
And the output. First, the overall F test, which is very different from what we had before.

Model: MODEL1  
NOTE: No intercept in model. R-square is redefined.
Dependent Variable: SALES      Number of Cases Sold                    

                             Analysis of Variance

                                Sum of         Mean
       Source          DF      Squares       Square      F Value       Prob>F

       Model            4   7183.80000   1795.95000      170.286       0.0001
       Error           15    158.20000     10.54667
       U Total         19   7342.00000

           Root MSE       3.24756     R-square       0.9785
           Dep Mean      18.63158     Adj R-sq       0.9727
           C.V.          17.43042

With no intercept, 

   • • Total sum of squares is now   Yi
2Σ

i = 1

n

. It's no longer corrected for the mean; U means

uncorrected. R2 is radically affected
   • • The overall F-test is for whether ALL the betas are zero - usually uninteresting

Notice now the parameter estimates are exactly the cell means.

                              Parameter Estimates

                      Parameter      Standard    T for H0:               

     Variable  DF      Estimate         Error   Parameter=0    Prob > |T|

     P1         1     14.600000    1.45235441        10.053        0.0001

     P2         1     13.400000    1.45235441         9.226        0.0001

     P3         1     19.500000    1.62378159        12.009        0.0001

     P4         1     27.200000    1.45235441        18.728        0.0001

Now the custom tests.  I will repeat the test statement for each one, and provide some discussion.
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The Statement 

     alleq:    test p1=p2=p3=p4;

yields this output:

Dependent Variable: SALES   
Test: ALLEQ    Numerator:    196.0737  DF:    3   F value:  18.5911
               Denominator:  10.54667  DF:   15   Prob>F:    0.0001

This really is the overall test for whether all four means are equal -- again. The F value is the same

as we got earlier at least two times. But look at the test statement.  As usual, it specifies restrictions

on the betas that give us the reduced model. But this time, those restrictions are not of the simple

form we saw before, setting a subset of the betas equal to zero. Now we're setting them all to be

equal. This shows you two things:

° The test statement in proc reg is a little more general than it seemed at first. It

lets you test simultaneously whether several linear combinations of betas equal zero. Here, we're

testing three linear combinations: β1−β2=0, β2−β3=0, β3−β4=0. The test statement could have

read:        alleq:    test p1-p2=0, p2-p3=0, p3-p4=p4;

° The full versus reduced model business is also more general than you might think.

In ordinary regression, "all" we can do is test collections linear restrictions on the parameters. But

in the most general hypothesis testing framework, all one ever does is to compare the fit of a full

model to the fit of a reduced model in which some restriction has been placed on the values of the

parameters. Those restrictions are called the "null hypothesis."  You didn't really need to know

this.

To really understand the next several test statements, we need to recognize that the 4-category

variable Package Design actually represents the combination of two independent variables: Number

of Colours and Presence versus absence of cartoons. That is, we have a two-factor design.

Consider the following table:
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Population Cell Means and Marginal Means for the Kenton Example

Cartoon No Cartoon

3 Colours µ1 µ2   µ1 + µ2

2
5 Colours µ3 µ4   µ3 + µ4

2
  µ1 + µ3

2
  µ2 + µ4

2

In addition to population mean sales for each package design (denoted by µ1 through µ4), the table

above shows marginal means -- quantities like   µ2 + µ4

2 , which are obtained by averaging over

rows or columns. 

 If there are differences among marginal means for a categorical independent variable in a two-way
(or higher) layout like this, we say there is a main effect for that variable.  Tests for main effects
are of great interest; they can indicate whether, averaging over the values of the other categorical
independent variables in the design, whether the independent variable in question is related to the
dependent variable. Note that averaging over the values of other independent variables is not the
same thing as controlling for them, but it can still be a valuable thing to do. 
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The population means in the preceding table are estimated by corresponding sample quantities. The
numbers in the following table come from the means output of the first proc glm. 

Sample Cell and Marginal Means for the Kenton Example

Cartoon No Cartoon

3 Colours 14.6 13.4 14

5 Colours 19.5 27.2 23.35

17.05 20.3

(14.6+13.4)/2 = 14, and so on.

The next custom test is for the main effect of number of colours (3 vs. 5). It tests whether
  µ1 + µ2

2 =   µ3 + µ4

2 . It's the same thing as asking whether the marginal mean for 2 Colours (14) is

significantly different from the marginal mean for 5 colours (23.35).

