	Prob
Chi-Square Likelihood Ratio Chi-Square Mantel-Haenszel Chi-Square Phi Coefficient Contingency Coefficient Cramer's V	4 4 1	8.347 7.848 4.516 0.306 0.293 0.217	0.080 0.097 0.034
Effective Sample Size = 89 Frequency Missing = 1 WARNING: 67% of the cells ha	ve exp		s less

than 5. Chi-Square may not be a valid test.

/* 2. Is there more average energy consumption with the vent damper active, or inactive? */ proc means mean std n t prt; /* Did this in heat2.sas */ var diff;

Furnace Data

13:46 Sunday, January 4, 2004

3

4

Analysis Variable : DIFF consumpt w/ damper out minus in

 Mean
 Std Dev
 N
 T
 Prob>|T|

 0.7746667
 0.6191099
 90
 11.8704824
 0.0001

/* 3. Is there a tendency for houses that consume lots of energy with the vent damper inactive to also consume a lot of energy with the vent damper active? $\,*/$

```
proc corr nosimple; /* Did this already */
    var dampin dampout;
```

Furnace Data

13:46 Sunday, January 4, 2004

Correlation Analysis

2 'VAR' Variables: DAMPIN DAMPOUT

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 90

	DAMPIN	DAMPOUT
DAMPIN	1.00000	0.98111
Energy consumpt with damper in	0.0	0.0001
DAMPOUT	0.98111	1.00000
Energy consumpt with damper out	0.0001	0.0

/* 4. Does energy consumption depend on type of vent damper? Your dependent variable should be the difference of two variables in the raw data file. */

```
Furnace Data
```

13:46 Sunday, January 4, 2004

5

6

TTEST PROCEDURE

Variable: DIFF consumpt w/ damper out minus in

DAMPER	Ν	Μ	lean	Sto	l Dev	Std	Error		Minimur	n	Maximum
TVD EVD	40 50	0.66150		0.5106			073822 693728		8000000	-	2.29000000 3.98000000
Variances		Т	DF	Prob>	• T						
Unequal Equal	-1.61 -1.56		87.6 88.0		.100 .215						
For H0: Va	riance	s are eq	[ual,	F' = 1.	80	DF =	(49,39)	I	rob>F'	=	0.0596

/* 5. Does average amount of energy consumption with vent damper inactive
depend on type of chimney liner? If the answer is yes, which means are
different from each other? */

```
proc glm;
    class liner;
    model dampout=liner;
    means liner;
    means liner / bon scheffe tukey;
```

Furnace Data

General Linear Models Procedure Class Level Information

Class Levels Values LINER 3 Metal Tile Unlined

Number of observations in data set = 90

STA442s04 Overheads 3: Old Assignment on Elementary tests

NOTE: Due to missing values, only 89 observations can be used in this analysis.

Furnace Data 7 13:46 Sunday, January 4, 2004 General Linear Models Procedure Dependent Variable: DAMPOUT Energy consumpt with damper out Sum of Mean Source DF Squares Square F Value Pr > FModel 2 77.36449661 38.68224831 4.49 0.0140 Error 741.09641350 8.61740016 86 Corrected Total 88 818.46091011 R-Square C.V. Root MSE DAMPOUT Mean 10.751461 0.094524 27.30365 2.9355409 Source DF Type I SS Mean Square F Value Pr > F LINER 2 77.36449661 38.68224831 4.49 0.0140 Source DF Type III SS Mean Square F Value Pr > FLINER 2 77.36449661 38.68224831 0.0140 4.49

Furnace Data

13:46 Sunday, January 4, 2004

8

General Linear Models Procedure

Level of	DAMPOUT						
LINER	N	Mean	SD				
Metal	25	9.2884000	2.51587241				
Tile	40	11.1567500	2.71503637				
Unlined	24	11.6000000	3.62179514				

Furnace Data

13:46 Sunday, January 4, 2004

9

General Linear Models Procedure

Tukey's Studentized Range (HSD) Test for variable: DAMPOUT

NOTE: This test controls the type I experimentwise error rate.

