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Chapter 1

Introduction

This course is about using statistical methods to draw conclusions from real
data. It is deliberately non-mathematical, relying on translations of sta-
tistical theory into English. For the most part, formulas are avoided. This
involves some loss of precision, it also makes the course accessible to students
from non-statistical disciplines (particularly graduate students and advanced
undergraduates on their way to graduate school) who need to use statistics
in their research. Even for students with strong training in theoretical statis-
tics, the use of plain English can help reveal the connections between theory
and applications, while also suggesting a useful way to communicate with
non-statisticians.

We will avoid mathematics, but we will not avoid computers. Learning to
apply statistical methods to real data involves actually doing it, and the use
of software is not optional. Furthermore, we will not employ “user-friendly”
menu-driven statistical programs. Why?

• It’s just too easy to poke around in the menus trying different things,
produce some results that seem reasonable, and then two weeks later
be unable to say exactly what one did.

• Real data sets tend to be large and complex, and most statistical anal-
yses involve a sizeable number of operations. If you discover a tiny
mistake after you produce your results, you don’t want to go back and
repeat two hours of menu selections and mouse clicks, with one tiny
variation.

• If you need to analyze a data set that is similar to one you have analyzed
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in the past, it’s a lot easier to edit a program than to remember a
collection of menu selections from last year.

Don’t worry! The word “program” does not mean we are going to write
programs in some true programming language like C or Java. We’ll use
statistical software in which most of the actual statistical procedures have
already been written by experts; usually, all we have to do is invoke them by
using high-level commands.

The statistical packages we will use in this course are SAS and S. These
packages are command-oriented rather than menu-oriented, and are very
powerful. They are industrial strength tools, and will be illustrated in an
industrial strength environment— unix. This is mostly for local convenience.
There are Windows versions of both SAS and S that work just as well as the
unix versions, except for very big jobs.

Applied Statistics really refers to two related enterprises. The first might
be more accurately termed “Applications of Statistics,” and consists of the
appropriate application of standard general techniques. The second enter-
prise is the development of specialized techniques that are designed specifi-
cally for the data at hand. The difference is like buying your clothes from
Walmart versus sewing them yourself (or going to a tailor). In this course,
we will do both. We’ll maintain the non-mathematical nature of the course
in the second half by substituting computing power and random number
generation for statistical theory.

1.1 Vocabulary of data analysis

We start with a data file. Think of it as a rectangular array of numbers,
with the rows representing cases (units of analysis, observations, subjects,
replicates) and the columns representing variables (pieces of information
available for each case).

• A physical data file might have several lines of data per case, but you
can imagine them listed on a single long line.

• Data that are not available for a particular case (for example because
a subject fails to answer a question, or because a piece of measuring
equipment breaks down) will be represented by missing value codes.
Missing value codes allow observations with missing information to be
automatically excluded from a computation.
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• Variables can be quantitative (representing amount of something) or
categorical. In the latter case the ”numbers” are codes representing
category membership. Categories may be ordered (small vs. medium
vs. large) or unordered (green vs. blue vs. yellow). When a quan-
titative variable reflects measurement on a scale capable of very fine
gradation, it is sometimes described as continuous. Some statisti-
cal texts use the term qualitative to mean categorical. When an
anthropologist uses the word “qualitative,” however, it usually means
“non-quantitative.”

Another very important way to classify variables is

Independent Variable (IV): Predictor = X (actually Xi, i = 1, . . . , n)

Dependent Variable (DV): Predicted = Y (actually Yi, i = 1, . . . , n)

Example: X = weight of car in kilograms, Y = fuel efficiency in litres per
kilometer

Sample Question 1.1.1 Why isn’t it the other way around?

Answer to Sample Question 1.1.1 Since weight of a car is a factor that
probably influences fuel efficiency, it’s more natural to think of predicting fuel
efficiency from weight.

The general principle is that if it’s more natural to think of predicting A
from B, then A is the dependent variable and B is the independent variable.
This will usually be the case when B is thought to cause or influence A.
Sometimes it can go either way or it’s not clear. Usually it’s easy to decide.

Sample Question 1.1.2 Is it possible for a variable to be both quantitative
and categorical? Answer Yes or No, and either give an example or explain
why not.

Answer to Sample Question 1.1.2 Yes. For example, the number of cars
owned by a person or family.

In some fields, you may hear about nominal, ordinal, interval and
ratio variables, or variables measured using “scales of measurement” with
those names. Ratio means the scale of measurement has a true zero point,
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so that a value of 4 represents twice as much as 2. An interval scale means
that the difference (interval) between 3 and 4 means the same thing as the
difference between 9 and 10, but zero does not necessarily mean absence of
the thing being measured. The usual examples are shoe size and ring size.
In ordinal measurement, all you can tell is that 6 is less than 7, not how
much more. Measurement on a nominal scale consists of the assignment of
unordered categories. For example, citizenship is measured on a nominal
scale.

It is usually claimed that one should calculate means (and therefore,
for example, do multiple regression) only with interval and ratio data; it’s
usually acknowledged that people do it all the time with ordinal data, but
they really shouldn’t. And it is obviously crazy to calculate a mean on
numbers representing unordered categories. Or is it?

Sample Question 1.1.3 Give an example in which it’s meaningful to cal-
culate the mean of a variable measured on a nominal scale.

Answer to Sample Question 1.1.3 Code males as zero and females as
one. The mean is the proportion of females.

It’s not obvious, but actually all this talk about what you should and
shouldn’t do with data measured on these scales does not have anything to
do with statistical assumptions. That is, it’s not about the mathematical
details of any statistical model. Rather, it’s a set of guidelines for what
statistical model one ought to adopt. Are the guidelines reasonable? It’s
better to postpone further discussion until after we have seen some details
of multiple regression.

1.2 Statistical significance

We will often pretend that our data represent a random sample from some
population. We will carry out formal procedures for making inferences
about this (usually fictitious) population, and then use them as a basis for
drawing conclusions about the data.

Why do we do all this pretending? As a formal way of filtering out
things that happen just by coincidence. The human brain is organized to
find meaning in what it perceives, and it will find apparent meaning even in
a sequence of random numbers. The main purpose of testing for statistical
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significance is to protect Science against this. Even when the data do not fully
satisfy the assumptions of the statistical procedure being used (for example,
the data are not really a random sample) significance testing can be a useful
as a way of restraining scientists from filling the scientific literature with
random garbage. This is such an important goal that we will spend almost
the entire course on significance testing.

1.2.1 Definitions

Numbers that can be calculated from sample data are called statistics.
Numbers that could be calculated if we knew the whole population are called
parameters. Usually parameters are represented by Greek letters such as
α, β and γ, while statistics are represented by ordinary letters such as a, b,
c. Statistical inference consists of making decisions about parameters based
on the values of statistics.

The distribution of a variable corresponds roughly to a histogram of the
values of the variable. In a large population for a variable taking on many
values, such a histogram will be indistinguishable from a smooth curve.

For each value x of the independent variable X, in principle there is a
separate distribution of the dependent variable Y . This is called the condi-
tional distribution of Y given X = x.

We will say that the independent and dependent variable are unrelated
if the conditional distribution of the dependent variable in the population is
identical for each value of the independent variable. That is, the histogram of
the dependent variable does not depend on the value of the independent vari-
able. If the distribution of the dependent variable does depend on the value
of the independent variable, we will describe the two variables as related.

Most research questions involve more than one independent variable. It is
also common to have more than one dependent variable. When there is one
dependent variable, the analysis is called univariate. When more than one
dependent variable is being considered simultaneously, the analysis is called
multivariate.

Sample Question 1.2.1 Give an example of a study with two categorical
independent variables, one quantitative independent variable, and two quan-
titative dependent variables.

Answer to Sample Question 1.2.1 In a study of success in university,
the subjects are first-year university students. The categorical independent
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variables are Sex and Immigration Status (Citizen, Permanent Resident or
Visa), and the quantitative independent variable is family income. The de-
pendent variables are cumulative Grade Point Average at the end of first year,
and number of credits completed in first year.

Many problems in data analysis reduce to asking whether one or more
variables are related – not in the actual data, but in some hypothetical popu-
lation from which the data are assumed to have been sampled. The reasoning
goes like this. Suppose that the independent and dependent variables are ac-
tually unrelated in the population. If this is true, what is the probability of
obtaining a sample relationship between the variables that is as strong or
stronger than the one we have observed? If the probability is small (say,
p < 0.05), then we describe the sample relationship as statistically signifi-
cant, and it is socially acceptable to discuss the results. In particular, there
is some chance of having the results taken seriously enough to publish in a
scientific journal.

Here is another way to talk about p-values and significance testing. The
p-value is the probability of getting our results (or better) just by chance. If p
is small enough (we will use ) then the data are very unlikely to have arisen
by chance, assuming there is really no relationship between the independent
variable and the dependent variable in the population. In this case we will
conclude there is a relationship between the independent and dependent, and
we will say our results are ”statistically significant.”

If p > .05, we will not conclude anything. All we can say is that there
is no evidence of a relationship between the independent variable and the
dependent variable.

For those who like precision, the formal definition is this. The p-value is
the minimum significance level α at which the null hypothesis (of no rela-
tionship between IV and DV in the population) can be rejected.

1.2.2 Standard elementary significance tests

We will now consider some of the most common elementary statistical meth-
ods. For each one, you should be able to answer the following questions.

1. Make up your own original example of a study in which the technique
could be used.

2. In your example, what is the independent variable (or variables)?
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3. In your example, what is the dependent variable (or variables)?

4. Indicate how the data file would be set up.

Independent observations One assumption shared by most standard
methods is that of ”independent observations.” The meaning of the assump-
tion is this. Observations 13 and 14 are independent if and only if the con-
ditional distribution of observation 14 given observation 13 is the same for
each possible value observation 13. For example if the observations are tem-
peratures on consecutive days, this would not hold. If the dependent variable
is score on a homework assignment and students copy from each other, the
observations will not be independent.

When significance testing is carried out under the assumption that ob-
servations are independent but really they are not, results that are actually
due to chance will often be detected as significant with probability consid-
erably greater than 0.05. This is sometimes called the problem of inflated
n. In other words, you are pretending you have more separate pieces of in-
formation than you really do. When observations cannot safely be assumed
independent, this should be taken into account in the statistical analysis. We
will return to this point again and again.

Independent (two-sample) t-test

This is a test for whether the means of two independent groups are different.
Assumptions are independent observations, normality within groups, equal
variances. For large samples normality does not matter. For large samples
with nearly equal sample sizes, equal variance assumption does not matter.
The assumption of independent observations is always important.

Sample Question 1.2.2 Make up your own original example of a study in
which a two-sample t-test could be used.

Answer to Sample Question 1.2.2 An agricultural scientist is interested
in comparing two types of fertilizer for potatoes. Fifteen small plots of ground
receive fertilizer A and fifteen receive fertilizer B. Crop yield for each plot in
pounds of potatoes harvested is recorded.

Sample Question 1.2.3 In your example, what is the independent variable
(or variables)?
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Answer to Sample Question 1.2.3 Fertilizer, a binary variable taking the
values A and B.

Sample Question 1.2.4 In your example, what is the dependent variable
(or variables)?

Answer to Sample Question 1.2.4 Crop yield in pounds.

Sample Question 1.2.5 Indicate how the data file might be set up.

Answer to Sample Question 1.2.5

A 13.1
A 11.3
...

...
B 12.2
...

...

Matched (paired) t-test

Again comparing two means, but from paired observations. Pairs of observa-
tions come from the same case (subject, unit of analysis), and presumably are
non-independent. Again, the data from a given pair are not really separate
pieces of information, and if you pretend they are, then you are pretending
to have more accurate estimation of population parameters — and a more
sensitive test — than you really do. The probability of getting results that
are statistically significant will be greater than 0.05, even if nothing is going
on.

In a matched t-test, this problem is taken care of by computing a differ-
ence for each pair, reducing the volume of data (and the apparent sample
size) by half. This is our first example of a repeated measures analysis. Here
is a general definition. We will say that there are repeated measures on
an independent variable if a case (unit of analysis, subject, participant in
the study) contributes a value of the dependent variable for each value of
the independent variable in question. A variable on which there are repeated
measures is sometimes called a within-subjects variable. When this lan-
guage is being spoken, variables on which there are not repeated measures
are called between-subjects.
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The assumptions of the matched t-test are that the differences repre-
sent independent observations from a normal population. For large samples,
normality does not matter. The assumption that different cases represent
independent observations is always important.

Sample Question 1.2.6 Make up your own original example of a study in
which a matched t-test could be used.

Answer to Sample Question 1.2.6 Before and after a 6-week treatment,
participants in a quit-smoking program were asked “On the average, how
many cigarettes do you smoke each day?”

Sample Question 1.2.7 In your example, what is the independent variable
(or variables)?

Answer to Sample Question 1.2.7 Presence versus absence of the pro-
gram, a binary variable taking the values “Absent” or “Present” (or maybe
“Before” and “After”). We can say there are repeated measures on this
factor, or that it is a within-subjects factor.

Sample Question 1.2.8 In your example, what is the dependent variable
(or variables)?

Answer to Sample Question 1.2.8 Reported number of cigarettes smoked
per day.

Sample Question 1.2.9 Indicate how the data file might be set up.

Answer to Sample Question 1.2.9 The first column is “Before,” and the
second column is “After.”

22 18
40 34
20 10
...

...
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One-way Analysis of Variance

Extension of the independent t-test to two or more groups. Same assump-
tions, everything. F = t2 for two groups.

Sample Question 1.2.10 Make up your own original example of a study
in which a one-way analysis of variance could be used.

Answer to Sample Question 1.2.10 Eighty branches of a large bank were
chosen to participate in a study of the effect of music on tellers’ work be-
haviour. Twenty branches were randomly assigned to each of the following
4 conditions. 1=No music, 2=Elevator music, 3=Rap music, 4=Individual
choice (headphones). Average customer satisfaction and worker satisfaction
were assessed for each bank branch, using a standard questionnaire.

Sample Question 1.2.11 In your example, what are the cases?

Answer to Sample Question 1.2.11 Branches, not people answering the
questionnaire.

Sample Question 1.2.12 Why do it that way?

Answer to Sample Question 1.2.12 To avoid serious potential problems
with independent observations within branches. The group of interacting peo-
ple within social setting is the natural unit of analysis, like an organism.

Sample Question 1.2.13 In your example, what is the independent vari-
able (or variables)?

Answer to Sample Question 1.2.13 Type of music, a categorical vari-
able taking on 4 values.

Sample Question 1.2.14 In your example, what is the dependent variable
(or variables)?

Answer to Sample Question 1.2.14 There are 2 dependent variables, av-
erage customer satisfaction and average worker satisfaction. If they were
analyzed simultaneously the analysis would be multivariate (and not elemen-
tary).
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Sample Question 1.2.15 Indicate how the data file might be set up.

Answer to Sample Question 1.2.15 The columns correspond to Branch,
Type of Music, Customer Satisfaction and Worker Satisfaction

1 2 4.75 5.31
2 4 2.91 6.82
...

...
...

...
80 2 5.12 4.06

Sample Question 1.2.16 How could this be made into a repeated measures
study?

Answer to Sample Question 1.2.16 Let each branch experience each of
the 4 music conditions in a random order (or better, use only 72 branches,
with 3 branches receiving each of the 24 orders). There would then be 16
pieces of data for each bank.

Including all orders of presentation in each experimental condition is an
example of counterbalancing — that is, presenting stimuli in such a way
that order of presentation is unrelated to experimental condition. That way,
the effects of the treatments are not confused with fatigue or practice effects
(on the part of the experimenter as well as the subjects). In counterbalanc-
ing, it is often not feasible to include all possible orders of presentation it
each experimental condition, because sometimes there are two many. The
point is that order of presentation has to be unrelated to any manipulated
independent variable.

Two (and higher) way Analysis of Variance

Extension of One-Way ANOVA to allow assessment of the joint relationship
of several categorical independent variables to one quantitative dependent
variable that is assumed normal within treatment combinations. Tests for
interactions between IVs are possible. An interaction means that the rela-
tionship of one independent variable to the dependent variable depends on
the value of another independent variable. More on this later.
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Crosstabs and chisquared tests

Cross-tabulations (Crosstabs) are joint frequency distribution of two categor-
ical variables. One can be considered an IV, the other a DV if you like. In
any case (even when the IV is manipulated in a true experimental study) we
will test for significance using the chi-squared test of independence. Assump-
tion is independent observations are drawn from a multinomial distribution.
Violation of the independence assumption is common and very serious.

