Elementary tests

```
/************** heat2.sas ******************/
title2 'Standard elementary tests';
options pagesize=35;
%include 'heatread.sas'; /* Basically the data step from heat1.sas */
proc means
            mean std n t prt;
     title3 'Matched t-test on Damper in Versus out';
     var diff;
proc ttest;
     title3 'Two-sample t-test: Does consumption depend on Damper Type?';
     class damper;
     var dampin dampout diff;
proc glm; /* One-way Analysis of Variance: model DV=IV */
     title2 'Average energy consumption as a function of chimney shape';
     class shape;
     model consume=shape;
     means shape;
proc freq; /* Crosstabs, chisquare test of independence*/
     title2 'Relationship between damper type and other cat vars';
     tables damper * (typfurn shape liner house housecat)
              / nopercent nocol chisq expected;
proc plot; /* Scatterplot */
     title2 'Energy consumption as a function of house age';
     plot consume * age
          consume * age = house;
proc corr ;
     title2 'Correlation matrix of quantitative variables';
     var area height age dampin -- diff;
proc reg; /* Simple regression: model DV=IV */
     model consume=age;
```

1

22:29 Saturday, January 3, 2004

Matched t-test on Damper in Versus out

Analysis Variable : DIFF consumpt w/ damper out minus in

Mean	Std Dev	N	T	Prob> T
0.7746667	0.6191099	90	11.8704824	0.0001

Furnace Data

2

22:21 Saturday, January 3, 2004

Two-sample t-test: Does consumption depend on Damper Type?

TTEST PROCEDURE

DAMPER	N		Mean	Std Dev	Std Error	Minimum	Maximum
TVD EVD	40 50		0775000 4300000	3.01986796 2.76701950	0.47748305 0.39131565	4.00000000	18.26000000
Variances		T	DF	Prob> T			
Unequal Equal	-0.3 -0.3		80.2 88.0	0.7042 0.7013			

For H0: Variances are equal, F' = 1.19 DF = (39,49) Prob>F' = 0.5578

TTEST PROCEDURE

DAMPER N	Mean	Std Dev	Std Error	Minimum	Maximum
				4.29000000	

Variances	Т	DF	Prob> T
Unequal	-0.6617	80.3	0.5101
Equal	-0.6679	88.0	0.5059

For H0: Variances are equal, F' = 1.18 DF = (39,49) Prob>F' = 0.5739

Furnace Data

4

22:21 Saturday, January 3, 2004

Two-sample t-test: Does consumption depend on Damper Type?

TTEST PROCEDURE

Variable: DIFF consumpt w/ damper out minus in

DAMPER	N		Mean	Std Dev	Std Error	Minimum	Maximum
TVD EVD	40 50		5150000 5520000	0.51063334 0.68545007	0.08073822 0.09693728	-0.38000000 -0.87000000	2.29000000
Variances		Т	DF	Prob> T			
Unequal Equal	-1.61 -1.56		87.6 88.0	0.1100 0.1215			

For H0: Variances are equal, F' = 1.80 DF = (49,39) Prob>F' = 0.0596

Furnace Data 5

Average energy consumption as a function of chimney shape 22:21 Saturday, January 3, 2004

General Linear Models Procedure Class Level Information

Class Levels Values

SHAPE 3 Rectangular Round Square

Number of observations in data set = 90

NOTE: Due to missing values, only 89 observations can be used in this analysis.