Alpha= 0.05 Confidence= 0.95 df= 86 MSE= 8.6174 Critical Value of Studentized Range= 3.373

Comparisons significant at the 0.05 level are indicated by '***'.

LINE Compar		Simultaneous Lower Confidence Limit	Difference Between Means	Simultaneous Upper Confidence Limit	75
Unlined - Unlined -		-1.3645 0.3108	0.4433 2.3116	2.2510 4.3124	* * *
	Unlined Metal	-2.2510 0.0834	-0.4433 1.8684	1.3645 3.6533	***
1100042	Unlined Tile	-4.3124 -3.6533	-2.3116 -1.8684	-0.3108 -0.0834	* * * * * *

/* 6. Do different kinds of house tend to have different types of chimney? */

proc freq;

tables (house housecat)*shape / nopercent nocol chisq expected;

HOUSE(Type o:	f house) SHAPE(Chimney shape)					
Frequency Expected Row Pct	 Round	Square 	Rectangu lar	Total		
Ranch	22 16.652 57.89		3 7.6854 7.89	38		
Two-story	8 17.09 20.51	18 14.022 46.15	13 7.8876 33.33	39		
tri-level	3 1.3146 100.00	0 1.0787 0.00	0 0.6067 0.00	3		
Bi-level	6 2.6292 100.00		0 1.2135 0.00	6		
1.5 stories	0 1.3146 0.00	1 1.0787 33.33	2 0.6067 66.67	3		
Total	39	32	++ 18	89		

TABLE OF HOUSE BY SHAPE

Frequency Missing = 1

STATISTICS FOR TABLE OF HOUSE BY SHAPE

Statistic	DF	Value	Prob
Chi-Square	8	29.941	0.001
Likelihood Ratio Chi-Square	8	34.625	0.001
Mantel-Haenszel Chi-Square	1	0.844	0.358
Phi Coefficient		0.580	
Contingency Coefficient		0.502	
Cramer's V		0.410	

Effective Sample Size = 89 Frequency Missing = 1 WARNING: 60% of the cells have expected counts less than 5. Chi-Square may not be a valid test.

Furnace Data 15:48 Sunday, January 4, 2004 TABLE OF HOUSECAT BY SHAPE HOUSECAT (Recoded House Type) SHAPE (Chimney shape) Frequency | Expected Row Pct | Round | Square | Rectangu | Total lar -----+ Ranch | 22 | 13 | 3 | 38 16.652 | 13.663 | 7.6854 | 57.89 34.21 7.89 ----+ Two Story | 8 | 18 | 13 | 39 17.09 | 14.022 | 7.8876 | 20.51 | 46.15 | 33.33 | ----+ Other 9 1 2 12 5.2584 4.3146 2.427 75.00 8.33 16.67 ----+ Total 39 32 18 89

13

Frequency Missing = 1

STATISTICS FOR TABLE OF HOUSECAT BY SHAPE

Statistic	DF	Value	Prob
Chi-Square	4	19.167	0.001
Likelihood Ratio Chi-Square	4	21.129	0.001
Mantel-Haenszel Chi-Square	1	1.372	0.242
Phi Coefficient		0.464	
Contingency Coefficient		0.421	
Cramer's V		0.328	

Effective Sample Size = 89 Frequency Missing = 1 WARNING: 22% of the cells have expected counts less than 5. Chi-Square may not be a valid test.