Sample Question 1.2.17 Make up your own original example of a study
in which this technique could be used.

Answer to Sample Question 1.2.17 For each of the prisoners in a Toronto
jail, record the race of the offender and the race of the victim. This is illegal;
you could go to jail for publishing the results. It’s totally unclear which is the
IV and which is the DV, so I’ll make up another example.

For each of the graduating students from a university, record main field
of study and and gender of the student (male or female).

Sample Question 1.2.18 In your example, what is the independent vari-
able (or variables)?

Answer to Sample Question 1.2.18 Gender

Sample Question 1.2.19 In your example, what is the dependent variable
(or variables)?

Answer to Sample Question 1.2.19 Main field of study (many numeric
codes).

Sample Question 1.2.20 Indicate how the data file would be set up.

Answer to Sample Question 1.2.20 The first column is Gender (0=Male,
1=F). The second column is Field.

1 2
0 14
0 9
...

...
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Correlation and Simple Regression

Correlation Start with a scatterplot showing the association between
two (quantitative, usually continuous) variables. A scatterplot is a set of
Cartesian coordinates with a dot or other symbol showing the location of
each (x, y) pair. If one of the variables is clearly the independent variable,
it’s traditional to put it on the x axis. There are n points on the scatterplot,
where n is the number of cases in the data file.

Often, the points in a scatterplot cluster around a straight line. The
correlation coefficient (Pearson’s r) expresses the extent to which the points
cluster tightly around a straight line.

• −1 ≤ r ≤ 1

• r = +1 indicates a perfect positive linear relationship. All the points
are exactly on a line with a positive slope.

• r = −1 indicates a perfect negative linear relationship. All the points
are exactly on a line with a negative slope.

• r = 0 means no linear relationship (curve possible)

• r2 represents explained variation, reduction in (squared) error of pre-
diction. For example, the correlation between scores on the Scholas-
tic Aptitude Test (SAT) and first-year grade point average (GPA) is
around +0.50, so we say that SAT scores explain around 25% of the
variation in first-year GPA.

The test of significance for Pearson’s r assumes a bivariate normal distri-
bution for the two variables; this means that the only possible relationship
between them is linear. As usual, the assumption of independent observa-
tions is always important.
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Here are some examples of scatterplots and the associated correlation
coefficients.

MTB > plot c1 c3

- * *

C1 -

-

- *

60+ ** *

- * * * * 2* * *

- * ** * * *

- *

- * 2 2* ** * * *

45+ * * *2 *

- * * *

- *

- * * *

- * *

30+

- * *

-

+---------+---------+---------+---------+---------+------C3

20 30 40 50 60 70

MTB > corr c1 c3

Correlation of C1 and C3 = 0.004

MTB > plot c4 c6

75+ *

-

C4 -

-

- * * *

60+ *

- * * * * 2 * * *

- * ** **

- * * *2

- * ** * * * *

45+ * * ** * * *

- 2 *

- * 2 ***

- *

-

30+ * *

-

------+---------+---------+---------+---------+---------+C6

112 128 144 160 176 192

MTB > corr c4 c6

Correlation of C4 and C6 = 0.112
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MTB > plot c3 c7

80+

- *

C3 - *

-

- * *

60+ * * * *

- * * * *

- * * ** *

- * * * * *2** * ** 2 * * *

- * 2 2 * *

40+ * * *

- * **

- * *

-

- *

20+

-

--+---------+---------+---------+---------+---------+----C7

165 180 195 210 225 240

MTB > correlation between c3 and c7 please

Correlation of C3 and C7 = 0.368

MTB > plot c4 c7

75+ *

-

C4 -

-

- * * *

60+ *

- * * * *** * * *

- * * * **

- * * 2 *

- * * * * * * *

45+ * * ** * * *

- ** *

- * 2 ***

- *

-

30+ **

-

--+---------+---------+---------+---------+---------+----C7

165 180 195 210 225 240

MTB > corr c4 c7

Correlation of C4 and C7 = 0.547
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MTB > plot c5 c7

-

C5 - * *

-

- * * * *

120+ *

- * *

- * * *

- * * 2

- * **

100+ * * * * ** * * *

- * * *

- * * * *

- * * * * *

- * * * *

80+ ** *

- *

- * *

--+---------+---------+---------+---------+---------+----C7

165 180 195 210 225 240

MTB > corr c5 c7

Correlation of C5 and C7 = 0.733

MTB > plot c5 c9

-

C5 - **

-

- * * * *

120+ *

- * *

- * * *

- 2**

- * **

100+ * * 2 *2 * *

- ** *

- **2

- 2 * * *

- * * * *

80+ 2 *

- *

- * *

--+---------+---------+---------+---------+---------+----C9

-192 -176 -160 -144 -128 -112

MTB > corr c5 c9

Correlation of C5 and C9 = -0.822
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MTB > plot c2 c1

-

- *

100+ * *2

- ** *

C2 - 2* * *

- ** * * **

- 2* 2 **

50+ * ** *2

- * ** *

- *** 2* ** * ***

- * * * * * *

- ** * 2 * * * * * *

0+ *** * 2 * * **

- * **

- * *

- *

-

--------+---------+---------+---------+---------+--------C1

-8.0 -4.0 0.0 4.0 8.0

MTB > corr c1 c2

Correlation of C1 and C2 = 0.025

200+

-

C2 - * ** *

- ** ** *** *

- * * * ** * * *

100+ * ** ** 2** ** * *

- **** * * 2 2

- * * *

- * * * *** *

- * *** *****2

0+ * * *

- *

- * * *

- * **

- ******

-100+ *

-

--------+---------+---------+---------+---------+--------C1

-8.0 -4.0 0.0 4.0 8.0

Correlation of C1 and C2 = -0.811
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Simple Regression One independent variable, one dependent. In the
usual examples both are quantitative (continuous). We fit a least-squares
line to the cloud of points in a scatterplot. The least-squares line is the
unique line that minimizes the sum of squared vertical distances between
the line and the points in the scatterplot. That is, it minimizes the total
(squared) error of prediction.

Denoting the slope of the least-squares line by b1 and the intercept of the
least-squares line by b0,

b1 = r
sy
sx
and b0 = Y − b1X.

That is, the slope of the least squares has the same sign as the correlation
coefficient, and equals zero if and only if the correlation coefficient is zero.

Usually, you want to test whether the slope is zero. This is the same as
testing whether the correlation is zero, and mercifully yields the same p-value.
Assumptions are independent observations (again) and that within levels of
the IV, the DV has a normal distribution with the same variance (variance
does not depend on value of the DV). Robustness properties are similar to
those of the 2-sample t-test. The assumption of independent observations is
always important.

Multiple Regression

Regression with several independent variables at once; we’re fitting a (hyper)
plane rather than a line. Multiple regression is very flexible; all the other
techniques mentioned above (except the chi-squared test) are special cases
of multiple regression. More details later.

Choosing an Elementary Technique

Make a table in lecture.

1.3 Experimental versus observational stud-

ies

Why might someone want to predict a dependent variable from an indepen-
dent variable? There are two main reasons.
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• There may be a practical reason for prediction. For example, a com-
pany might wish to predict who will buy a product, in order to max-
imize the productivity of its sales force. Or, an insurance company
might wish to predict who will make a claim, or a university computer
centre might wish to predict the length of time a type of hard drive
will last before failing. In each of these cases, there will be some in-
dependent variables that are to be used for prediction, and although
the people doing the study may be curious and may have some ideas
about how things might turn out and why, they don’t really care why it
works, as long as they can predict with some accuracy. Does variation
in the IV cause variation in the DV? Who cares?

• This may be science (of some variety). The goal may be to understand
how the world works — in particular, to understand the dependent
variable. In this case, most likely we are implicitly or explicitly thinking
of a causal relationship between the IV and DV. Think of attitude
similarity and interpersonal attraction. . . .

Sample Question 1.3.1 A study finds that high school students who have
a computer at home get higher grades on average than students who do not.
Does this mean that parents who can afford it should buy a computer to
enhance their children’s chances of academic success?

Here is an answer that gets zero points. “Yes, with a computer the stu-
dent can become computer literate, which is a necessity in our competitive
and increasingly technological society. Also the student can use the computer
to produce nice looking reports (neatness counts!), and obtain valuable in-
formation on the World Wide Web.” ZERO.

The problem with this answer is that while it makes some fairly reasonable
points, it is based on personal opinion, and fails to address the real question,
which is “Does this mean . . . ” Here is an answer that gets full marks.

Answer to Sample Question 1.3.1 Not necessarily. While it is possible
that some students are doing better academically and therefore getting into
university because of their computers, it is also possible that their parents
have enough money to buy them a computer, and also have enough money to
pay for their education. It may be that an academically able student who is
more likely to go to university will want a computer more, and therefore be
more likely to get one somehow. Therefore, the study does not provide good
evidence that a computer at home will enhance chances of academic success.
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Note that in this answer, the focus is on whether the study provides good
evidence for the conclusion, not whether the conclusion is reasonable on
other grounds. And the answer gives specific alternative explanations for the
results as a way of criticizing the study. If you think about it, suggesting
plausible alternative explanations is a very damaging thing to say about any
empirical study, because you are pointing out that the investigators expended
a huge amount of time and energy, but didn’t establish anything conclusive.
Also, suggesting alternative explanations is extremely valuable, because that
is how research designs get improved and knowledge advances.

Now here are the general principles. If X and Y are measured at roughly
the same time, X could be causing Y , Y could be causing X, or there might
be some third variable (or collection of variables) that is causing both X
and Y . Therefore we say that ”Correlation does not necessarily imply cau-
sation.” Here, by correlation we mean association (lack of independence)
between variables. It is not limited to situations where you would compute
a correlation coefficient.

A confounding variable is a variable not included as an independent
variable, that might be related to both the independent variable and the
dependent variable – and that might therefore create a seeming relationship
between them where none actually exists, or might even hide a relationship
that is present. Some books also call this a “lurking variable.” You are
responsible for the vocabulary “confounding variable.”

An experimental study is one in which cases are randomly assigned to
the different values of an independent variable (or variables). An observa-
tional study is one in which the values of the independent variables are not
randomly assigned, but merely observed.

Some studies are purely observational, some are purely experimental, and
many are mixed. It’s not really standard terminology, but in this course we
will describe independent variables as experimental (i.e., randomly assigned,
manipulated) or observed.

In an experimental study, there is no way the dependent variable could
be causing the independent variable, because values of the IV are assigned by
the experimenter. Also, it can be shown (using the Law of Large Numbers)
that when units of observation are randomly assigned to values of an IV, all
potential confounding variables are cancelled out as the sample size increases.
This is very wonderful. You don’t even have to know what they are!

Sample Question 1.3.2 Is it possible for a continuous variable to be ex-
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perimental, that is, randomly assigned?

Answer to Sample Question 1.3.2 Sure. In a drug study, let one of the
independent variables consist of n equally spaced dosage levels spanning some
range of interest, where n is the sample size. Randomly assign one participant
to each dosage level.

Sample Question 1.3.3 Give an original example of a study with one quan-
titative observed independent variable and one categorical manipulated inde-
pendent variable. Make the study multivariate, with one dependent variable
consisting of unordered categories and two quantitative dependent variables.
categorical

Answer to Sample Question 1.3.3 Stroke patients in a drug study are
randomly assigned to either a standard blood pressure drug or one of three
experimental blood pressure drugs. The categorical dependent variable is
whether the patient is alive or not 5 years after the study begins. The quanti-
tative dependent variables are systolic and diastolic blood pressure one week
after beginning drug treatment.

In practice, of course there would be a lot more variables; but it’s still a
good answer.

Because of possible confounding variables, only an experimental study
can provide good evidence that an independent variable causes a dependent
variable. Words like effect, affect, leads to etc. imply claims of causality and
are only justified for experimental studies.

Sample Question 1.3.4 Design a study that could provide good evidence
of a causal relationship between having a computer at home and academic
success.

Answer to Sample Question 1.3.4 High school students without comput-
ers enter a lottery. The winners (50% of the sample) get a computer and
modem to use at home. The dependent variable is whether or not the student
enters university.

Sample Question 1.3.5 Is there a problem with independent observations
here? Can you fix it?
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Answer to Sample Question 1.3.5 Oops. Yes. Students who win may
be talking to each other, sharing software, etc.. Actually, the losers will be
communicating too. Therefore their behaviour is non-independent and stan-
dard significance tests will be invalid. One solution is to hold the lottery in
n separate schools, with one winner in each school. If the dependent variable
were GPA, we could do a matched t-test comparing the performance of the
winner to the average performance of the losers.

Sample Question 1.3.6 What if the DV is going to university or not?

Answer to Sample Question 1.3.6 We are getting into deep water here.
Here is how I would do it. In each school, give a score of “1” to each student
who goes to university, and a “0” to each student who does not. Again,
compare the scores of the winners to the average scores of the losers in each
school using a matched t-test. Note that the mean difference that is to be
compared with zero here is the mean difference in probability of going to
university, between students who get a computer to use and those who do
not. While the differences for each school will not be normally distributed, the
central limit theorem tells us that the mean difference will be approximately
normal if there are more than about 20 schools, so the t-test is valid. In fact,
the t-test is conservative, because the tails of the t distribution are heavier
than those of the standard normal. This answer is actually beyond the scope
of the present course.

Artifacts and Compromises

Random assignment to experimental conditions will take care of confounding
variables, but only if it is done right. It is amazingly easy for for confounding
variables to sneak back into a true experimental study through defects in the
procedure.

Placebo Effects

Experimenter Expectancy

Internal and external validity

Quasi-experimental designs
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Chapter 2

First set of tools: SAS running
under unix

The SAS language is the same regardless of what hardware you use or what
operating system is running on the hardware. SAS programs are simple text
files that can be transported from one machine to another with minimal
difficulty. At UTM, SAS is available only for unix, but it’s not a problem
even if the next place you go after U of T only has PCs.

Local details The unix operating system is available to us on tuzo and
credit. These are the names of Sun workstations that make the strongest PC
look like a toy. Undergraduates will use tuzo, and graduate students will use
credit. The material in this section assumes you are using tuzo, but if you
are a graduate student, just substitute credit for tuzo throughout. The only
thing that’s different is that if you don’t already have an account on credit
(which you do if you have a UTM email address), then your advisor will have
to sign a form to get you an account. See Karen in room 2043.

Tuzo is also the student email server. You already have an account on
tuzo. If you use local email (Pine), your account is already active and you
know how to sign on. If not, see Karen in Room 2043. She will give you your
login name and password for both the PC network and tuzo.

If you are on campus, you will most likely access tuzo through the PC
network. Here are some instructions. After logging in to the PC network,
choose Internet Applications from the Start menu and then choose Connect
to Tuzo. Then you’ll supply a login name and password to tuzo. Login
names for tuzo and the PC network are related but not identical. Take your
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tuzo login name, add a period at the end and then repeat the last character.
This yields your PC network login name. For example, my tuzo login name
is jbrunner, and my PC network login name is jbrunner.r – passwords are
initially the same. Change your password immediately when you first log on.

You are also able to reach tuzo from home by modem; you can use SAS
and S very effectively with a weak PC and a slow modem. If you already
have an internet service provider, just telnet to tuzo.erin.toronto.edu.
Or the U of T can be your internet service provider, and it is a bargain.
UTORDIAL is great. Go to

http://www.library.utoronto.ca/utor.html

and sign up. It’s run by the Information Commons at Robarts Library down-
town, but you can set up the whole thing over the Web without going there
and standing in line. Their telnet software is recommended, and you can
download Netscape and Acrobat Reader too. A disk is available from Karen.
I believe she distributes the same disk and the same handout as they do
downtown in Robarts Library.

Regardless of how you connect, when you get the tuzo.erin > prompt,
you are finally on tuzo.

If you are in a computer lab, after you type exit to get off tuzo, remember
to press Ctrl+Alt+Del to get off the PC network.