Furnace Data 6
Average energy consumption as a function of chimney shape 22:21 Saturday, January 3, 2004

General Linear Models Procedure

Dependent Variable: CONSUME Aver Energy Consumpt					
		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	2	61.64218819	30.82109410	3.83	0.0254
Error	86	691.42928934	8.03987546		
Corrected Total	88	753.07147753			
	R-Square	C.V.	Root MSE	CONS	SUME Mean
	0.081854	27.35425	2.8354674	<u>-</u>	L0.365730
Source	DF	Type I SS	Mean Square	F Value	Pr > F
SHAPE	2	61.64218819	30.82109410	3.83	0.0254
Source	DF	Type III SS	Mean Square	F Value	Pr > F
SHAPE	2	61.64218819	30.82109410	3.83	0.0254

Furnace Data 7
Average energy consumption as a function of chimney shape 22:21 Saturday, January 3, 2004

General Linear Models Procedure

)
28964
61046
.23575

8

Relationship between damper type and other cat vars 22:21 Saturday, January 3, 2004

TABLE OF DAMPER BY TYPFURN

DAMPER(Type of damper)	TYPFURN(Type of furnace)
------------------------	--------------------------

Frequency Expected				
Row Pct	Forced a ir	Gravity +	Forced w ater +	Total
TVD	31 33.778 77.50	4 3.1111 10.00	5 3.1111 12.50	40
EVD	45 42.222 90.00	3 3.8889 6.00	2 2 3.8889 4.00	50
Total	76	7	7	90

Furnace Data 9 Relationship between damper type and other cat vars 22:21 Saturday, January 3, 2004

STATISTICS FOR TABLE OF DAMPER BY TYPFURN

Statistic	DF	Value	Prob
Chi-Square	2	2.933	0.231
Likelihood Ratio Chi-Square	2	2.952	0.229
Mantel-Haenszel Chi-Square	1	2.898	0.089
Phi Coefficient		0.181	
Contingency Coefficient		0.178	
Cramer's V		0.181	

Sample Size = 90

WARNING: 67% of the cells have expected counts less than 5. Chi-Square may not be a valid test.

10

Relationship between damper type and other cat vars

22:21 Saturday, January 3, 2004

TABLE OF DAMPER BY SHAPE

DAMPER(Type of damper) SHAPE(Chimney shape)

Frequency Expected Row Pct	 Round 	Square	Rectangu lar	Total
	1	1	1202	
TVD	15	14	10	39
	17.09 38.46	14.022 35.90	7.8876 25.64	
	+	+	++	
EVD	24	18	8	50
	21.91	17.978	10.112 16.00	

Frequency Missing = 1

Furnace Data

Total 39 32 18 89

11

Relationship between damper type and other cat vars

22:21 Saturday, January 3, 2004

STATISTICS FOR TABLE OF DAMPER BY SHAPE

Statistic	DF	Value	Prob
Chi-Square	2	1.462	0.481
Likelihood Ratio Chi-Square	2	1.457	0.483
Mantel-Haenszel Chi-Square	1	1.363	0.243
Phi Coefficient		0.128	
Contingency Coefficient		0.127	
Cramer's V		0.128	

Effective Sample Size = 89 Frequency Missing = 1

12

Relationship between damper type and other cat vars

22:21 Saturday, January 3, 2004

TABLE OF DAMPER BY LINER

DAMPER(Type of damper) LINER(Type of Chimney liner)

Frequency Expected	 			
-	 Unlined +	Tile +	Metal +	Total
TVD	11 10.517 28.21	18 17.528 46.15	10 10.955 25.64	39 -
EVD	13 13.483 26.00	22 22.472 44.00	15 14.045 30.00	50

Frequency Missing = 1

24

Total

Furnace Data

13

Relationship between damper type and other cat vars

40

25

22:21 Saturday, January 3, 2004

89

STATISTICS FOR TABLE OF DAMPER BY LINER

Statistic	DF	Value	Prob
Chi-Square	2	0.210	0.900
Likelihood Ratio Chi-Square	2	0.211	0.900
Mantel-Haenszel Chi-Square	1	0.170	0.680
Phi Coefficient		0.049	
Contingency Coefficient		0.049	
Cramer's V		0.049	

Effective Sample Size = 89 Frequency Missing = 1

14

Relationship between damper type and other cat vars

22:21 Saturday, January 3, 2004

TABLE OF DAMPER BY HOUSE

DAMPER (Type of damper) HOUSE (Type of house)