The test command, obtained directly by multiplying both sides =f   µ1 + µ2

2 =   µ3 + µ4

2 by 2 (this has

no effect on the test), is

     numcol:   test p1+p2 = p3+p4;

yielding this output:

Dependent Variable: SALES   
Test: NUMCOL   Numerator:    411.4000  DF:    1   F value:  39.0076
               Denominator:  10.54667  DF:   15   Prob>F:    0.0001

So the answer is Yes. There is a significant main effect for number of colours, with 5-colour

packages generating more sales when you average across Cartoon and No-cartoon designs. And

notice how much more convenient the cell means coding makes this test. Recall 

     ncolour: test p1+p2 = p3; /* 3 vs 5 colours */

from Page 13.
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Similarly, the main effect for presence versus absence of cartoons on the package is tested by

asking whether   µ1 + µ3

2 =   µ2 + µ4

2 . 

     cartoon:  test p1+p3 = p2+p4;

Dependent Variable: SALES   
Test: CARTOON  Numerator:     49.7059  DF:    1   F value:   4.7129
               Denominator:  10.54667  DF:   15   Prob>F:    0.0464

 

So the main effect for Cartoon is barely significant, with Non-cartoon designs doing better.

The two-way design we have been looking at is called a factorial design. In a factorial design, there

are two or more categorical independent variables (called factors, in this context) typically with data

with for combinations of the factors being collected. Factorial designs are often found in

experimental studies, but not always.

When Sir Ronald Fisher (in whose honour the F-test is named) dreamed up factorial designs, he

pointed out that they enable the scientist to investigate the effects of several independent variables at

much less expense than if a separate experiment had to be conducted to test each one. In addition,

they allow one to ask systematically whether the effect of one independent variable depends on

the value of another independent variable. If the effect of one independent variable depends on

another, we will say there is an interaction between those variables. We talk about an A "by" B

or A x B interaction.  An interaction means "it depends."
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Let's look at the table of population means again.

Cartoon No Cartoon

3 Colours µ1 µ2   µ1 + µ2

2
5 Colours µ3 µ4   µ3 + µ4

2
  µ1 + µ3

2
  µ2 + µ4

2

The effect of Cartoons when the package has three colours is represented by µ1-µ2. The effect of
Cartoons when the package has five colours is represented by µ3-µ4. Therefore, the interaction of
Cartoon by number of colours is a difference between differences, and we want to test whether
µ1-µ2=µ3-µ4. That's what we're doing below:

     inter1:   test p1-p2 = p3-p4; /* Effect of cartoon depends on ncolours */

Dependent Variable: SALES   
Test: INTER1   Numerator:     93.1882  DF:    1   F value:   8.8358
               Denominator:  10.54667  DF:   15   Prob>F:    0.0095

Another way to think about the interaction is to ask whether the effect of number of colours

depends on presence versus absence of cartoon pictures. We are asking whether µ1-µ3=µ2-µ4.

Here's the test statement and the output.

     inter2:   test p1-p3 = p2-p4; /* Effect of ncolours depends on cartoon */

Dependent Variable: SALES   
Test: INTER2   Numerator:     93.1882  DF:    1   F value:   8.8358
               Denominator:  10.54667  DF:   15   Prob>F:    0.0095

Notice that this F test is identical to the last one? It happens because µ1–µ2=µ3–µ4 is algebraically

equivalent to µ1–µ3=µ2–µ4. So the two ways of talking about the interaction are the same thing,

mathematically. Fortunately, this always happens, no matter how big the design. If you express

an interaction correctly as a collection of differences between differences, it is algebraically

equivalent to all other correct ways of expressing the interaction. Choose the one that is easiest to

think about. 
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If an interaction is significant, you should graph it to figure out what it means. Here is one

example:

3 0

2 5

2 0

1 5

1 0

M
e
a
n
 
S
a
l
e
s

3 Colours 5 Colours

Package Design and Sales 1

No Cartoon

Cartoon

Whenever you have an interaction, such graphs will display non-parallel lines. Well actually, when

you plot an interaction with real data, the lines will always be at least a little non-parallel. The

question is whether they depart significantly from being parallel. Here, the advantage of 5

colours over 3 is significantly greater for designs without cartoons, and we can see it in the graph. 

The post-hoc tests tell us that there is a significantly more sales with 5-colour designs, for both the

cartoon and non-cartoon conditions. The interaction tells us that this effect is significantly greater

when there are no cartoons.