2.1 Unix

Unix is a line-oriented operating system. Well, there’s X-windows (a graph-
ical shell that runs on top of unix), but we won’t bother with it. Ba-
sically, you type a command, press Enter, and unix does something for
(or to) you. It may help to think of unix as DOS on steroids, if you re-
member DOS. The table below has all the unix commands you will need
for this course. An online version of this table, as well as a more exten-
sive set of unix commands and a collection of other useful stuff, is avail-
able at http://www.erin.utoronto.ca/ w3sta/soft.Throughout, fname
stands for the name of a file.
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A Minimal Set of unix Commands

exit Logs you off the system: ALWAYS log off before leaving!

passwd Lets you change your password. Recommended.

man command name Online help: explains command name, (like man

more).

ls Lists names of the files in your directory.

more fname Displays fname on screen, one page at a time. Spacebar for
next page, q to quit.

laser fname Prints hard copy on a laser printer. This is a local UTM
command. The usual unix print command is lpr (for line printer).

draft fname Prints hard copy on a dot matrix printer. This is a local UTM
command.

rm fname Removes fname, erasing it forever.

cp fname1 fname2 Makes a copy of fname1. The new copy is named
fname2.

mv fname1 fname2 Moves (renames) fname1

pico fname Starts the pico text editor, editing fname (can be new file).

Splus Gets you into the Splus environment.

sas fname Executes SAS commands in the file fname.sas, yielding fname.log
and (if no fatal errors) fname.lst.

ps Shows active processes

kill -9 # Kills process (job) number #. Sometimes you must do this when
you can’t log off because there are stopped jobs. Use ps to see the job
numbers.

25



This really is a minimal set of commands. The unix operating system is
extremely powerful, and has an enormous number of commands. You can’t
really see the power from the minimal set of commands above, but you can
see the main drawback from the standpoint of the new user. Commands
tend to be terse, consisting of just a few keystrokes. They make sense once
you are familiar with them (like ls for listing the files in a directory, or
rm for remove), but they are hard to guess. The man command (short for
manual) gives very accurate information, but you have to know the name of
the command before you can use man to find out about it.

Just for future reference, here are a few more commands that you may
find useful, or otherwise appealing. You can also check

http://www.erin.utoronto.ca/~w3sta/soft

for a longer unix handout.

A Few More unix Commands

emacs fname Starts the emacs text editor, editing fname (can be new file).
Emacs is much more powerful than pico.

mkdir dirname Makes a new sub-directory (like a folder) named dirname.
You can have sub-directories within sub-directories; it’s a good way to
organize your work.

cp fname dirname Copies the file fname into the directory dirname.

cd dirname Short for Change Directory. Takes you to the sub-directory
dirname.

cd .. Moves you up a directory level.

cd Moves you to your main directory from wherever you are.

ls > fname Sends the output of the ls command to the file fname instead
of to the screen.

cat fname Lists the whole file on your screen, not one page at a time. It
goes by very fast, but usually you can scroll back up to see the entire
file, if it’s not too long.

cat fname1 fname2 > fname3
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Splus < fname1 > fname2

grep ERROR cartoon1.log

alias chk ”grep ERROR *.log ; grep WARN *.log”

cal

cal 1 3002

unset noclobber

rm -f fname

alias rm ”rm -f”

rm -r dirname

rm fname1 fname2

Printing files at home This is a question that always comes up. Almost
surely, the printer connected to your printer at home is not directly connected
to the U of T network. If you want to do something like print your SAS
output at home, you have to transfer the file on tuzo to the hard drive of
your home computer, and print it from there. You’ll need to either use some
kind of ftp (file transfer protocol) tool, or use the more or cat command to
list the file on your screen, select it with your mouse, copy it, paste it to a
word processing document, and print it from there.

2.2 Introduction to SAS

SAS stands for “Statistical Analysis System.” Even though it runs on PCs
and Macs as well as on bigger computers, it is truly the last of the great
old mainframe statistical packages. The first beta release was in 1971, and
the SAS Institute, Inc. was spun off from North Carolina State University
in 1976, the year after Bill Gates dropped out of Harvard. This is a serious
pedigree, and it has both advantages and disadvantages.

The advantages are that the number of statistical procedures SAS can do
is truly staggering, and the most commonly used ones have been tested so
many times by so many people that their correctness and numerical efficiency
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is beyond any question. For the purposes of this class, there are no bugs.
The disadvantages of SAS are all related to the fact that it was designed to
run in a batch-oriented mainframe environment. So, for example, the SAS
Institute has tried hard to make SAS an “interactive” program, but has not
really worked. It’s as if someone painted an eighteen-wheel transport truck
yellow, and called it a school bus. Yes, you can take the children to school
in that thing, but would you want to?

2.2.1 The Four Main File Types

A typical SAS job will involve four main types of file.

• The Raw Data File: A file consisting of rows and columns of num-
bers; or maybe some of the columns have letters (character data) in-
stead of numbers. The rows represent observations and the columns
represent variables, as described at the beginning of Section 1.1. In the
first example we will consider below, the raw data file is called drp.dat.

• The Program File: This is also sometimes called a “command file,”
because it’s usually not much of a program. It consists of commands
that the SAS software tries to follow. You create this file with a text
editor like pico or emacs. The command file contains a reference to the
raw data file (in the infile statement), so SAS knows where to find
the data. In the first example we will consider below, the command file
is called reading.sas. SAS expects program files to have the extension
.sas, and you should always follow this convention.

• The Log File: This file is produced by every SAS run, whether it is
successful of unsuccessful. It contains a listing of the command file,
as well any error messages or warnings. The name of the log file is
automatically generated by SAS; it combines the first part of the com-
mand file’s name with the extension .sas. So for example, when SAS
executes the commands in reading.sas, it writes a log file named
reading.log.

• The List File: The list file contains the output of the statistical
procedures requested by the command file. The list file has the ex-
tension .lst — so, for example, running SAS on the command file
reading.sas will produce reading.lst as well as reading.log. A
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successful SAS run will almost always produce a list file. The absence
of a list file indicates that there was at least one fatal error. The pres-
ence of a list file does not mean there were no errors; it just means that
SAS was able to do some of what you asked it to do. Even if there
are errors, the list file will usually not contain any error messages; they
will be in the log file.

2.2.2 Running SAS from the Command Line

There are several ways to run SAS. We will run SAS from the unix command
line. In my view, this way is simplest and best.

If, by accident or on purpose, you type SAS without a filename, then
SAS assumes you want to initiate an interactive session, and it tries to start
the SAS Display Manager. If you are logged in through an ordinary tel-
net session, SAS terminates with an error: ERROR: Cannot open X display.

Check display name/server access authorization. SAS assumes you are
using the unix X-window graphical interface, so it will not work if your com-
puter is emulating a (semi) dumb terminal. If you are in an X-window session,
after a while several windows will open up. The only suggestion I have is
this: Make sure the SAS Program Editor window is selected. From the File
menu, choose Exit. Whew.

If you choose to ignore this advice and actually try to use the Display
Manager, you are on your own. You will have my sympathy, but not my
help. The joke about painting the transport truck yellow applies, and the
joke is on you.

The following illustrates a simple SAS run from the command line. Ini-
tially, there are only two files in the (sub)directory — reading.sas (the
program file) and drp.dat (the raw data file). The command sas reading

produces two additional files — reading.log and reading.lst.

tuzo.erin > ls

drp.dat reading.sas

tuzo.erin > sas reading

tuzo.erin > ls

drp.dat reading.log reading.lst reading.sas
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2.2.3 Structure of the Program File

A SAS program file is composed of units called data steps and proc steps. The
typical SAS program has one data step and at least one proc step, though
other structures are possible.

• Most SAS commands belong either in data step or in a proc step;they
will generate errors if they are used in the wrong kind of step.

• Some statements, like the title and options commands, exist outside
of the data and proc steps, but there are relatively few of these.

The Data Step The data step takes care of data acquisition and modifi-
cation. It almost always includes a reference to the raw data file, telling SAS
where to look for the data. It specifies variable names and labels, and pro-
vides instructions about how to read the data; for example, the data might
be read from fixed column locations. Variables from the raw data file can be
modified, and new variables can be created.

Each data step creates a SAS data set, a file consisting of the data
(after modifications and additions), labels, and so on. Statistical procedures
operate on SAS data sets, so you must create a SAS data set before you can
start computing any statistics.

A SAS data set is written in a binary format that is very convenient for
SAS to process, but is not readable by humans. In the old days, SAS data
sets were always written to temporary scratch files on the computer’s hard
drive; these days, they may be maintained in RAM if they are small enough.
In any case, the default is that a SAS data set disappears after the job has
run. If the data step is executed again in a later run, the SAS data set is
re-created.

Actually, it is possible to save a SAS data set on disk for later use. We
won’t do this much (there will be just one example), but it makes sense
when the amount of processing in a data step is large relative to the speed
of the computer. As an extreme example, one of my colleagues uses SAS to
analyze data from Ontario hospital admissions; the data files have millions
of cases. Typically, it takes around 20 hours of CPU time on a very strong
unix machine just to read the data and create a SAS data set. The resulting
file, hundreds of gigabytes in size, is saved to disk, and then it takes just a
few minutes to carry out each analysis. You wouldn’t want to try this on a
PC.

30



To repeat, SAS data steps and SAS data sets sound similar, but they are
distinct concepts. A SAS data step is part of a SAS program; it generates a
SAS data set, which is a file – usually a temporary file.

SAS data sets are not always created by SAS data steps. Some statistical
procedures can create SAS data sets, too. For example, proc univariate

can take an ordinary SAS data set as input, and produce an output data set
that has all the original variables, and also some of the variables converted to
z-scores (by subtracting off the mean and dividing by the standard deviation).
Proc reg (the main multiple regression procedure) can produce a SAS data
set containing residuals for plotting and use in further analysis; there are
many other examples.

The Proc Step “Proc” is short for procedure. Most procedures are sta-
tistical procedures; the main exception is proc format, which is used to
provide labels for the values of categorical independent variables. The proc
step is where you specify a statistical procedure that you want to carry out.
A statistical procedures in the proc step will take a SAS data sets as input,
and write the results (summary statistics, values of test statistics, p-values,
and so on) to the list file. The typical SAS program includes one data step
and several proc steps, because it is common to produce a variety of data
displays, descriptive statistics and significance tests in a single run.

2.2.4 A First Example: reading.sas

Earlier, we ran SAS on the file reading.sas, producing reading.log and
reading.lst. Now we will look at reading.sas in some detail. This pro-
gram is very simple; it has just one data step and one proc step. More details
will be given later, but it’s based on a study in which one group of grade
school students received a special reading programme, and a control group
did not. After a couple of months, all students were given a reading test.
We’re just going to do an independent groups t-test, but first take a look at
the raw data file. You’d do this with the unix more command.

Actually, it’s so obvious that you should look at your data that nobody
ever says it. But experienced data analysts always do it — or else they
assume everything is okay and get a bitter lesson in something they already
knew. It’s so important that it gets the formal status of a data analysis
hint.
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Data Analysis Hint 1 Always look at your raw data file. It the data file
is big, do it anyway. At least page through it a screen at a time, looking for
anything strange. Check the values of all the variables for a few cases. Do
they make sense? If you have obtained the data file from somewhere, along
with a description of what’s in it, never believe that the description you have
been given is completely accurate.

Anyway, here is the file drp.dat, with the middle cut out to save space.

Treatment 24
Treatment 43
Treatment 58

...
...

Control 55
Control 28
Control 48

...
...

Now we can look at reading.sas.

/******************* reading.sas **********************

* Simple SAS job to illustrate a two-sample t-test *

*******************************************************/

options linesize=79 noovp;

title ’More & McCabe (1993) textbook t-test Example 7.8’;

data reading;

infile ’drp.dat’;

input group $ score;

label group = ’Get Directed Reading Programme?’

score = ’Degree of Reading Power Test Score’;

proc ttest;

class group;

var score;

Here are some detailed comments about reading.sas.
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• The first three lines are a comment. Anything between a /* and */

is a comment, and will be listed on the log file but otherwise ignored
by SAS. Comments can appear anywhere in a program. You are not
required to use comments, but it’s a good idea.

The most common error associated with comments is to forget to end
them with */. In the case of reading.sas, leaving off the */ (or typing
by mistake) would cause the whole program to be treated as a comment.
It would generate no errors, and no output — because as far as SAS
would be concerned, you never requested any. A longer program would
eventually exceed the default length of a comment (it’s some large
number of characters) and SAS would end the “comment” for you. At
exactly that point (probably in the middle of a command) SAS would
begin parsing the program. Almost certainly, the first thing it examined
would be a fragment of a legal command, and this would cause an error.
The log file would say that the command caused an error, and not much
else. It would be very confusing, because probably the command would
be okay, and there would be no indication that SAS was only looking
at part of it.

• The next two lines (the options statement and the title statement)
exist outside the proc step and the data step. This is fairly rare.

• All SAS statements end with a semi-colon (;). SAS statements can
extend for several physical lines in the program file (for example, see
the label statement). Spacing, indentation, breaking up s statement
into several lines of text – these are all for the convenience of the human
reader, and are not part of the SAS syntax.

• The most common error in SAS programming is to forget the semi-
colon. When this happens, SAS tries to interpret the following state-
ment as part of the one you tried to end. This often causes not one
error, but a cascading sequence of errors. The rule is, if you have an
error and you do not immediately understand what it is, look for a miss-
ing semi-colon. It will probably be before the portion of the program
that (according to SAS) caused the first error.

• Cascading errors are not caused just by the dreaded missing semi-colon.
They are common in SAS; for example, a runaway comment statement
can easily cause a chain reaction of errors (if the program is long enough
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for it to cause any error messages at all). If you have a lot of errors in
your log file, fix the first one and don’t waste time trying to figure out
the others. Some or all of them may well disappear.

• options linesize=79 noovp; The linesize=79 option is so highly
recommended it’s almost obligatory. It causes SAS to write the output
79 columns across, so it can be read on an ordinary terminal screen
that’s 80 characters across. You specify an output width of 79 charac-
ters rather than 80, because SAS uses one column for printer control
characters, like page ejects (form feeds).

If you do not specify options linesize=79;, SAS will use its default of
132 characters across, the width of sheet of paper from an obsolete line
printer you probably have never seen. Why would the SAS Institute
hang on to this default, when changing it to match ordinary letter
paper would be so easy? It probably tells you something about the
computing environments of some of SAS’s large corporate clients.

• The noovp option makes the log files more readable if you have errors.
When SAS finds an error in your program, it tries to underline the
word that caused the error. It does this by going back and overprinting
the offending word with a series of “underscores” ( characters). On
many printers this works, but when you try to look at the log file
on a terminal screen (one that is not controlled by the SAS Display
Manager), what often appears is a mess. The noovp option specifies no
overprinting. It causes the “underlining” to appear on a separate line
under the program line with the error. If you’re running SAS from the
unix command line and looking at your log files with the more command
(or the less command or the cat commmand), you will probably find
the noovp option to be helpful.

• title This is optional, but recommended. The material between the
single quotes will appear at the top of each page. This can be a lifesaver
when you are searching through a stack of old printouts for something
you did a year or two ago.

• data reading; This begins the data step, specifying the name of the
SAS data set that is being created.

34



• infile Specifies the name of the raw data file. The file name, en-
closed in single quotes, can be the full unix path to the file, like
/dos/brunner/public/senic.raw. If you just give the name of the
raw data file, as in this example, SAS assumes that the file is in the
same directory as the command file.

• input Gives the names of the variables.

– A character variable (the values of group are “Treatment’ and
“Control”) must be followed by a dollar sign.

– Variable names must be eight characters or less, and should begin
with a letter. They will be used to request statistical procedures
in the proc step. They should be meaningful (related to what the
variable is), and easy to remember.

– This is almost the simplest form of the input statement. It can
be very powerful; for example, you can read data from different
locations and in different orders, depending on the value of a vari-
able you’ve just read, and so on. It can get complicated, but if
the data file has a simple structure, the input statement can be
simple too.

• label Provide descriptive labels for the variables; these will be used
to label the output, usually in very nice way. Labels can be quite
useful, especially when you’re trying to recover what you did a while
ago. Notice how this statement extends over two physical lines.

• proc ttest; Now the proc step begins. This program has only one
data step and one proc step. We are requesting a two-sample t-test.

• class Specifies the independent variable.

• var Specifies the dependent variable(s). You can give a list of depen-
dent variables. A separate univariate test (actually, as you will see,
collection of tests is performed for each dependent variable.

reading.log Log files are not very interesting when everything is okay, but
here is an example anyway. Notice that in addition to a variety of technical
information (where the files are, how long each step took, and so on), it
contains a listing of the SAS program — in this case, reading.sas. If there
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were syntax errors in the program, this is where the error messages would
appear.

tuzo.erin > cat reading.log

1 The SAS System

17:20 Saturday, December 8, 2001

NOTE: Copyright (c) 1989-1996 by SAS Institute Inc., Cary, NC, USA.