Frequency	
Expected	ı

пурсссса	1					
Row Pct	Ranch	Two-stor	tri-leve	Bi-level	1.5 stor	Total
		У	1		ies	
	+	+	+	+	++	
TVD	14	20	2	2	2	40
	16.889	17.778	1.3333	2.6667	1.3333	
	35.00	50.00	5.00	5.00	5.00	
	+	+	+	+	++	
EVD	24	20	1	4	1	50
	21.111	22.222	1.6667	3.3333	1.6667	
	48.00	40.00	2.00	8.00	2.00	
	+	+	+	+	++	
Total	38	40	3	6	3	90

Furnace Data

15

Relationship between damper type and other cat vars

22:21 Saturday, January 3, 2004

STATISTICS FOR TABLE OF DAMPER BY HOUSE

Statistic	DF	Value	Prob
Chi-Square	4	2.889	0.576
Likelihood Ratio Chi-Square	4	2.909	0.573
Mantel-Haenszel Chi-Square	1	0.795	0.373
Phi Coefficient		0.179	
Contingency Coefficient		0.176	
Cramer's V		0.179	

Sample Size = 90

WARNING: 60% of the cells have expected counts less than 5. Chi-Square may not be a valid test.

Relationship between damper type and other cat vars

16

22:21 Saturday, January 3, 2004

TABLE OF DAMPER BY HOUSECAT

DAMBED /E	_	٦ ١	TIGHT CROWN / D	m \
DAMPER (Type	ΟI	damper)	HOUSECAT(Recoded House	Type)

Frequency				
Expected				
Row Pct	Ranch	Two Stor	Other	Total
		У		
TVD	 14	20	+ 6	40
	16.889	17.778	5.3333	
	35.00	50.00	15.00	
EVD	 24	20	+ 6	+ 50
	21.111	22.222	6.6667	İ
	48.00	40.00	12.00	İ
	+	+	+	+
Total	38	40	12	90

Furnace Data 17 Relationship between damper type and other cat vars 22:21 Saturday, January 3, 2004

STATISTICS FOR TABLE OF DAMPER BY HOUSECAT

Statistic	DF	Value	Prob
Chi-Square	2	1.539	0.463
Likelihood Ratio Chi-Square	2	1.549	0.461
Mantel-Haenszel Chi-Square	1	1.192	0.275
Phi Coefficient		0.131	
Contingency Coefficient		0.130	
Cramer's V		0.131	

Sample Size = 90

18

Energy consumption as a function of house age

22:21 Saturday, January 3, 2004

Plot of CONSUME*AGE. Legend: A = 1 obs, B = 2 obs, etc.

Furnace Data Energy consumption as a function of house age

22:21 Saturday, January 3, 2004

19

Plot of CONSUME*AGE. Symbol is value of HOUSE.

NOTE: 16 obs hidden.

Furnace Data Correlation matrix of quantitative variables

22:21 Saturday, January 3, 2004

20

Correlation Analysis

8 'VAR' Variables:	AREA	HEIGHT	AGE	DAMPIN	DAMPOUT	DAMPER
	CONSUME	DIFF				

Simple Statistics

Variable	N	Mean	Std Dev	Sum
AREA	89	62.561798	32.530739	5568.000000
HEIGHT	90	21.966667	5.925473	1977.000000
AGE	90	38.566667	31.093209	3471.000000
DAMPIN	90	10.038444	2.867990	903.460000
DAMPOUT	90	10.813111	3.088407	973.180000
DAMPER	90	1.555556	0.499688	140.000000
CONSUME	90	10.425778	2.964117	938.320000
DIFF	90	0.774667	0.619110	69.720000