Remember the significant main effect for cartoon? It was just barely significant: p = 0.0464.  The

graph above shows quite clearly that this effect is entirely due to the advantage of no-cartoon

designs in the 5-colour condition.  So here, we have a main effect that's significant, but we really

should not interpret it, because of the interaction. 

Some tests claim that if you have an interaction, you should never interpret the main effects. But

look at the next figure, which graphs the same interaction in the other direction (there are only two

ways to do it, because it is a two-factor interaction).
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The picture that emerges here is that 5-colour designs are better overall, and the advantage is

greater in the No-cartoon condition. Here, we can see that it makes sense to interpret both the main

effect for number of colours and the interaction. This example shows why I disagree with the

advice to never interpret main effects when there is an interaction. 

The last six tests are the pairwise differences between means. Their value is that we can convert

them easily to post-hoc Bonferroni or Scheffé tests.  Personally, I like the idea of letting the tests

for main effects, interactions and all pairwise differences as follow-ups to the initial oneway

ANOVA.  
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Dependent Variable: SALES   
Test: Y3_N3    Numerator:      3.6000  DF:    1   F value:   0.3413
               Denominator:  10.54667  DF:   15   Prob>F:    0.5677

Dependent Variable: SALES   
Test: Y3_Y5    Numerator:     53.3556  DF:    1   F value:   5.0590
               Denominator:  10.54667  DF:   15   Prob>F:    0.0399

Dependent Variable: SALES   
Test: Y3_N5    Numerator:    396.9000  DF:    1   F value:  37.6327
               Denominator:  10.54667  DF:   15   Prob>F:    0.0001

Dependent Variable: SALES   
Test: N3_Y5    Numerator:     82.6889  DF:    1   F value:   7.8403
               Denominator:  10.54667  DF:   15   Prob>F:    0.0135

Dependent Variable: SALES   
Test: N3_N5    Numerator:    476.1000  DF:    1   F value:  45.1422
               Denominator:  10.54667  DF:   15   Prob>F:    0.0001

Dependent Variable: SALES   
Test: Y5_N5    Numerator:    131.7556  DF:    1   F value:  12.4926
               Denominator:  10.54667  DF:   15   Prob>F:    0.0030

Sample Question:  What p-value is required for significance if all 9 tests are to be protected with

a Bonferroni correction?

Answer:  0.05/9 = 0.0056
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Effect F p Fsch

=F/3*

Significant with
Bonferroni?

Significant with
Scheffé?

Main Effect for Ncolours 39.0076 0.0001 13.0025 Yes Yes

Main effect for Cartoon 4.7129 0.0464 1.57097 No No

Interaction 8.8358 0.0095 2.9453 No No

Cartoon3 vs NoCartoon3 0.3413 0.5677 0.1138 No No

Cartoon3 vs Cartoon5 5.0590  0.0399 1.6863 No No

Cartoon3 vs NoCartoon5 37.6327  0.0001 12.5442 Yes Yes

NoCartoon3 vs Cartoon5 7.8403 0.0135 2.6134 No No

NoCart3 vs Nocart5 45.1422 0.0001 15.0474 Yes Yes

Cartoon5 vs NoCartoon5 12.4926 0.0030 4.1642 Yes Yes

* Compare with critical value of F= 3.28738

The main thing to note here is that when you treat the test for interaction as a follow-up test instead

of a one-at-a-time test, it's no longer significant.  You are left with a simpler story. Five-colour

designs work better than three-colour designs, and designs without cartoons work better in the 5-

colour condition.

In general, if you go the multiple comparison route, it's going to make you more conservative.

You will draw fewer conclusions. On the other hand, in terms of this particular example, the

implications for action (marketing action) are the same whether or not you use multiple

comparisons. The Kenton company should use a 5-colour design without cartoons.

Chapter 4, Page 24



We've seen how to do the tests above with dummy variables and proc reg.  If you are only

interested in testing single contrasts, the estimate command of proc glm is a bit more

convenient, because proc glm sets up the dummy variables for you. All you have to do is give the

coefficients of the contrast you want.