NOTE: SAS (r) Proprietary Software Release 6.12 TS020

Licensed to UNIVERSITY OF TORONTO/COMPUTING & COMMUNICATIONS, Site 0008987 001.

This message is contained in the SAS news file, and is presented upon

initialization. Edit the files "news" in the "misc/base" directory to

display site-specific news and information in the program log.

The command line option "-nonews" will prevent this display.

NOTE: AUTOEXEC processing beginning; file is /local/sas612/autoexec.sas.

NOTE: SAS initialization used:

real time 1.950 seconds

cpu time 0.202 seconds

NOTE: AUTOEXEC processing completed.

1 /******************* reading.sas **********************

2 * Simple SAS job to illustrate a two-sample t-test *

3 *******************************************************/

4

5 options linesize=79;

6 title ’More & McCabe (1993) textbook t-test Example 7.8’;

7 data reading;

8 infile ’drp.dat’;

9 input group $ score;

10 label group = ’Get Directed Reading Programme?’

11 score = ’Degree of Reading Power Test Score’;

NOTE: The infile ’drp.dat’ is:

File Name=/res/jbrunner/442/intro/drp.dat,

Owner Name=jbrunner,Group Name=research,

Access Permission=rw-------,

File Size (bytes)=660

NOTE: 44 records were read from the infile ’drp.dat’.

The minimum record length was 14.

The maximum record length was 14.

NOTE: The data set WORK.READING has 44 observations and 2 variables.

NOTE: DATA statement used:

real time 0.350 seconds

cpu time 0.053 seconds

12 proc ttest;

13 class group;

14 var score;
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NOTE: The PROCEDURE TTEST printed page 1.

NOTE: PROCEDURE TTEST used:

real time 0.090 seconds

cpu time 0.010 seconds

2 The SAS System

17:20 Saturday, December 8, 2001

NOTE: The SAS System used:

real time 2.680 seconds

cpu time 0.287 seconds

NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414

reading.lst Here is the list file. Notice that the title specified in the title
statement appears at the top, along with the time and date the program was
executed. Then we get means and standard deviations, and several statistical
tests — including the one we wanted. We get other stuff too, whether we
want it or not. This is typical of SAS, and most other mainstream statistical
packages as well. The default output from any given statistical procedures
will contain more information than you wanted, and probably some stuff you
don’t understand at all. There are usually numerous options that can add
more information, but almost never options to reduce the default output.
So, you just learn what to ignore. It is helpful, but not essential,to have
at least a superficial understanding of everything in the default output from
procedures you use a lot.

More & McCabe (1993) textbook t-test Example 7.8 1

17:20 Saturday, December 8, 2001

TTEST PROCEDURE

Variable: SCORE Degree of Reading Power Test Score

GROUP N Mean Std Dev Std Error

-------------------------------------------------------------------------------

Control 23 41.52173913 17.14873323 3.57575806

Treatmen 21 51.47619048 11.00735685 2.40200219

Variances T DF Prob>|T|

---------------------------------------

Unequal -2.3109 37.9 0.0264

Equal -2.2666 42.0 0.0286

For H0: Variances are equal, F’ = 2.43 DF = (22,20) Prob>F’ = 0.0507
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Now here are some comments about reading.lst.

• Variable: SCORE This tells you what the dependent variable is –
particularly useful if you have more than one. Notice the nice use of
the variable label that was supplied in the label statement.

• GROUP The independent variable. Underneath are the values of the
independent variable. We also have the sample size n for each group,
and the group mean, standard deviation, and also the standard error
or the mean ( s√

n
, the estimated standard deviation of the sampling

distribution of the sample mean).

• Well actually, if you look carefully, you see that we do not quite get
the values of the independent variable under GROUP. The values of the
(alphanumeric, or character-valued) variable group are Control and
Treatment, but the printout says “Treatmen.” This is not a printing
error; it is a subtle error in the reading of the data. The default length
of an alphanumeric data value is 8 characters, but “Treatment” has
9 characters. So SAS just read the first eight. No error message was
generated and no harm was done in this case, but in other circumstances
this error can turn a data file into a giant pile of trash, without warning.
Later we will see how to override the default and read longer strings if
necessary.

• Next we get a table whose first column is entitled “Variances.” This
gives t statistics for testing equality of means, which was what we are
interested in. The traditional t-test assumes equal variances, and it is
given in the column entitled “Equal.”

– The value of the test statistic is -2.2666.

– The degrees of freedom n1 + n2 − 2 is given in the DF column.
– The column Prob>|T| gives the two-tailed (two-sided) p-value.
It is less than the traditional value of 0.05, so the results are
statistically significant.

Sample Question 2.2.1 What do we conclude from this study? Say some-
thing about reading, using non-technical language.
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Answer to Sample Question 2.2.1 Students who received the Directed Read-
ing Program got higher average reading scores than students in the control
condition.

It’s worth emphasizing here that the main objective of doing a statistical
analysis is to draw conclusions about the data — or to refrain from drawing
such conclusions, for good reasons. The question “What do we conclude
from this study?” will always be asked. The right answer will always be
either “Nothing; the results were not statistically significant,” or else it will
be something about reading, or fish, or potatoes, or AIDS, or whatever is
being studied. Many students, even when they have been warned, respond
with a barrage of statistical terminology. They go on and on about the
null hypothesis and Type I error, and usually say nothing that would tell
a reasonable person what actually happened in the study. In the working
world, a memo filled with such garbage could get you fired. Here, it will get
you a zero for the question, even if the technical details you give are correct.

Remember, the purpose of writing up a statistical analysis is not to sound
impressive and technical, but to impart information. To say things in a simple
way is a virtue. It shows you understand what is going on. Now back to the
printout.

• The row entitled “Unequal” gives a sort of t-test that does not assume
equal variances. Well, it’s not really a t-test, because the test statistic
does not really have a t distribution, even when the data are exactly
normal. But, the (very unpleasant) distribution of the test statistic is
well approximated by a t distribution with the right degrees of freedom
— not n1+n2−2, but something messy that depends on the data. See
the odd fractional degrees of freedom? See [2] for details. In any case,
it does not matter much in this case, because the p-value is almost the
same as the p-value from the traditional test. They lead to the same
conclusions, and there is no problem. What should you do when they
disagree? I’d go with the test that makes fewer assumptions.

• Next we see For H0: Variances are equal and an F -test. This is
the traditional test for whether the variances of two groups are equal,
and it’s almost significant. This test is provided so people can test for
differences between variances; if it is significantly different they can use
the unequal variance t-test, and otherwise they can use the traditional
test. This seems reasonable, except for the following.
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Both the two-sample t-test and the F -test for equality of variances
assume that the data are normally distributed. However, the normal-
ity assumption does not matter much for the t-test when the sample
sizes are large, while for the variance test it matters a lot, regardless
of how much data you have. When the data are non-normal, the test
for variances will be significant more than 5% of the time even when
the population variances are equal. If you have equal population vari-
ances and a large sample of non-normal data, the F -test for variances
could easily be significant, leading you to worry unnecessarily about
the validity of the t-test.

2.2.5 Background of the First Example

We don’t do statistical analysis in a vacuum. Before proceeding with more
computing details, let’s find out more about the reading data. This first
example is from an introductory text. It’s Example 7.8 (p. 534) in More
and McCabe’s excellent Introduction to the practice of statistics [2]. We are
interested in analyzing real data, not in doing textbook exercises. But we
will not turn up our noses just yet, because

Data Analysis Hint 2 When learning how to carry out a procedure using
unfamiliar statistical software, always do a textbook example first, and com-
pare the output to the material in the text. Regardless of what the manual
might say, never assume you know what the software is doing until you see
an example.

More and McCabe do a great job of explaining the t-test with unequal vari-
ances, something SAS produces (along with usual t-test that assumes equal
variances) without being asked when you request a t-test. Besides, the data
actually come from someone’s Ph.D. thesis, so there is an element of realism.
Here is Moore and McCabe’s description of the study.

An educator believes that new directed reading activities in the
classroom will help elementary school pupils improve some as-
pects of their reading ability. She arranges for a third grade class
of 21 students to take part in these activities. A control class-
room of 23 third graders follows the same curriculum without the
activities. At the end of 8 weeks, all students are given a De-
gree of Reading Power (DRP) test, which measures the aspects
of reading ability that the program is designed to improve.
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Sample Question 2.2.2 What’s wrong with this study?

Answer to Sample Question 2.2.2 The independent variable was manip-
ulated by the experimenter, but it is not an experimental study. Even if class-
rooms were assigned randomly to conditions (it is impossible to tell whether
they were, from this brief description), a large number of unobserved vari-
ables are potentially confounded with treatment. The teacher in the classroom
that received the treatment might be better than the teacher in the control
classroom, or possibly there was a particularly aggressive bully in the control
classroom, or maybe a mini-epidemic of some childhood disease hit the control
classroom —vdots. The list goes on. The point here is that there are many
ways in which the classroom experiences of children in the treatment group
differ systematically from the experiences of children in the control group.

Sample Question 2.2.3 How could the problem be fixed?

Answer to Sample Question 2.2.3 Assign classrooms at random to treat-
ments. The unit of analysis should be the classroom, not the individual stu-
dent.

2.2.6 SAS Example Two: The statclass data

These data come from a statistics class taught many years ago. Students took
eight quizzes, turned in nine computer assignments, and also took a midterm
and final exam. The data file also includes gender and ethnic background;
these last two variables are just guesses by the professor, and there is no way
to tell how accurate they were. The data file looks like this. There are 21
columns and 62 rows of data; columns not aligned.

tuzo.erin > more statclass.dat

1 2 9 1 7 8 4 3 5 2 6 10 10 10 5 0 0 0 0 55 43

0 2 10 10 5 9 10 8 6 8 10 10 8 9 9 9 9 10 10 66 79

1 2 10 10 5 10 10 10 9 8 10 10 10 10 10 10 9 10 10 94 67

1 2 10 10 8 9 10 7 10 9 10 10 10 9 10 10 9 10 10 81 65

0 1 10 1 0 0 8 6 5 2 10 9 0 0 10 6 0 5 0 54 29

...

Here is the SAS program.
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tuzo.erin > cat statmarks.sas

options linesize=79 pagesize=35;

title ’Grades from STA3000 at Roosevelt University: Fall, 1957’;

title2 ’Illustrate Elementary Tests’;

proc format; /* Used to label values of the categorical variables */

value sexfmt 0 = ’Male’ 1 = ’Female’;

value ethfmt 1 = ’Chinese’

2 = ’European’

3 = ’Other’ ;

data grades;

infile ’statclass.dat’;

input sex ethnic quiz1-quiz8 comp1-comp9 midterm final;

/* Drop lowest score for quiz & computer */

quizave = ( sum(of quiz1-quiz8) - min(of quiz1-quiz8) ) / 7;

compave = ( sum(of comp1-comp9) - min(of comp1-comp9) ) / 8;

label ethnic = ’Apparent ethnic background (ancestry)’

quizave = ’Quiz Average (drop lowest)’

compave = ’Computer Average (drop lowest)’;

mark = .3*quizave*10 + .1*compave*10 + .3*midterm + .3*final;

label mark = ’Final Mark’;

diff = quiz8-quiz1; /* To illustrate matched t-test */

label diff = ’Quiz 8 minus Quiz 1’;

format sex sexfmt.; /* Associates sex & ethnic */

format ethnic ethfmt.; /* with formats defined above */

proc freq;

tables sex ethnic;

proc means n mean std;

var quiz1 -- mark; /* single dash only works with numbered

lists, like quiz1-quiz8 */

proc ttest;

title ’Independent t-test’;

class sex;

var mark;

proc means n mean std t;

title ’Matched t-test: Quiz 1 versus 8’;

var quiz1 quiz8 diff;
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proc glm;

title ’One-way anova’;

class ethnic;

model mark = ethnic;

means ethnic / Tukey Bon Scheffe;

proc freq;

title ’Chi-squared Test of Independence’;

tables sex*ethnic / chisq;

proc freq; /* Added after seeing warning from chisq test above */

title ’Chi-squared Test of Independence: Version 2’;

tables sex*ethnic / norow nopercent chisq expected;

proc corr;

title ’Correlation Matrix’;

var final midterm quizave compave;

proc plot;

title ’Scatterplot’;

plot final*midterm; /* Really should do all combinations */

proc reg;

title ’Simple regression’;

model final=midterm;

/* Predict final exam score from midterm, quiz & computer */

proc reg simple;

title ’Multiple Regression’;

model final = midterm quizave compave / ss1;

smalstuf: test quizave = 0, compave = 0;

Noteworthy features of this program include

• options linesize=79 pagesize=35; Good for 81
2
by 11 paper.

• title2 Subtitle

• proc format

• quiz1-quiz8

• Creating new variables with assignment statements

• sum(of quiz1-quiz8)
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• diff = quiz8-quiz1

• format sex sexfmt.;

• quiz1 -- mark

• Title inside a procedure labels just that procedure

• proc freq For frequency distributions

• proc means To get means and standard deviations

• proc ttestWe’ve seen

• proc means n mean std t A matched t-test is just a single-variable
t-test carried out on differences, testing whether the mean difference is
equal to zero.

• proc glm

– class Tells SAS that ethnic is categorical.

– model Dependent variable(s) = independent variable(s)

– means ethnic / Tukey Bon Scheffe

• chisq option on proc freq

• chisq option on proc freq

• tables sex*ethnic / norow nopercent chisq expected; In version
2 of proc freq

• proc corr

• proc plot; plot final*midterm; Scatterplot: First variable named
goes on the y axis.

• proc reg: modelDependent variable(s) = independent variable(s) again

• simple option on proc reg gives simple descriptive statistics. This
last procedure is an example of multiple regression, and we will return
to it later once we have more background.
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statmarks.lst

Grades from STA3000 at Roosevelt University: Fall, 1957 1

Illustrate Elementary Tests

10:20 Friday, January 4, 2002

Cumulative Cumulative

SEX Frequency Percent Frequency Percent

----------------------------------------------------

Male 39 62.9 39 62.9

Female 23 37.1 62 100.0

Apparent ethnic background (ancestry)

Cumulative Cumulative

ETHNIC Frequency Percent Frequency Percent

------------------------------------------------------

Chinese 41 66.1 41 66.1

European 15 24.2 56 90.3

Other 6 9.7 62 100.0

^L Grades from STA3000 at Roosevelt University: Fall, 1957

2

Illustrate Elementary Tests

10:20 Friday, January 4, 2002

Variable Label N Mean Std Dev

------------------------------------------------------------------------

QUIZ1 62 9.0967742 2.2739413

QUIZ2 62 5.8870968 3.2294995

QUIZ3 62 6.0483871 2.3707744

QUIZ4 62 7.7258065 2.1590022

QUIZ5 62 9.0645161 1.4471109

QUIZ6 62 7.1612903 1.9264641

QUIZ7 62 5.7903226 2.1204477

QUIZ8 62 6.3064516 2.3787909

COMP1 62 9.1451613 1.1430011

COMP2 62 8.8225806 1.7604414

COMP3 62 8.3387097 2.5020880

COMP4 62 7.8548387 3.2180168

COMP5 62 9.4354839 1.7237109

COMP6 62 7.8548387 2.4350364

COMP7 62 6.6451613 2.7526248

COMP8 62 8.8225806 1.6745363

COMP9 62 8.2419355 3.7050497

MIDTERM 62 70.1935484 13.6235557

FINAL 62 49.4677419 17.5141327

QUIZAVE Quiz Average (drop lowest) 62 7.6751152 1.1266917

COMPAVE Computer Average (drop lowest) 62 8.8346774 1.1204997

MARK Final Mark 62 67.7584101 11.0235746

------------------------------------------------------------------------

^L Independent t-test

3

10:20 Friday, January 4, 2002

TTEST PROCEDURE
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Variable: MARK Final Mark

SEX N Mean Std Dev Std Error Minimum Maximum

-------------------------------------------------------------------------------

Male 39 67.62097070 10.11112521 1.61907581 43.61428571 89.93214286

Female 23 67.99145963 12.65945704 2.63967927 48.48214286 95.45714286

Variances T DF Prob>|T|

---------------------------------------

Unequal -0.1196 38.5 0.9054

Equal -0.1268 60.0 0.8995

For H0: Variances are equal, F’ = 1.57 DF = (22,38) Prob>F’ = 0.2190

^L Matched t-test: Quiz 1 versus 8

4

10:20 Friday, January 4, 2002

Variable Label N Mean Std Dev T

---------------------------------------------------------------------------

QUIZ1 62 9.0967742 2.2739413 31.4995252

QUIZ8 62 6.3064516 2.3787909 20.8749114

DIFF Quiz 8 minus Quiz 1 62 -2.7903226 3.1578011 -6.9576965

---------------------------------------------------------------------------

^L One-way anova

5

10:20 Friday, January 4, 2002

General Linear Models Procedure

Class Level Information

Class Levels Values

ETHNIC 3 Chinese European Other

Number of observations in data set = 62

^L One-way anova

6

10:20 Friday, January 4, 2002

General Linear Models Procedure

Dependent Variable: MARK Final Mark

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 1478.9595320 739.4797660 7.35 0.0014

Error 59 5933.7115164 100.5713816

Corrected Total 61 7412.6710484

R-Square C.V. Root MSE MARK Mean

0.199518 14.80042 10.028528 67.758410
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Source DF Type I SS Mean Square F Value Pr > F

ETHNIC 2 1478.9595320 739.4797660 7.35 0.0014

Source DF Type III SS Mean Square F Value Pr > F

ETHNIC 2 1478.9595320 739.4797660 7.35 0.0014

^L One-way anova

7

10:20 Friday, January 4, 2002

General Linear Models Procedure

Tukey’s Studentized Range (HSD) Test for variable: MARK

NOTE: This test controls the type I experimentwise error rate.