Simple Statistics

Variable	Minimum	Maximum	Label
AREA	28.000000	168.000000	Chimney area
HEIGHT	14.000000	39.000000	Chimney height in feet
AGE	1.000000	99.00000	House age in yrs (99=99+)
DAMPIN	2.970000	18.260000	Energy consumpt with damper in
DAMPOUT	3.200000	20.550000	Energy consumpt with damper out
DAMPER	1.000000	2.000000	Type of damper
CONSUME	3.085000	19.405000	Aver Energy Consumpt
DIFF	-0.870000	3.980000	consumpt w/ damper out minus in

ivo variables

Correlation matrix of quantitative variables

22:21 Saturday, January 3, 2004

Correlation Analysis

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / Number of Observations

	AREA	HEIGHT	AGE	DAMPIN
AREA Chimney area	1.00000 0.0 89	0.54409 0.0001 89	0.48488 0.0001 89	0.26655 0.0116 89
HEIGHT Chimney height in feet	0.54409 0.0001 89	1.00000 0.0 90	0.57519 0.0001 90	0.15719 0.1390 90
AGE House age in yrs (99=99+)	0.48488 0.0001 89	0.57519 0.0001 90	1.00000 0.0 90	0.14627 0.1689 90
DAMPIN Energy consumpt with damper in	0.26655 0.0116 89	0.15719 0.1390 90	0.14627 0.1689 90	1.00000
DAMPOUT Energy consumpt with damper out	0.25148 0.0174 89	0.15111 0.1551 90	0.15973 0.1326 90	0.98111 0.0001 90
DAMPER Type of damper	-0.03647 0.7344 89	-0.02403 0.8221 90	-0.07256 0.4967 90	0.04099 0.7013 90
	AREA	HEIGHT	AGE	DAMPIN
CONSUME Aver Energy Consumpt	0.26001 0.0139 89	0.15477 0.1453 90	0.15398 0.1473 90	0.99491 0.0001 90
DIFF consumpt w/ damper out minus in	0.02034 0.8499 89	0.02562 0.8106 90	0.11921 0.2631 90	0.26177 0.0127 90

STA442s04 Overheads 2: Elementary Tests

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / Number of Observations

	DAMPOUT	DAMPER	CONSUME	DIFF
AREA Chimney area	0.25148 0.0174 89	-0.03647 0.7344 89	0.26001 0.0139 89	0.02034 0.8499 89
HEIGHT Chimney height in feet	0.15111 0.1551 90	-0.02403 0.8221 90	0.15477 0.1453 90	0.02562 0.8106 90
AGE House age in yrs (99=99+)	0.15973 0.1326 90	-0.07256 0.4967 90	0.15398 0.1473 90	0.11921 0.2631 90
DAMPIN Energy consumpt with damper in	0.98111 0.0001 90	0.04099 0.7013 90	0.99491 0.0001 90	0.26177 0.0127 90
DAMPOUT Energy consumpt with damper out	1.00000	0.07102 0.5059 90	0.99561 0.0001 90	0.44355 0.0001 90
DAMPER Type of damper	0.07102 0.5059 90	1.00000 0.0 90	0.05683 0.5947 90	0.16441 0.1215 90
	DAMPOUT	DAMPER	CONSUME	DIFF
CONSUME Aver Energy Consumpt	0.99561 0.0001 90	0.05683 0.5947 90	1.00000 0.0 90	0.35771 0.0005 90
DIFF consumpt w/ damper out minus in	0.44355 0.0001 90	0.16441 0.1215 90	0.35771 0.0005 90	1.00000

22:42 Saturday, January 3, 2004

Simple regression of average consumption on age

Model: MODEL1

Dependent Variable: CONSUME Aver Energy Consumpt

Analysis of Variance

		Sum	of	Mean		
Source	DF	Squar	es	Square	F Value	Prob>F
Model	1	18.539	27	18.53927	2.137	0.1473
Error	88	763.413	82	8.67516		
C Total	89	781.953	10			
Root MSE	2	.94536	R-s	square	0.0237	
Dep Mean	10	.42578	Adj	j R-sq	0.0126	
C.V.	28	.25076				

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for H0: Parameter=0	Prob > T
INTERCEP	1	9.859672	0.49633897	19.865	0.0001
AGE	1	0.014679	0.01004103	1.462	0.1473

Variable Variable Label

INTERCEP 1 Intercept

AGE 1 House age in yrs (99=99+)