> STA442s04 Overheads 3: Old Assignment on Elementary tests Page 8

/* 7. Make a new variable that is house age at or below the median versus house age above the median (refer to earlier printouts). Using this variable, do older houses tend to use more energy with the vent damper inactive? Why did I ask for this instead of a simple regression? */

```
proc ttest;
    class agecat;
    var dampout ;
```

This was at the beginning of heat3.sas

```
/* Still part of the data step -- needed for Question 7 */
    if age = . then agecat = . ;
        else if age <= 30 then agecat = 0;
        else agecat = 1;
        label agecat = 'House Age Above Median?';
proc format;
        value fmt 0 = 'At or Below Med' 1 = 'Above Median';
proc plot; /* Just checking */
        plot age * agecat;</pre>
```

				Furnace		Sunday, Jan	13 uary 4, 2004
				TTEST PRC	CEDURE		
Variable:	DAMPO	UT	Energy	consumpt wi	th damper out.		
AGECAT	N		Mean	Std Dev	Std Error	Minimum	Maximum
0 1					0.35746080 0.53519804		
Variances		Т	DF	Prob> T			
Unequal Equal							
For H0: Va	rianc	es are	equal, 1	F' = 2.14	DF = (43, 45)	Prob>F' =	0.0126

/* 8. What proportion of the variation in chimney height is explained by
chimney type? */
proc glm;
 class shape;
 model height=shape;
 means shape;
 means shape / bon scheffe tukey;

Ft	ırnace Data					14
		13:46	Sunday,	January	4,	2004
	near Models P: Level Informa					
Class Levels	Values					
SHAPE 3	Rectangula	r Round S	Square			

Number of observations in data set = 90

NOTE: Due to missing values, only 89 observations can be used in this analysis.

Furnace Data					15
	 	~	-	-	

13:46 Sunday, January 4, 2004

General Linear Models Procedure

Dependent Variabl	e: HEIGHT	Chimney height Sum of	in feet Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	2	1140.2953640	570.1476820	25.55	0.0001
Error	86	1919.3450855	22.3179661		
Corrected Total	88	3059.6404494			
	R-Square	C.V.	Root MSE	HEI	GHT Mean
	0.372689	21.59491	4.7241895	2	1.876404

/* 9. What proportion of the variation in energy consumption with vent damper active is explained by type of damper? Is it significant? What do you conclude? Did you do follow-up tests? Why or why not? */

proc glm; class damper; model dampin=damper; means damper;

		Furnace Data	13:46 Sund	ay, Janua:	21 Cy 4, 2004
General Linear Models Procedure					
Dependent Variabl	e: DAMPIN	Energy consumpt Sum of	-		
Source	DF	Sum Of Squares	Mean Square	F Value	Pr > F
Model	1	1.22983472	1.22983472	0.15	0.7013
Error	88	730.82794750	8.30486304		
Corrected Total	89	732.05778222			
	R-Square	C.V.	Root MSE	DAM	IPIN Mean
	0.001680	28.70779	2.8818159	1	0.038444
Source	DF	Type I SS	Mean Square	F Value	Pr > F
DAMPER	1	1.22983472	1.22983472	0.15	0.7013
Source	DF	Type III SS	Mean Square	F Value	Pr > F
DAMPER	1	1.22983472	1.22983472	0.15	0.7013

Furnace Data

22 13:46 Sunday, January 4, 2004

General Linear Models Procedure

Level of	DAMPIN		
DAMPER	N	Mean	SD
EVD	50	10.1430000	2.76701950
TVD	40	9.9077500	3.01986796

STA442s04 Overheads 3: Old Assignment on Elementary tests Page 11

/* 10. What proportion of the variation in energy consumption with vent damper active is explained by chimney height? Is it significant? What do you conclude? $\,*/$

proc reg; model dampin = height;

HEIGHT

1

0.076081

Furnace Data 23 13:46 Sunday, January 4, 2004 Model: MODEL1 Dependent Variable: DAMPIN Energy consumpt with damper in Analysis of Variance Sum of Mean Source DF Squares Square F Value Prob>F Model 1 18.08789 18.08789 2.229 0.1390 Error 88 713.96989 8.11329 C Total 89 732.05778 Root MSE 2.84838 R-square 0.0247 Dep Mean 10.03844 Adj R-sq 0.0136 C.V. 28.37476 Parameter Estimates Standard T for H0: Parameter Variable DF Estimate Error Parameter=0 Prob > |T|INTERCEP 8.367200 1.15886577 7.220 0.0001 1