Alpha= 0.05 Confidence= 0.95 df= 59 MSE= 100.5714

Critical Value of Studentized Range= 3.400

Comparisons significant at the 0.05 level are indicated by ’***’.

Simultaneous Simultaneous

Lower Difference Upper

ETHNIC Confidence Between Confidence

Comparison Limit Means Limit

European - Other -5.108 6.539 18.185

European - Chinese 4.252 11.528 18.803 ***

Other - European -18.185 -6.539 5.108

Other - Chinese -5.550 4.989 15.528

Chinese - European -18.803 -11.528 -4.252 ***

Chinese - Other -15.528 -4.989 5.550

^L One-way anova

8

10:20 Friday, January 4, 2002

General Linear Models Procedure

Bonferroni (Dunn) T tests for variable: MARK

NOTE: This test controls the type I experimentwise error rate but

generally has a higher type II error rate than Tukey’s for all

pairwise comparisons.

Alpha= 0.05 Confidence= 0.95 df= 59 MSE= 100.5714

Critical Value of T= 2.46415

Comparisons significant at the 0.05 level are indicated by ’***’.
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Simultaneous Simultaneous

Lower Difference Upper

ETHNIC Confidence Between Confidence

Comparison Limit Means Limit

European - Other -5.398 6.539 18.476

European - Chinese 4.071 11.528 18.985 ***

Other - European -18.476 -6.539 5.398

Other - Chinese -5.813 4.989 15.790

Chinese - European -18.985 -11.528 -4.071 ***

Chinese - Other -15.790 -4.989 5.813

^L One-way anova

9

10:20 Friday, January 4, 2002

General Linear Models Procedure

Scheffe’s test for variable: MARK

NOTE: This test controls the type I experimentwise error rate but

generally has a higher type II error rate than Tukey’s for all

pairwise comparisons.

Alpha= 0.05 Confidence= 0.95 df= 59 MSE= 100.5714

Critical Value of F= 3.15312

Comparisons significant at the 0.05 level are indicated by ’***’.

Simultaneous Simultaneous

Lower Difference Upper

ETHNIC Confidence Between Confidence

Comparison Limit Means Limit

European - Other -5.626 6.539 18.704

European - Chinese 3.928 11.528 19.127 ***

Other - European -18.704 -6.539 5.626

Other - Chinese -6.019 4.989 15.997

Chinese - European -19.127 -11.528 -3.928 ***

Chinese - Other -15.997 -4.989 6.019
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^L Chi-squared Test of Independence 1

0

10:20 Friday, January 4, 2002

TABLE OF SEX BY ETHNIC

SEX ETHNIC(Apparent ethnic background (ancestry))

Frequency|

Expected |

Col Pct |Chinese |European|Other | Total

---------+--------+--------+--------+

Male | 27 | 7 | 5 | 39

| 25.79 | 9.4355 | 3.7742 |

| 65.85 | 46.67 | 83.33 |

---------+--------+--------+--------+

Female | 14 | 8 | 1 | 23

| 15.21 | 5.5645 | 2.2258 |

| 34.15 | 53.33 | 16.67 |

---------+--------+--------+--------+

Total 41 15 6 62

Chi-squared Test of Independence 13

10:20 Friday, January 4, 2002

STATISTICS FOR TABLE OF SEX BY ETHNIC

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 2 2.921 0.232

Likelihood Ratio Chi-Square 2 2.996 0.224

Mantel-Haenszel Chi-Square 1 0.000 0.995

Phi Coefficient 0.217

Contingency Coefficient 0.212

Cramer’s V 0.217

Sample Size = 62

WARNING: 33% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Correlation Matrix 14

10:20 Friday, January 4, 2002

Correlation Analysis

4 ’VAR’ Variables: FINAL MIDTERM QUIZAVE COMPAVE

Simple Statistics
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Variable N Mean Std Dev Sum

FINAL 62 49.467742 17.514133 3067.000000

MIDTERM 62 70.193548 13.623556 4352.000000

QUIZAVE 62 7.675115 1.126692 475.857143

COMPAVE 62 8.834677 1.120500 547.750000

Simple Statistics

Variable Minimum Maximum Label

FINAL 15.000000 89.000000

MIDTERM 44.000000 103.000000

QUIZAVE 4.571429 9.714286 Quiz Average (drop lowest)

COMPAVE 5.000000 10.000000 Computer Average (drop lowest)

Correlation Matrix 15

10:20 Friday, January 4, 2002

Correlation Analysis

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 62

FINAL MIDTERM QUIZAVE COMPAVE

FINAL 1.00000 0.51078 0.47127 0.14434

0.0 0.0001 0.0001 0.2630

MIDTERM 0.51078 1.00000 0.59294 0.41277

0.0001 0.0 0.0001 0.0009

QUIZAVE 0.47127 0.59294 1.00000 0.52649

Quiz Average (drop lowest) 0.0001 0.0001 0.0 0.0001

COMPAVE 0.14434 0.41277 0.52649 1.00000

Computer Average (drop lowest) 0.2630 0.0009 0.0001 0.0
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Scatterplot 16

10:20 Friday, January 4, 2002

Plot of FINAL*MIDTERM. Legend: A = 1 obs, B = 2 obs, etc.
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Simple regression 17

10:20 Friday, January 4, 2002

Model: MODEL1

Dependent Variable: FINAL

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F

Model 1 4881.79529 4881.79529 21.180 0.0001

Error 60 13829.64019 230.49400

C Total 61 18711.43548

Root MSE 15.18203 R-square 0.2609

Dep Mean 49.46774 Adj R-sq 0.2486

C.V. 30.69077
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Parameter Estimates

Parameter Standard T for H0:

Variable DF Estimate Error Parameter=0 Prob > |T|

INTERCEP 1 3.375101 10.19938324 0.331 0.7419

MIDTERM 1 0.656651 0.14268372 4.602 0.0001

Multiple regression output was deleted.

2.2.7 SAS Example Two: The SENIC data

These data are from a disk that comes with Neter et al’s [3] Applied linear
statistical models. The acronym SENIC stands for “Study of Nosocomial
Infection Control.” “Nosocomial” means acquired in hospital. Sometimes,
patients go to hospital with a broken leg or something, and catch a severe
respiratory infection, presumably from other patients. The observations here
are hospitals, and the dependent variable is infrisk, the probability of catch-
ing an infection while in hospital (multiplied by 100). The other variables
are explained fairly well by the labels statement.

First we will look at the file senic0.sas. This is a very basic program
that just reads the data and does frequency distributions of everything (even
identification number; you don’t want to print this!). The idea is that you
start out this way, checking for data errors, and then gradually build up the
program, adding labels, printing formats and new variables a little bit at a
time. This makes it easier to catch your errors.

/* senic0.sas */

options linesize = 79;

data simple;

infile ’senic.dat’;

input id stay age infrisk culratio xratio nbeds medschl

region census nurses service;

proc freq;

tables _all_;

Now suppose we discovered that the file has some weird missing value codes.
The next version of the program might look like this.
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/* senic0.1.sas */

options linesize = 79;

data simple;

infile ’senic.dat’;

input id stay age infrisk culratio xratio nbeds medschl

region census nurses service;

/*** sas doesn’t like numeric missing value codes. a period . is

best for missing. however .... ***/

if stay eq 9999 then stay = . ;

if age eq 9999 then age = . ;

if xratio eq 9999 then xratio = . ;

if culratio eq 9999 then culratio = . ;

if infrisk = 999 then infrisk = . ;

if nbeds = 9 then nbeds = . ;

if medschl = 9 then medschl = . ;

if region = 9 then region = . ;

if census = 9 then census = . ;

if service = 9 then service = . ;

if nurses eq (0 or .999) then nurses = . ;

proc freq;

tables _all_;

The process continues. On the way, we switch to a version of the data file
that has the data lined up in fixed columns, with blanks for missing values
(a common situation). We wind up with a program called senicread.sas.
Notice that is consists of just a proc format and a data step. There are no
statistical procedures, except a proc freq that is commented out. This file
will be read by programs that invoke statistical procedures, as you will see.
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/******* senicread.sas Just reads and labels data ***********/

title ’SENIC data’;

options linesize=79;

proc format; /* value labels used in data step below */

value yesnofmt 1 = ’Yes’ 2 = ’No’ ;

value regfmt 1 = ’Northeast’

2 = ’North Central’

3 = ’South’

4 = ’West’ ;

value acatfmt 1 = ’53 & under’ 2 = ’Over 53’;

data senic;

infile ’senic.raw’ missover ;

/* in senic.raw, missing=blank */

/* missover causes all blanks to be missing,

even at the end of a line. */

input

#1 id 1-5

stay 7-11

age 13-16

infrisk 18-20

culratio 22-25

xratio 27-31

nbeds 33-35

medschl 37

region 39

census 41-43

nurses 45-47

service 49-52 ;

label id = ’Hospital identification number’

stay = ’Av length of hospital stay, in days’

age = ’Average patient age’

infrisk = ’Prob of acquiring infection in hospital’

culratio = ’# cultures / # no hosp acq infect’

xratio = ’# x-rays / # no signs of pneumonia’

nbeds = ’Average # beds during study period’

medschl = ’Medical school affiliation’
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region = ’Region of country (usa)’

census = ’Aver # patients in hospital per day’

nurses = ’Aver # nurses during study period’

service = ’% of 35 potential facil. & services’ ;

/* associating variables with their value labels */

format medschl yesnofmt.;

format region regfmt.;

/***** recodes, computes & ifs *****/

if 0<age<=53 then agecat=1;

else if age>53 then agecat=2;

label agecat = ’av patient age category’;

format agecat acatfmt.;

/* compute ad hoc index of hospital quality */

quality=(2*service+nurses+nbeds+10*culratio

+10*xratio-2*stay)/medschl;

if (region eq 3) then quality=quality-100;

label quality = ’jerry’’s bogus hospital quality index’;

/* Commented out

proc freq;

tables _all_;

*/

Here are some comments.

• Notice that we are reading the variables from specified columns. This
allows data to be packed into adjacent columns (some data files are like
this), and also allows missing data to be represented by blanks. But
it means that the data must be perfectly aligned into columns. Don’t
assume this is true just because you were told by someone who should
know. Check!
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• The missover option is highly recommended if missing values are rep-
resented by blanks.

• if 0<age<=53 means “if 0 < age ≤ 53.’

• Age = 0 or negative would result in a missing value for agecat.

• a missing value for xratio (or any other variable in the formula) would
result in a missing value for quality.

• The double quotation mark in the middle of the label for quality is
how you get an apostrophe in a label.

• tables all in proc freq: The reserved name all means all the
variables in the data set.

Here is a program that pulls in senicread.sas with a %include statement,
and then does some statistical tests. Keeping the data definition in a separate
file is often a good strategy, because most data analysis projects involve a
substantial number of statistical procedures. It is common to have maybe
twenty program files that carry out various analyses. You could have the data
step at the beginning of each program, but what happens when (inevitably)
you want to make a change in the data step and re-run your analyses? You
find yourself making the same change in twenty files. Probably you will
forget to change some of them, and the result is a big mess. If you keep your
data definition in just one place, you only have to edit it once, and a lot of
problems are avoided.

/******************* basicsenic.sas ****************/

/* Basic stats on SENIC Data */

/***************************************************/

%include ’senicread.sas’; /* senicread.sas reads data, etc. */

proc univariate plot normal ; /* Plots and a test for normality */

title2 ’Describe Quantitative Variables’;

var stay -- nbeds census nurses service;

/* single dash only works with numbered lists, like item1-item50 */

proc freq;
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title2 ’Frequency distributions of categorical variables’;

tables medschl region agecat;

proc chart;

title2 ’Vertical bar charts’;

vbar region medschl agecat /discrete ;

proc chart ;

title2 ’Pie chart’;

pie region/type=freq;

proc chart;

title2 ’Pseudo 3-d chart - just playing around’;

block region / sumvar=infrisk type=mean group=medschl discrete;

/* Now elementary tests */

proc freq; /* use freq to do crosstabs */

tables region*medschl / nocol nopercent expected chisq;

proc ttest;

class medschl;

var infrisk age ;

proc glm; /* one-way anova */

class region;

model infrisk=region;

means region/ snk scheffe;

proc plot;

plot infrisk * nurses

infrisk * nurses = medschl;

proc corr;

var stay -- nbeds census nurses service;

proc glm; /* simple regression with glm*/

model infrisk=nurses;

The list file from this job is long, so we will just look at the proc univariate

output for the dependent variable.

^L SENIC data

6

Describe Quantitative Variables

11:47 Friday, January 4, 2002
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Univariate Procedure

Variable=INFRISK Prob of acquiring infection in hospital

Moments

N 113 Sum Wgts 113

Mean 4.354867 Sum 492.1

Std Dev 1.340908 Variance 1.798034

Skewness -0.11976 Kurtosis 0.182355

USS 2344.41 CSS 201.3798

CV 30.79102 Std Mean 0.126142

T:Mean=0 34.52353 Pr>|T| 0.0001

Num ^= 0 113 Num > 0 113

M(Sign) 56.5 Pr>=|M| 0.0001

Sgn Rank 3220.5 Pr>=|S| 0.0001

W:Normal 0.970897 Pr<W 0.1280

Quantiles(Def=5)

100% Max 7.8 99% 7.7

75% Q3 5.2 95% 6.4

50% Med 4.4 90% 5.8

25% Q1 3.7 10% 2.6

0% Min 1.3 5% 1.8

1% 1.3

Range 6.5

Q3-Q1 1.5

Mode 4.3

Extremes

Lowest Obs Highest Obs

1.3( 93) 6.5( 47)

1.3( 40) 6.6( 104)

1.4( 107) 7.6( 53)

1.6( 2) 7.7( 13)

1.7( 85) 7.8( 54)

^L SENIC data

7

Describe Quantitative Variables

11:47 Friday, January 4, 2002

Univariate Procedure

Variable=INFRISK Prob of acquiring infection in hospital

Stem Leaf # Boxplot

7 678 3 0

7

6 56 2 |

6 12334 5 |

5 5555666777889 13 |

5 0000112233344 13 +-----+
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4 5555555666778888999 19 | |

4 0111122222333333344444 22 *--+--*

3 5577778999 10 +-----+

3 011244 6 |

2 5677899999 10 |

2 0013 4 |

1 678 3 |

1 334 3 0

----+----+----+----+--

Normal Probability Plot

7.75+ * * +*

| ++++

| +*+*

| +***

| ******

| ****

| *****

| ******+

| ***++

| +**+

| ****

| +***

| ++*+**

1.25+*++* *

+----+----+----+----+----+----+----+----+----+----+

-2 -1 0 +1 +2

2.2.8 SAS Reference Materials

This course is trying to teach you SAS by example, without full explanation,
and certainly without discussion of all the options. If you need more detail,
there are several approaches you can take. The most obvious is to consult
the SAS manuals. The full set of manuals runs to over a dozen volumes,
and most of them look like telephone directories. For a beginner, it is hard
to know where to start. And even if you know where to look, the SAS
manuals can be hard to read, because they assume you already understand
the statistical procedures fairly thoroughly, and on a mathematical level.
They are really written for professional statisticians. The SAS Institute
also publishes a variety of manual-like books that are intended to be more
instructional, most of them geared to specific topics (like The SAS system
for multiple regression and the SAS system for linear models). These are a
bit more readable, though it helps to have a real textbook on the topic to fill
in the gaps.