/* Single contrasts are just as convenient with the ESTIMATE
   statement of proc glm. Illustrate all pairwise. 
   Note F = t-squared  */

proc glm;
     class package;
     model sales=package;
     estimate 'Y3_N3' package 1 -1  0  0;
     estimate 'Y3_Y5' package 1  0 -1  0;
     estimate 'Y3_N5' package 1  0  0 -1;
     estimate 'N3_Y5' package 0  1 -1  0;
     estimate 'N3_N5' package 0  1  0 -1;
     estimate 'Y5_N5' package 0  0  1 -1;

It's nice to have this degree of control, but not always necessary.  In factorial analysis of variance,

we commonly wish to test all main effects and interactions.  Proc glm will compose the contrasts

for you, as well as setting up the dummy variables:

/* Actually it's a two-way ANOVA */

proc glm;
     class ncolours cartoon;
     model sales = ncolours|cartoon;
/*   The model statement could have been
     model sales = ncolours cartoon ncolours*cartoon; */

 

In proc glm, if you separate a collection of classification variables with vertical bars, it means

include all the main effects and interactions among the variables.

Here is the output:
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                        General Linear Models Procedure

Dependent Variable: SALES   Number of Cases Sold
                                     Sum of            Mean
Source                  DF          Squares          Square  F Value    Pr > F

Model                    3     588.22105263    196.07368421    18.59    0.0001

Error                   15     158.20000000     10.54666667

Corrected Total         18     746.42105263

                  R-Square             C.V.        Root MSE         SALES Mean

                  0.788055         17.43042       3.2475632          18.631579

Source                  DF        Type I SS     Mean Square  F Value    Pr > F

NCOLOURS                 1     452.86549708    452.86549708    42.94    0.0001
CARTOON                  1      42.16732026     42.16732026     4.00    0.0640
NCOLOURS*CARTOON         1      93.18823529     93.18823529     8.84    0.0095

Source                  DF      Type III SS     Mean Square  F Value    Pr > F

NCOLOURS                 1     411.40000000    411.40000000    39.01    0.0001
CARTOON                  1      49.70588235     49.70588235     4.71    0.0464
NCOLOURS*CARTOON         1      93.18823529     93.18823529     8.84    0.0095

The output starts with an overall test that is 100% identical to the initial oneway ANOVA. It has the same R2, the

same F, the same p-value --- everything. This always happens.  No matter how many independent variables you

have or how many values each one has, simultaneously testing all the main effects and interactions is the same as

defining a new independent variable whose values are the combinations of the variable values from the factorial

ANOVA --- and then doing a one-way analysis of variance using that variable.

By default, SAS proc glm produces two sets of tests for the main effects and interaction(s). In the tests based

on Type I Sums of Squares, each effect is controlled only for those before it in the table. In Type III Sums of

Squares, each effect is controlled for all the others.  That's why the last test is always identical for these two

methods.  When sample sizes are all equal or proportional, the independent variables are completely unrelated, and

tests based on Type I and Type III sums of squares are all the same -- not just the last one. 

The F and p values we get from Type III sums of squares match what we've done using proc reg. Most of the

time, the tests from the Type III sums of squares are what we want.
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Methods for factorial ANOVA and testing interactions can easily be extended in several ways.

° More independent variables

° More than two values for an independent variable

° Interactions between continuous independent variables

° Interactions between categorical independent variables and continuous independent 

variables.

Extension to more than two factors is straightforward. Suppose we had grocery stores of three different

sizes (small, medium and large), and within each size, the four package designs were randomly allocated to

stores. We would have three factors -- store size, number of colours, and presence versus absence of cartoons. 

° For each independent variable, averaging over the other two variables would give marginal 

means -- the basis for estimating and testing for main effects.

° Averaging over each of the independent variables in turn, we would have a two-way 

marginal table of means for the other two variables, and the pattern of means in that table 

could show a two-way interaction.   

The full three-dimensional table of means would provide a basis for looking at a three-way, or three-factor

interaction. The interpretation of a three-way interaction is that the nature of the two-way interaction depends on

the value of the third variable.  This principle extends to any number of factors, so we would interpret a six-way

interaction to mean that the nature of the 5-way interaction depends on the value of the sixth variable.

° Fortunately, the order in which one considers the variables does not matter.  For example, 

we can say that the A by B interaction depends on the value of C, or that the A by C 

interaction depends on B, or that the B by C interaction depends on the value of A.  The 

translations of these statements into algebra are all equivalent to one another, always.  This 

principle extends to any number of factors. 
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° As you might imagine, as the number of factors becomes large, interpreting higher-way 

interactions -- that is, figuring out what they mean -- becomes more and more difficult.  

For this reason, sometimes the higher-order interactions are deliberately omitted from the 

full model in big experimental designs; they are never tested.  Is this reasonable?  Most of 

my answers are just elaborate ways to say I don't know.
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