0.05095427

1.493

0.1390

/* 11. Consider the difference in energy consumption between damper active and damper inactive. What proportion of the variation in this variable is explained by furnace type? Is it significant? What do you conclude? */

proc glm; class typfurn; model diff=typfurn; means typfurn; means typfurn / bon scheffe tukey;

		Furnace Data	13:46 Sund	ay, January	25 7 4, 2004
General Linear Models Procedure					
Dependent Variab	le: DIFF co	onsumpt w/ damper Sum of	out minus in Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	2	0.69834432	0.34917216	0.91	0.4067
Error	87	33.41509568	0.38408156		
Corrected Total	89	34.11344000			
	R-Square	C.V.	Root MSE	DI	IFF Mean
	0.020471	80.00127	0.6197431	0.	.7746667

Furnace Data

13:46 Sunday, January 4, 2004

26

General Linear Models Procedure

Level of			-DIFF	
	Ν	Mean	SD	
air	76	0.79434211	0.63196695	
water	7	0.47714286	0.57398357	
	7	0.85857143	0.49744107	
	air	N air 76 water 7	N Mean air 76 0.79434211 water 7 0.47714286	

title2 'Old assignment on choice of elementary tests'; %include 'heatread.sas'; /* Basically the data step from heat1.sas */ /* Still part of the data step -- needed for Question 7 */ if age = . then agecat = \cdot ; else if age <= 30 then agecat = 0; else agecat = 1; label agecat = 'House Age Above Median?'; proc format; value fmt 0 = 'At or Below Med' 1 = 'Above Median'; proc plot; /* Just checking */ plot age * agecat; /* 1. If you observe the shape of a house's chimney, does that improve your ability to predict what type of furnace the house has? */ proc freq; tables shape*typfurn / nopercent nocol chisq expected; /* 2. Is there more average energy consumption with the vent damper active, or inactive? */ proc means mean std n t prt; /* Did this in heat2.sas */ var diff; /* 3. Is there a tendency for houses that consume lots of energy with the vent damper inactive to also consume a lot of energy with the vent damper active? */ /* Did this already */ proc corr nosimple; var dampin dampout; /* 4. Does energy consumption depend on type of vent damper? Your dependent variable should be the difference of two variables in the raw data file. */ /* Did this already */ proc ttest; class damper; var diff ; /* 5. Does average amount of energy consumption with vent damper inactive depend on type of chimney liner? If the answer is yes, which means are different from each other? */ proc glm; class liner; model dampout=liner; means liner; means liner / bon scheffe tukey;

> STA442s04 Overheads 3: Old Assignment on Elementary tests Page 14

/* 6. Do different kinds of house tend to have different types of chimney? */ proc freq; tables (house housecat) * shape / nopercent nocol chisq expected; /* 7. Make a new variable that is house age at or below the median versus house age above the median (refer to earlier printouts). Using this variable, do older houses tend to use more energy with the vent damper inactive? Why did I ask for this instead of a simple regression? */ proc ttest; class agecat; var dampout ; /* 8. What proportion of the variation in chimney height is explained by chimney type? */ proc glm; class shape; model height=shape; means shape; means shape / bon scheffe tukey; /* 9. What proportion of the variation in energy consumption with vent damper active is explained by type of damper? Is it significant? What do you conclude? Did you do follow-up tests? Why or why not? */ proc glm; class damper; model dampin=damper; means damper; /* 10. What proportion of the variation in energy consumption with vent damper active is explained by chimney height? Is it significant? What do you conclude? */ proc reg; model dampin = height; /* 11. Consider the difference in energy consumption between damper active and damper inactive. What proportion of the variation in this variable is explained by furnace type? Is it significant? What do you conclude? */ proc glm; class typfurn; model diff=typfurn; means typfurn; means typfurn / bon scheffe tukey;