A better place to start is a wonderful book by Cody and Smith [1] entitled
Applied statistics and the SAS programming language. They do a really good
job of presenting and documenting the language of the data step, and and
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they also cover a set of statistical procedures ranging from elementary to
moderately advanced. If you had to own just one SAS book, this would be
it.

If you consult any SAS book or manual (Cody and Smith’s book in-
cluded), you’ll need to translate and filter out some details. First, you’re
advised to ignore anything about the SAS Display Manager. In this course,
there are raw data file, program files, log files and list files; that’s it.

Second, many of the examples you see in Cody and Smith’s book and
elsewhere will not have separate files for the raw data and the program. They
include the raw data in the program file in the data step, after a datalines
or cards statement. Here is an example from page 3 of [1].

data test;

input subject 1-2 gender $ 4 exam1 6-8 exam2 10-12 hwgrade $ 14;

datalines;

10 M 80 84 A

7 M 85 89 A

4 F 90 86 B

20 M 82 85 B

25 F 94 94 A

14 F 88 84 C

;

proc means data=test;

run;

Having the raw data and the SAS code together in one display is so
attractive for small datasets that most textbook writers cannot resist it. But
think how unpleasant it would be if you had 10,000 lines of data. The way we
would do this example is to have the data file (named, say, example1.dat)
in a separate file. The data file would look like this.

10 M 80 84 A

7 M 85 89 A

4 F 90 86 B

20 M 82 85 B

25 F 94 94 A

14 F 88 84 C

and the program file would look like this.
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data test;

infile ’example1.dat’; /* Read data from example1.dat */

input subject 1-2 gender $ 4 Exam1 6-8 exam2 10-12 hwgrade $ 14;

proc means data=test;

Using this as an example, you should be able to translate any textbook
example into the program-file data-file format used in this course.
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Chapter 3

Multiple Regression: Part One

3.1 Three Meanings of Control

In this class, we will use the word control to refer to procedures designed
to reduce the influence of extraneous variables on our results. The definition
of extraneous is “not properly part of a thing,” and we will use it to refer
to variables we’re not really interested in, and which might get in the way
of understanding the relationship between the independent variable and the
dependent variable.

There are two ways an extraneous variable might get in the way. First,
it could be a confounding variable – related to both the independent vari-
able and the dependent variable, and hence capable of creating masking or
even reversing relationships that would otherwise be evident. Second, it
could be unrelated to the independent variable and hence not a confounding
variable, but it could still have a substantial relationship to the dependent
variable. If it is ignored, the variation that it could explain will be part of
the ”background noise,” making it harder to see the relationship between IV
and DV, or at least causing it to appear relatively weak, and possibly to be
non-significant.

The main way to control potential extraneous variables is by holding them
constant. In experimental control, extraneous variables are literally held
constant by the procedure of data collection or sampling of cases. For exam-
ple, in a study of problem solving conducted at a high school, background
noise might be controlled by doing the experiment at the same time of day for
each subject ( and not when classes are changing). In learning experiments
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with rats, males are often employed because their behavior is less variable
than that of females.

An alternative to experimental control is statistical control, which takes
two main forms. One version, subdivision, is to subdivide the sample into
groups with identical or nearly identical values of the extraneous variable(s),
and then to examine the relationship between independent and dependent
variable separately in each subgroup – possibly pooling the subgroup analyses
in some way. For example, the relationship between education and income
might be studied separately for men and women. The drawback of this
subdivision approach is that if extraneous variables have many values or
combinations of values, you need a very large sample.

The second form of statistical control, model-based control, is to ex-
ploit details of the statistical model to accomplish the same thing as the
subdivision approach, but without needing a huge sample size. The primary
example is multiple linear regression, which is the topic of this chapter.

3.2 Population Parameters

Recall we said two variables are “related” if the distribution of the dependent
variable depends on the value of the independent variable. Classical regres-
sion and analysis of variance are concerned with a particular way in which
the independent and dependent variables might be related, one in which the
population mean of Y depends on the value of X.

Think of a population histogram manufactured out of a thin sheet of
metal. The point (along the horizontal axis) where the histogram balances
is called the expected value or population mean; it is usually denoted by
E[Y ] or µ (the Greek letter mu). The conditional population mean of Y
given X = x is just the balance point of the conditional distribution. It will
be denoted by E[Y |X = x]. The vertical bar — should be read as ”given.”

Again, for every value of X, there is a separate distribution of Y , and the
expected value (population mean) of that distribution depends on the value
of X. Furthermore, that dependence takes a very specific and simple form.
When there is only one independent variable, the population mean of Y is

E[Y |X = x] = β0 + β1x. (3.1)

This is the equation of a straight line. The slope (rise over run) is β1 and
the intercept is β0. If you want to know the population mean of Y for any
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given x value, all you need are the two numbers β0 and β1.
But in practice, we never know β0 and β1. To estimate them, we use the

slope and intercept of the least-squares line:

Ŷ = b0 + b1x. (3.2)

If you want to estimate the population mean of Y for any given x value,
all you need are the two numbers b0 and b1, which are calculated from the
sample data.

This has a remarkable implication, one that carries over into multiple
regression. Ordinarily, if you want to estimate a population mean, you need
a reasonable amount of data. You calculate the sample mean of those data,
and that’s your estimate of the population mean. If you want to estimate a
conditional population mean, that is, the population mean of the conditional
distribution of Y given a particular X = x, you need a healthy amount of
data with that value of x. For example, if you want to estimate the average
weight of 50 year old women, you need a sample of 50 year old women —
unless you are willing to make some assumptions.

What kind of assumptions? Well, the simple structure of (3.1) means
that you can use formula (3.2) to estimate the population mean of Y for a
given value of X = x without having any data at that x value. This is not
“cheating,” or at any rate, it need not be. If

• the x value in question is comfortably within the range of the data in
your sample, and if

• the straight-line model is a reasonable approximation of reality within
that range,

then the estimate can be quite good.
The ability to estimate a conditional population mean without a lot of

data at any given x value means that we will be able to control for extraneous
variables, and remove their influence from a given analysis without having the
massive amounts of data required by the subdivision approach to statistical
control.

We are getting away with this because we have adopted a model for the
data that makes reasonably strong assumptions about the way in which the
population mean of Y depends on X. If those assumptions are close to the
truth, then the conclusions we draw will be reasonable. If the assumptions
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are badly wrong, we are just playing silly games. There is a general principle
here, one that extends far beyond multiple regression.

Data Analysis Hint 3 There is a direct tradeoff between amount of data
and the strength (restrictiveness) of model assumptions. If you have a lot
of data, you do not need to assume as much. If you have a small sample
size, you will probably have to adopt fairly restrictive assumptions in order
to conclude anything from your data.

Multiple Regression Now consider the more realistic case where there is
more than one independent variable. With two independent variables, the
model for the population mean of Y is

E[Y |X = x] = β0 + β1x1 + β2x2,

which is the equation of a plane in 3 dimensions (x1, x2, y). The general case
is

E[Y |X = x] = β0 + β1x1 + . . .+ βp−1xp−1,

which is the equation of a hyperplane in p dimensions.

Comments

• Since there is more than one independent variable, there is a condi-
tional distribution of Y for every combination of independent variable
values. Matrix notation (boldface) is being used to denote a collection
of independent variables.

• There are p− 1 independent variables. This may seem a little strange,
but we’re doing this to keep the notation consistent with that of stan-
dard regression texts such as [3]. If you want to think of an independent
variable X0 = 1, then there are p independent variables.

• What is β0? It’s the height of the population hyperplane when all the
independent variables are zero, so it’s the intercept.

• Most regression models have an intercept term, but some do not (X0 =
0); it depends on what you want to accomplish.
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• β0 is the intercept. We will now see that the other β values are slopes.

Consider

E[Y |X = x] = β0 + β1x1 + β2x2 + β3x3 + β4x4

What is β3? If you speak calculus,
∂
∂x3

E[Y ] = β3, so β3 is the rate at which
the population mean is increasing as a function of x3, when other independent
variables are held constant (this is the meaning of a partial derivative).

If you speak high school algebra, β3 is the change in the population mean
of Y when x3 is increased by one unit and all other independent variables
are held constant. Look at

β0 + β1x1 + β2x2 +β3(x3 + 1) +β4x4

− (β0 + β1x1 + β2x2 +β3x3 +β4x4)

= β0 + β1x1 + β2x2 + β3x3 +β3 +β4x4

− β0 − β1x1 − β2x2 − β3x3 −β4x4

= β3

The mathematical device of holding other variables constant is very im-
portant. This is what is meant by statements like “Controlling for parents’
education, parents’ income and number of siblings, quality of day care is still
positively related to academic performance in Grade 1.” We have just seen
the prime example of model-based statistical control — the third type of
control in the “Three meanings of control” section that began this chapter.

We will describe the relationship betweenXk and Y as positive (control-
ling for the other independent variables) if βk > 0 and negative if βk < 0.

Here is a useful definition. A quantity (say w) is a linear combination
of quantities z1, z2 and z3 if w = a1z1 + a2z2 + a3z3, where a1, a2 and a3

are constants. Common multiple regression is linear regression because the
population mean of Y is a linear combination of the β values. It does not
refer to the shape of the curve relating x to E[Y |X = x]. For example,

E[Y |X = x] = β0 + β1x Simple linear regression
E[Y |X = x] = β0 + β1x

2 Also simple linear regression
E[Y |X = x] = β0 + β1x+ β2x

2 + β3x
3 Polynomial regression – still linear

E[Y |X = x] = β0 + β1x+ β2 cos(1/x) Still linear in the β values
E[Y |X = x] = β0 + β1 cos(β2x) Truly non-linear
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When the relationship between the independent and dependent variables
is best represented by a curve, we’ll call it curvilinear, whether the regres-
sion model is linear or not. All the examples just above are curvilinear,
except the first one.

Notice that in the polynomial regression example, there is really only
one independent variable, x. But in the regression model, x, x2 and x3 are
considered to be three separate independent variables in a multiple regression.
Here, fitting a curve to a cloud of points in two dimensions is accomplished
by fitting a hyperplane in four dimensions. The origins of this remarkable
trick are lost in the mists of time, but whoever thought of it was having a
good day.

3.3 Estimation by least squares

In the last section, the conditional population mean of the dependent vari-
able was modelled as a (population) hyperplane. It is natural to estimate a
population hyperplane with a sample hyperplane. This is easiest to imagine
in three dimensions. Think of a three-dimensional scatterplot, in a room.
The independent variables are X1 and X2. The (x1, x2) plane is the floor,
and the value of Y is height above the floor. Each subject (case) in the
sample contributes three coordinates (x1, x2, y), which can be represented by
a soap bubble floating in the air.

In simple regression, we have a two-dimensional scatterplot, and we seek
the best-fitting straight line. In multiple regression, we have a three (or
higher) dimensional scatterplot, and we seek the best fitting plane (or hyper-
plane). Think of lifting and tilting a piece of plywood until it fits the cloud
of bubbles as well as possible.

What is the “best-fitting” plane? We’ll use the least-squares plane,
the one that minimizes the sum of squared vertical distances of the bubbles
from the piece of plywood. These vertical distances can be viewed as errors
of prediction.

It’s hard to visualize in higher dimension, but the algebra is straightfor-
ward. Any sample hyperplane may be viewed as an estimate (maybe good,
maybe terrible) of the population hyperplane. Following the statistical con-
vention of putting a hat on a population parameter to denote an estimate of
it, the equation of a sample hyperplane is

β̂0 + β̂1x1 + . . . + β̂p−1xp−1,
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and the error of prediction (vertical distance) is the difference between y and
the quantity above. So, the least squares plane must minimize

Q =
n∑
i=1

(
yi − β̂0 − β̂1xi,1 − . . .− β̂p−1xi,p−1

)2

over all combinations of β̂0, β̂1, . . . , β̂p−1.
Provided that no independent variable (including the peculiar X0 = 1)

is a perfect linear combination of the others, the β̂ quantities that minimize
the sum of squares Q exist and are unique. We will denote them by b0 (the
estimate of β0, b1 (the estimate of β1), and so on.

Again, a population hyperplane is being estimated by a sample hyperplane.

E[Y |X = x] = β0 + β1x1 + β2x2 + β3x3 + β4x4

Ŷ = b0 + b1x1 + b2x2 + b3x3 + b4x4

• Ŷ means predicted Y . It is the height of the best-fitting (least squares)
piece of plywood above the floor, at the point represented by the com-
bination of x values. The equation for Ŷ is the equation of the least-
squares hyperplane.

• “Fitting the model” means calculating the b values.

3.3.1 Residuals

The residual, or error of prediction, is

e = Y − Ŷ .

The residuals (there are n) represents errors in prediction. A positive residual
means over-performance (or under-prediction). A negative residual means
under-performance. Examination of residuals can reveal a lot, since we can’t
look at 12-dimensional scatterplots.

• Single variable plots (histograms, box plots, stem and leaf diagrams
etc.) can identify outliers. (Data errors? Source of new ideas? What
might a bimodal distribution of residuals indicate?)

• Plot (scatterplot) of residuals versus potential independent variables
not in the model might suggest they be included, or not. How would
you plot residuals vs a categorical IV?
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• Plot of residuals vs. variables that are in the model may reveal

– Curvilinear trend (may need transformation of x, or polynomial
regression, or even real non-linear regression)

– Non-constant variance over the range of x, so the DV may depend
on the IV not just through the mean. May need transformation
of Y , or weighted least squares, or a different model.

• Plot of residuals vs. Ŷ may also reveal unequal variance.

3.3.2 Categorical Independent Variables

Independent variables need not be continuous – or even quantitative. For
example, suppose subjects in a drug study are randomly assigned to either
an active drug or a placebo. Let Y represent response to the drug, and

x =

{
1 if the subject received the active drug, or
0 if the subject received the placebo.

The model is E[Y |X = x] = β0+β1x. For subjects who receive the active
drug (so x = 1), the population mean is

β0 + β1x = β0 + β1

For subjects who receive the placebo (so x = 0), the population mean is

β0 + β1x = β0.

Therefore, β0 is the population mean response to the placebo, and β1

is the difference between response to the active drug and response to the
placebo. We are very interested in testing whether β1 is different from zero,
and guess what? We get exactly the same t value as from a two-sample t-test,
and exactly the same F value as from a one-way ANOVA for two groups.

Exercise Suppose a study has 3 treatment conditions. For example Group
1 gets Drug 1, Group 2 gets Drug 2, and Group 3 gets a placebo, so that
the Independent Variable is Group (taking values 1,2,3) and there is some
Dependent Variable Y (maybe response to drug again).
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Sample Question 3.3.1 Why is E[Y |X = x] = β0+β1x (with x = Group)
a silly model?

Answer to Sample Question 3.3.1 Designation of the Groups as 1, 2
and 3 is completely arbitrary.

Sample Question 3.3.2 Suppose x1 = 1 if the subject is in Group 1, and
zero otherwise, and x2 = 1 if the subject is in Group 2, and zero otherwise,
and E[Y |X = x] = β0 + β1x1 + β2x2. Fill in the table below.

Group x1 x2 β0 + β1x1 + β2x2

1 µ1 =
2 µ2 =
3 µ3 =

Answer to Sample Question 3.3.2

Group x1 x2 β0 + β1x1 + β2x2

1 1 0 µ1 = β0 + β1

2 0 1 µ2 = β0 + β2

3 0 0 µ3 = β0

Sample Question 3.3.3 What does each β value mean?

Answer to Sample Question 3.3.3 β0 = µ3, the population mean response
to the placebo. β1 is the difference between mean response to Drug 1 and mean
response to the placebo. β2 is the difference between mean response to Drug
21 and mean response to the placebo.

Sample Question 3.3.4 Why would it be nice to simultaneously test whether
β1 and β2 are different from zero?

Answer to Sample Question 3.3.4 This is the same as testing whether
all three population means are equal; this is what a one-way ANOVA does.
And we get the same F and p values (not really part of the sample answer).

It is worth noting that all the traditional one-way and higher-way models
for analysis of variance and covariance emerge as special cases of multiple
regression, with dummy variables representing the categorical independent
variables.
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More about Dummy Variables The exercise above was based on indi-
cator dummy variables, which take a value of 1 for observations where a
categorical independent variable takes a particular value, and zero otherwise.
Notice that x1 and x2 contain the same information as the three-category
variable Group. If you know Group, you know x1 and x2, and if you know
x1 and x2, you know Group. In models with an intercept term, a categor-
ical independent variable with k categories is always represented by k − 1
dummy variables. If the dummy variables are indicators, the category that
does not get an indicator is actually the most important. The intercept is
that category’s mean, and it is called the reference category, because the
remaining regression coefficients represent differences between the reference
category and the other category. To compare several treatments to a control,
make the control group the reference category by not giving it an indicator.

Sample Question 3.3.5 What would happen if you used k indicator dummy
variables instead of k − 1?

Answer to Sample Question 3.3.5 The dummy variables would add up
to the intercept; the independent variables would be linearly dependent, and
the least-squares estimators would not exist.

Your software might try to save you by throwing one of the dummy variables
out, but which one would it discard?

3.3.3 Explained Variation

Before considering any independent variables, there is a certain amount of
variation in the dependent variable. The sample mean is the value around
which the sum of squared errors of prediction is at a minimum, so it’s a least
squares estimate of the population mean of Y when there are no independent
variables. We will measure the total variation to be explained by the sum of
squared deviations around the mean of the dependent variable.

When we do a regression, variation of the data around the least-squares
plane represents errors of prediction. It is variation that is unexplained by
the regression. But it’s always less than the variation around the sample
mean (Why? Because the least-squares plane could be horizontal). So, the
independent variables in the regression have explained some of the variation
in the dependent variable. Variation in the residuals is variation that is still
unexplained.
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Variation to explain: Total Sum of Squares

SSTO =
n∑
i=1

(Yi − Y )2

Variation that the regression does not explain: Error Sum of Squares

SSE =
n∑
i=1

(ei − e)2 =
n∑
i=1

e2
i =

n∑
i=1

(Yi − Ŷi)
2

Variation that is explained: Regression (or Model) Sum of Squares

SSR =
n∑
i=1

(Yi − Y )2 −
n∑
i=1

(Yi − Ŷi)2 =
n∑
i=1

(Ŷi − Y )2

Regression software (including SAS) displays the sums of squares above
in an analysis of variance summary table. “Analysis” means to “split up,”
and that’s what we’re doing here — splitting up the variation in dependent
variable into explained and unexplained parts.

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F

Model p− 1 SSR MSR = SSR/(p − 1) F = MSR
MSE

p-value
Error n− p SSE MSE = SSE/(n− p)
Total n− 1 SSTO

Variance estimates consist of sums of squares divided by degrees of free-
dom. “DF” stands for Degrees of Freedom. Sums of squares and degrees of
freedom each add up to Total. The F -test is for whether β1 = β2 = . . . =
βp−1 = 0 – that is, for whether any of the independent variables makes a
difference.

The proportion of variation in the dependent variable that is explained
by the independent variables (representing strength of relationship) is

R2 =
SSR

SSTO
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The R2 from a simple regression is the same as the square of the correlation
coefficient: R2 = r2.

What is a good value of R2? Well, the weakest relationship I can visually
perceive in a scatterplot is around r = .3, so I am unimpressed by R2 values
under 0.09. By this criterion, most published results in the social sciences,
and many published results in the biological sciences are not strong enough
to be scientifically interesting. But this is just my opinion.

3.4 Testing for Statistical Significance in Re-

gression

We are already assuming that there is a separate population defined by each
combination of values of the independent variables (the conditional distribu-
tions of Y given X), and that the conditional population mean is a linear
combination of the β values; the weights of this linear combination are 1 for
β0, and the x values for the other β values. The classical assumptions are
that in addition,

• Sample values of Y represent independent observations, conditionally
upon the values of the independent variables.

• Each conditional distribution is normal.

• Each conditional distribution has the same population variance.

How important are the assumptions? Well, important for what? The
main thing we want to avoid is incorrect p-values, specifically ones that ap-
pear smaller than they are – so that we conclude a relationship is present
when really we should not. This ”Type I error” is very undesirable, because
it tends to load the scientific literature with random garbage.

For large samples, the assumption of normality is not important provided
no single observation has too much influence. What is meant by a “large”
sample? It depends on how severe the violations are. What is “too much”
influence? The influence of the most influential observation must tend to
zero as the sample size approaches infinity. You’re welcome.

The assumption of equal variances can be safely violated provided that
the numbers of observations at each combination of IV values are large and
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close to equal. This is most likely to be the case with designed experiments
having categorical independent variables.

The assumption of independent observations is very important, almost
always. Examples where this does not hold is if a student takes a test more
than once, members of the same family respond to the same questionnaire
about eating habits, litter-mates are used in a study of resistance to cancer
in mice, and so on.

When you know in advance which observations form non-independent
sets, one option is to average them, and let n be the number of independent
sets of observations. There are also ways to incorporate non-independence
into the statistical model. We will discuss repeated measures designs, multi-
variate analysis and other examples later.

3.4.1 The standard F and t-tests

SAS proc reg (like other programs) usually starts with an overall F -test,
which tests all the independent variables in the equation simultaneously. If
this test is significant, we can conclude that one or more of the independent
variables is related to the dependent variable.

Again like most programs that do multiple regression, SAS produces t-
tests for the individual regression coefficients. If one of these is significant, we
can conclude that controlling for all other independent variables in the model,
the independent variable in question is related to the dependent variable.
That is, each variable is tested controlling for all the others.

It is also possible to test subsets of independent variables, controlling for
all the others. For example, in an educational assessment where students
use 4 different textbooks, the variable ”textbook” would be represented by 3
dummy variables. These variables could be tested simultaneously, controlling
for several other variables such as parental education and income, child’s past
academic performance, experience of teacher, and so on.

In general, to test a subset A of independent variables while controlling for
another subset B, fit a model with both sets of variables, and simultaneously
test the b coefficients of the variables in subset A; there is an F test for this.

This is 100% equivalent to the following. Fit a model with just the
variables in subset B, and calculate R2. Then fit a second model with the
A variables as well as the B variables, and calculate R2 again. Test whether
the increase in R2 is significant. It’s the same F test.
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Call the regression model with all the independent variables the Full
Model, and call the model with fewer independent variables (that is, the
model without the variables being tested) the Reduced Model. Let SSRF

represent the explained sum of squares from the full model, and SSRR rep-
resent the explained sum of squares from the reduced model.

Sample Question 3.4.1 Why is SSRF ≥ SSRR?

Answer to Sample Question 3.4.1 In the full model, if the best-fitting
hyperplane had all the b coefficients corresponding to the extra variables equal
to zero, it would fit exactly as well as the hyperplane of the reduced model. It
could not do any worse.

Since R2 = SSR
SSTO

, it is clear that SSRF ≥ SSRR implies that adding
independent variables to a regression model can only increaseR2. When these
additional independent variables are correlated with independent variables
already in the model (as they usually are in an observational study),

• Statistical significance can appear when it was not present originally,
because the additional variables reduce error variation, and make esti-
mation and testing more precise.

• Statistical significance that was originally present can disappear, be-
cause the new variables explain some of the variation previously at-
tributed to the variables that were significant, so when one controls for
the new variables, there is not enough explained variation left to be
significant. This is especially true of the t-tests, in which each variable
is being controlled for all the others.

• Even the signs of the bs can change, reversing the interpretation of how
their variables are related to the dependent variable. This is why it’s
very important not to leave out important independent variables in an
observational study.

The F -test for the full versus reduced model is based on the test statistic

F =
(SSRF − SSRR)/s

MSEF
, (3.3)

where MSEF is the mean square error for the full model: MSEF =
SSEF
n−p .

Equation 3.3 is a very general formula. As we will see, all the standard tests
in regression and the usual (fixed effects) Analysis of Variance are special
cases of this F -test.
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Examples of Full and Reduced Models

At this point, it might help to have some concrete examples. Recall the
SENIC data set (catching infection in hospital) that was used to illustrate
a collection of elementary significance tests in Section 2.2.7. For reference,
here is the label statement again.

label id = ’Hospital identification number’

stay = ’Av length of hospital stay, in days’

age = ’Average patient age’

infrisk = ’Prob of acquiring infection in hospital’

culratio = ’# cultures / # no hosp acq infect’

xratio = ’# x-rays / # no signs of pneumonia’

nbeds = ’Average # beds during study period’

medschl = ’Medical school affiliation’

region = ’Region of country (usa)’

census = ’Aver # patients in hospital per day’

nurses = ’Aver # nurses during study period’

service = ’% of 35 potential facil. & services’ ;

The SAS program senicread.sas could have defined dummy variables
for region and medschl in the data step as follows:

if region = 1 then r1=1; else r1=0;

if region = 2 then r2=1; else r2=0;

if region = 3 then r3=1; else r3=0;

if medschl = 2 then mschool = 0; else mschool = medschl;

/* mschool is an indicator for medical school = yes */

The definition of r1, r2 and r2 above is correct, but it is risky. It works
only because the data file happens to have no missing values for region. If
there were missing values for region, the else statements would assign them
to zero for r1, r2 and r3, because else means anything else. The definition
of mschool is a bit more sophisticated; missing values for medschl will also
be missing for mschool.

Here is what I’d recommend for region. It’s more trouble, but it’s worth
it.

/* Indicator dummy variables for region */

if region = . then r1=.;
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else if region = 1 then r1 = 1;

else r1 = 0;

if region = . then r2=.;

else if region = 2 then r2 = 1;

else r2 = 0;

if region = . then r3=.;

else if region = 3 then r3 = 1;

else r3 = 0;

When you create dummy variables with if statements, always do crosstab-
ulations of the new dummy variables by the categorical variable they repre-
sent, to make sure you did it right. Use the option of proc freq to see what
happened to the missing values (missprint makes “missing” a value of the
variables).

proc freq;

tables region * (r1-r3) / missprint nocol norow nopercent ;

Sample Question 3.4.2 Controlling for hospital size as represented by num-
ber of beds and number of patients, is average patient age related to infection
risk?

1. What are the variables in the full model?

2. What are the variables in the reduced model?

Answer to Sample Question 3.4.2

1. nbeds, census, age

2. nbeds, census

I would never ask for SAS syntax on a test, but for completeness,

proc reg;

model infrisk = nbeds, census, age;

size: test age=0;

Sample Question 3.4.3 Controlling for average patient age and hospital
size as represented by number of beds and number of patients, does infection
risk differ by region of the country?
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1. What are the variables in the full model?

2. What are the variables in the reduced model?

Answer to Sample Question 3.4.3

1. age, nbeds, census, r1, r2, r3

2. age, nbeds, census

To test the full model versus the reduced model,

proc reg;

model infrisk = age nbeds census r1 r2 r3;

regn: test r1=r2=r3=0;

Sample Question 3.4.4 Controlling for number of beds, number of patients,
average length of stay and region of the country, are number of nurses and
medical school affiliation (considered simultaneously) significant predictors of
infection risk?

1. What are the variables in the full model?

2. What are the variables in the reduced model?

Answer to Sample Question 3.4.4

1. nbeds, census, stay, r1, r2, r3, nurses, mschool

2. nbeds, census, stay, r1, r2, r3

To test the full model versus the reduced model,

proc reg;

model infrisk = nbeds census stay r1 r2 r3 nurses mschool;

nursmeds: test nurses=mschool=0;

Sample Question 3.4.5 Controlling for average age of patient, average length
of stay and region of the country, is hospital size (as represented by number
of beds and number of patients) related to infection risk?

1. What are the variables in the full model?
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2. What are the variables in the reduced model?

Answer to Sample Question 3.4.5

1. age, stay, r1, r2, r3, nbeds, census

2. age, stay, r1, r2, r3

To test the full model versus the reduced model,

proc reg;

model infrisk = nbeds census stay r1 r2 r3 nurses mschool;

size2: test nurses=mschool=0;

Sample Question 3.4.6 Controlling for region of the country and medical
school affiliation, are average length of stay and average patient age (consid-
ered simultaneously) related to infection risk?

1. What are the variables in the full model?

2. What are the variables in the reduced model?

Answer to Sample Question 3.4.6

1. r1, r2, r3, mschool, stay age

2. r1, r2, r3, mschool

To test the full model versus the reduced model,

proc reg;

model infrisk = nbeds census stay r1 r2 r3 nurses mschool;

agestay: test age=stay=0;

The pattern should be clear. You are “controlling for” the variables in
the reduced model. You are testing for the additional variables that appear
in the full model but not the reduced model.
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Looking at the Formula for F

Formula 3.3 reveals some important properties of the F -test. Bear in mind
that the p-value is the area under the F -distribution curve above the value
of the F statistic. Therefore, anything that makes the F statistic bigger
will make the p-value smaller, and if it is small enough, the results will be
significant. And significant results are what we want, if in fact the full model
is closer to the truth than the reduced model.

• Since there are s more variables in the full model than in the reduced
model, the numerator of (3.3) is the average improvement in explained
sum of squares when we compare the full model to the reduced model.
Thus, some of the extra variables might be useless for prediction, but
the test could still be significant at least one of them contributes a
lot to the explained sum of squares, so that the average increase is
substantially more than one would expect by chance.

• On the other hand, useless extra independent variables can dilute the
contribution of extra independent variables with modest but real ex-
planatory power.

• The denominator is a variance estimate based on how spread out the
residuals are. The smaller this denominator is, the larger the F statis-
tic is, and the more likely it is to be significant. Therefore, control
extraneous sources of variation.

– If possible, always collect data on any potential independent vari-
able that is known to have a strong relationship to the dependent
variable, and include it in both the full model and the reduced
model. This will make the analysis more sensitive, because in-
creasing the explained sum of squares will reduce the unexplained
sum of squares. You will be more likely to detect a real result as
significant, because it will be more likely to show up against the
reduced background noise.

– On the other hand, the denominator of formula (3.3) for F is
MSEF = SSEF

n−p , where the number of independent variables is
p− 1. Adding useless independent variables to the model will in-
crease the explained sum of squares by at least a little, but the
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denominator of MSEF will go down by one, making MSEF big-
ger, and F smaller. The smaller the sample size n, the worse the
effect of useless independent variables. You have to be selective.

– The (internal) validity of most experimental research depends on
experimental designs and procedures that balance sources of ex-
traneous variation evenly across treatments. But even better are
careful experimental procedures that eliminate random noise al-
together, or at least hold it to very low levels. Reduce sources of
random variation, and the residuals will be smaller. The MSEF
will be smaller, and F will be bigger if something is really going
on.

– Most dependent variables are just indirect reflections of what the
investigator would really like to study, and in designing their stud-
ies, scientists routinely make decisions that are tradeoffs between
expense (or convenience) and data quality. When dependent vari-
ables represent low-quality measurement, they essentially contain
random variation that cannot be explained. This variation will
show up in the denominator of (3.3), reducing the chance of de-
tecting real results against the background noise. An example of
a dependent variable that might have too much noise would be a
questionnaire or subscale of a questionnaire with just a few items.

The comments above sneaked in the topic of statistical power by dis-
cussing the formula for the F -test. Statistical power is the probability of
getting significant results when something is really going on in the popula-
tion. It should be clear that high power is good. We have just seen that
statistical power can be increased by including important explanatory vari-
ables in the study, by carefully controlled experimental conditions, and by
quality measurement. Power can also be increased by increasing the sam-
ple size. All this is true in general, and does not depend on the use of the
traditional F test.

3.4.2 Connections between Explained Variation and

Significance Testing

If you divide numerator and denominator of Equation (3.3) by SSTO, the
numerator becomes (R2

F−R2
R)/s, so we see that the F test is based on change
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in R2 when one moves from the reduced model to the full model. But the F
test for the extra variables (controlling for the ones in the reduced model) is

based not just on R2
F −R2

R, but on a quantity I’ll denote by a =
R2
F−R2

R

1−R2
R
. This

expresses change in R2 as a proportion of the variation left unexplained by
the reduced model. That is, it’s the proportion of remaining variation that
the additional variables explain.

This is actually a more informative quantity than simple change in R2.
For example, suppose you’re controlling for a set of variables that explain
80% of the variation in the dependent variable, and you test a variable that
accounts for an additional 5%. You have explained 25% of the remaining
variation – much more impressive than 5%.

The a notation is non-standard. It’s sometimes called a squared multiple
partial correlation, but the usual notation for partial correlations is intricate
and hard to look at, so we’ll just use a.

You may recall that an F test has two degree of freedom values, a nu-
merator degrees of freedom and a denominator degrees of freedom. In the F
test for a full versus reduced model, the numerator degrees of freedom is s,
the number of extra variables. The denominator degrees of freedom is n− p.
Recall that the sample size is n, and if the regression model has an intercept,
there are p− 1 independent variables. Applying a bit of high school algebra
to Equation (3.3), we see that the relationship between F and a is

F =
(
n− p

s

)(
a

1− a

)
. (3.4)

so that for any given sample size, the bigger a becomes, the bigger F is. Also,
for a given value of a �= 0, F increases as a function of n. This means you
can get a large F (and if it’s large enough it will be significant) from strong
results and a small sample, or from weak results and a large sample. Again,
examining the formula for the F statistic yields a valuable insight.

Expression (3.4) for F can be turned around to express a in terms of F ,
as follows:

a =
sF

n− p + sF
(3.5)

This is a useful formula, because scientific journals often report just F
values, degrees of freedom and p-values. It’s easy to tell whether the results
are significant, but not whether the results are strong in the sense of explained
variation. But the equality (3.5) above lets you recover information about
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strength of relationship from the F statistic and its degrees of freedom. For
example, based on a three-way ANOVA where the dependent variable is
rot in potatoes, suppose the authors write “The interaction of bacteria by
temperature was just barely significant (F=3.26, df=2,36, p=0.05).” What
we want to know is, once one controls for other effects in the model, what
proportion of the remaining variation is explained by the temperature-by-
bacteria interaction?

We have s=2, n − p = 36, and a = 2×3.26
36+(2×3.26)

= 0.153. So this effect is

explaining a respectable 15% of the variation that remains after controlling
for all the other main effects and interactions in the model.

3.5 Multiple Regression with SAS

It is always good to start with a textbook example, so that interested students
can locate a more technical discussion of what is going on. The following
example is based on the “Dwaine Studios” Example from Chapter 6 of [3].
The observations correspond to photographic portrait studios in 21 towns.
In addition to sales (the dependent variable), the data file contains number of
children 16 and younger in the community (in thousands of persons), and per
capita disposable income in thousands of dollars. Here is the SAS program.

/* appdwaine1.sas */

options linesize=79;

title ’Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al’;

title2 ’Just the defaults’;

data portrait;

infile ’dwaine.dat’;

input kids income sales;

proc reg;

model sales = kids income;

/* model DV(s) = IV(s); */

Here is the list file appdwaine1.lst.
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Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 1

Just the defaults 15:52 Sunday, January 13, 2002

Model: MODEL1

Dependent Variable: SALES

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F

Model 2 24015.28211 12007.64106 99.103 0.0001

Error 18 2180.92741 121.16263

C Total 20 26196.20952

Root MSE 11.00739 R-square 0.9167

Dep Mean 181.90476 Adj R-sq 0.9075

C.V. 6.05118

Parameter Estimates

Parameter Standard T for H0:

Variable DF Estimate Error Parameter=0 Prob > |T|

INTERCEP 1 -68.857073 60.01695322 -1.147 0.2663

KIDS 1 1.454560 0.21178175 6.868 0.0001

INCOME 1 9.365500 4.06395814 2.305 0.0333

Here are some comments on the list file.

• First the ANOVA summary table for the overall F -test, testing all the
independent variables simultaneously. In C Total, C means corrected
for the sample mean. The p-value of 0.0001 actually means p < 0.0001,
in this version of SAS. It’s better in later versions.

• Root MSE is the square root of MSE.

• Dep Mean is the mean of the dependent variable.

• C.V. is the coefficient of variation – the standard deviation divided by
the mean. Who cares?

• R-square is R2

• Adj R-sq: Since R2 never goes down when you add independent vari-
ables, models with more variables always look as if they are doing
better. Adjusted R2 is an attempt to penalize the usual R2 for the
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number of independent variables in the model. It can be useful if you
are trying to compare the predictive usefulness of models with different
numbers of variables.

• Parameter Estimates are the b values. Standard Error is the (esti-
mated) standard deviation of the sampling distribution of b. It’s the
denominator of the t test in the next column.

• The last column is a two-tailed p-value for the t-test.

Here are some sample questions based on the list file.

Sample Question 3.5.1 Suppose we wish to test simultaneously whether
number of kids 16 and under and average family income have any relationship
to sales. Give the value of the test statistic, and the associated p-value.

Answer to Sample Question 3.5.1 F = 99.103, p < 0.0001

Sample Question 3.5.2 What can you conclude from just this one test?

Answer to Sample Question 3.5.2 Sales is related to either number of
kids 16 and under, or average family income, or both. But you’d never do
this. You have to look at the rest of the printout to tell what’s happening.

Sample Question 3.5.3 What percent of the variation in sales is explained
by number of kids 16 and under and average family income?

Answer to Sample Question 3.5.3 91.67%

Sample Question 3.5.4 Controlling for average family income, is number
of kids 16 and under related to sales?

1. What is the value of the test statistic?

2. What is the p-value?

3. Are the results significant? Answer Yes or No.

4. Is the relationship positive, or negative?

Answer to Sample Question 3.5.4
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1. t = 6.868

2. p < 0.0001

3. Yes.

4. Positive.

Sample Question 3.5.5 Controlling for number of kids 16 and under is
average family income related to sales?

1. What is the value of the test statistic?

2. What is the p-value?

3. Are the results significant? Answer Yes or No.

4. Is the relationship positive, or negative?

Answer to Sample Question 3.5.5

1. t = 2.305

2. p = 0.0333

3. Yes.

4. Positive.

Sample Question 3.5.6 What do you conclude from this entire analysis?
Direct your answer to a statistician or researcher.

Answer to Sample Question 3.5.6 Number of kids 16 and under and av-
erage family income are both related to sales, even when each variable is
controlled for the other.

Sample Question 3.5.7 What do you conclude from this entire analysis?
Direct your answer to a person without statistical training.

Answer to Sample Question 3.5.7 Even when you allow for the number
of kids 16 and under in a town, the higher the average family income in the
town, the higher the average sales. When you allow for the average family
income in a town, the higher the number of children under 16, the higher the
average sales.
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Sample Question 3.5.8 A new studio is to be opened in a town with 65,400
children 16 and under, and an average household income of $17,600. What
annual sales do you predict?

Answer to Sample Question 3.5.8 Ŷ = b0 + b1x1 + b2x2 = -68.857073
+ 1.454560*65.4 + 9.365500*17.6 = 191.104, so predicted annual sales =
$191,104.

Sample Question 3.5.9 For any fixed value of average income, what hap-
pens to predicted annual sales when the number of children under 16 increases
by one thousand?

Answer to Sample Question 3.5.9 Predicted annual sales goes up by $1,454.

Sample Question 3.5.10 What do you conclude from the t-test for the in-
tercept?

Answer to Sample Question 3.5.10 Nothing. Who cares if annual sales
equals zero for towns with no children under 16 and an average household
income of zero?

The final two questions ask for a proportion of remaining variation, the
quantity we are denoting by a. If you were doing an analysis yourself and
wanted this statistic, you’d likely fit a full and a reduced model (or obtain
sequential sums of squares; we’ll see how to do this in the next example),
and calculate the answer directly. But in the published literature, sometimes
all you have are reports of t-tests for regression coefficients.

Sample Question 3.5.11 Controlling for average household income, what
proportion of the remaining variation is explained by number of children un-
der 16?

Answer to Sample Question 3.5.11 Using F = t2 and plugging into (3.5),
we have a = 1×6.8682

21−3+1×6.8682 = 0.691944, or around 70% of the remaining vari-
ation.

Sample Question 3.5.12 Controlling for number of children under 16, what
proportion of the remaining variation is explained by average household in-
come?
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Answer to Sample Question 3.5.12 a = 2.3052

18+2.3052 = 0.2278994, or about
23%.

These a values are large, but the sample size is small; after all, it’s a
textbook example, not real data. Now here is a program file that illustrates
some options, and gives you a hint of what a powerful tool SAS can be.
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/* appdwaine2.sas */

options linesize=79 pagesize=35;

title ’Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al’;

title2 ’With bells and whistles’;

data portrait;

infile ’dwaine.dat’;

input kids income sales;

proc reg simple corr; /* "simple" prints simple descriptive statistics */

model sales = kids income / ss1; /* "ss1" prints Sequential SS */

output out=resdata predicted=presale residual=resale;

/* Creates new SAS data set with Y-hat and e as additional variables*/

/* Now all the default F-test, in order */

allivs: test kids = 0, income = 0;

inter: test intercept=0;

child: test kids=0;

money: test income=0;

proc iml; /* Income controlling for kids: Full vs reduced by "hand" */

fcrit = finv(.95,1,18); print fcrit;

/* Had to look at printout from an earlier run to get these numbers*/

f = 643.475809 / 121.16263; /* Using the first F formula */

pval = 1-probf(f,1,18);

tsq = 2.305**2; /* t-squared should equal F*/

a = 643.475809/(26196.20952 - 23372);

print f tsq pval;

print "Proportion of remaining variation is " a;

proc glm; /* Use proc glm to get a y-hat more easily */

model sales=kids income;

estimate ’Xh p249’ intercept 1 kids 65.4 income 17.6;

proc print; /* To see the new data set with residuals*/

proc univariate normal plot;

var resale;

proc plot;

plot resale * (kids income sales);
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Here are some comments on appdwaine2.sas.

• simple corr You could get means and standard deviations from proc

means and correlations from proc corr, but this is convenient.

• ss1 These are Type I Sums of Squares, produced by default in proc

glm. In proc reg, you must request them is you want to see them.
The independent variables in the model statement are added to the
model in order, so that for each variable, the reduced model has all the
variables that come before it, and the full model has all those variables
plus the current one. The ss1 option shows the increase in explained
sum of squares that comes from adding each variable to the model, in
the order they appear in the model statement.

• output creates a new sas data set called resdata. It has all the
variables in the data set portrait, and in addition it has Ŷ (named
presale for predicted sales) and e (named resale for residual of sales).

• Then we have some custom tests, all of them equivalent to what we
would get by testing a full versus reduced model. SAS takes the ap-
proach of testing whether s linear combinations of β values equal s
specified constants (usually zero). Again, this is the same thing as
testing a full versus a reduced model. The form of a custom test in
proc reg is

1. A name for the test, 8 characters or less, followed by a colon; this
name will be used to label the output.

2. the word test.

3. s linear combinations of independent variable names, each set
equal to some constant, separated by commas.

4. A semi-colon to end, as usual.

If you want to think of the significance test in terms of a collection of lin-
ear combinations that specify constraints on the β values (this is what
a statistician would appreciate), then we would say that the names of
the independent variables (including the weird variable “intercept”) are
being used to refer to the corresponding βs. But usually, you are test-
ing a subset of independent variables controlling for some other subset.
In this case, include all the variables in the model statement, and set
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the variables you are testing equal to zero in the test statement. Com-
mas are optional. As an example, for the test allivs (all independent
variables) we could have written allivs: test kids = income = 0;.

• Now suppose you wanted to use the Sequential Sums of Squares to test
income controlling for kids. You could use a calculator and a table
of the F distribution from a textbook, but for larger sample sizes the
exact denominator degrees of freedom you need are seldom in the table,
and you have to interpolate in the table. With proc iml (Interactive
Matrix Language), which is actually a nice programming environment,
you can use SAS as your calculator. Among other things, you can get
exact critical values and p-values quite easily. Statistical tables are
obsolete.

In this example, we first get the critical value for F ; if the test statis-
tic is bigger than the critical value, the result is significant. Then we
calculate F using formula 3.3 and its p-value. This F should be equal
to the square of the t statistic from the printout, so we check. Then we
use (3.5) to calculate a, and print the results.

• proc glm The glm procedure is very useful when you have categorical
independent variables, because it makes your dummy variables for you.
But it also can do multiple regression. This example calls attention to
the estimate command, which lets you calculate Ŷ values more easily
and with less chance of error than with a calculator or proc iml.

• proc print prints all the data values, for all the variables. This is a
small data set, so it’s not producing a telephone book here. You can
limit the variables and the number of cases it prints; see the manual or
Applied statistics and the SAS programming language [1]. By default,
all SAS procedures use the most recently created SAS data set; this is
resdata, which was created by proc reg – so the predicted values and
residuals will be printed by proc print.

• You didn’t notice, but proc glm also used resdata rather than portrait.
But it was okay, because resdata has all the variables in portrait,
and also the predicted Y and the residuals.

• proc univariate produces a lot of useful descriptive statistics, along
with a fair amount of junk. The normal option gives some tests for
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normality, and textttplot generates some line-printer plots like boxplots
and stem-and-leaf displays. These are sometimes informative. It’s a
good idea to run the residuals (from the full model) through proc

univariate if you’re starting to take an analysis seriously.

• proc plot This is how you would plot residuals against variables in the
model. It the data file had additional variables you were thinking of
including in the analysis, you could plot them against the residuals too,
and look for a correlation. My personal preference is to start plotting
residuals fairly late in the exploratory game, once I am starting to get
attached to a regression model.

Here is the list file appdwaine2.lst.

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 1

With bells and whistles

10:58 Saturday, January 19, 2002

Descriptive Statistics

Variables Sum Mean Uncorrected SS

INTERCEP 21 1 21

KIDS 1302.4 62.019047619 87707.94

INCOME 360 17.142857143 6190.26

SALES 3820 181.9047619 721072.4

Variables Variance Std Deviation

INTERCEP 0 0

KIDS 346.71661905 18.620328113

INCOME 0.9415714286 0.9703460355

SALES 1309.8104762 36.191303875

Correlation

CORR KIDS INCOME SALES

KIDS 1.0000 0.7813 0.9446

INCOME 0.7813 1.0000 0.8358

SALES 0.9446 0.8358 1.0000

^L Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al

2

With bells and whistles

10:58 Saturday, January 19, 2002

Model: MODEL1

Dependent Variable: SALES
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Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F

Model 2 24015.28211 12007.64106 99.103 0.0001

Error 18 2180.92741 121.16263

C Total 20 26196.20952

Root MSE 11.00739 R-square 0.9167

Dep Mean 181.90476 Adj R-sq 0.9075

C.V. 6.05118

Parameter Estimates

Parameter Standard T for H0:

Variable DF Estimate Error Parameter=0 Prob > |T|

INTERCEP 1 -68.857073 60.01695322 -1.147 0.2663

KIDS 1 1.454560 0.21178175 6.868 0.0001

INCOME 1 9.365500 4.06395814 2.305 0.0333

Variable DF Type I SS

INTERCEP 1 694876

KIDS 1 23372

INCOME 1 643.475809

^L Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al

3

With bells and whistles

10:58 Saturday, January 19, 2002

Dependent Variable: SALES

Test: ALLIVS Numerator: 12007.6411 DF: 2 F value: 99.1035

Denominator: 121.1626 DF: 18 Prob>F: 0.0001

Dependent Variable: SALES

Test: INTER Numerator: 159.4843 DF: 1 F value: 1.3163

Denominator: 121.1626 DF: 18 Prob>F: 0.2663

Dependent Variable: SALES

Test: CHILD Numerator: 5715.5058 DF: 1 F value: 47.1722

Denominator: 121.1626 DF: 18 Prob>F: 0.0001

Dependent Variable: SALES

Test: MONEY Numerator: 643.4758 DF: 1 F value: 5.3108

Denominator: 121.1626 DF: 18 Prob>F: 0.0333

^L Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al

4

With bells and whistles

10:58 Saturday, January 19, 2002
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FCRIT

4.4138734

F TSQ PVAL

5.3108439 5.313025 0.0333214

A

Proportion of remaining variation is 0.2278428

^L Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al

5

With bells and whistles

10:58 Saturday, January 19, 2002

General Linear Models Procedure

Number of observations in data set = 21

^L Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al

6

With bells and whistles

10:58 Saturday, January 19, 2002

General Linear Models Procedure

Dependent Variable: SALES

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 24015.282112 12007.641056 99.10 0.0001

Error 18 2180.927411 121.162634

Corrected Total 20 26196.209524

R-Square C.V. Root MSE SALES Mean

0.916746 6.051183 11.007390 181.90476

Source DF Type I SS Mean Square F Value Pr > F

KIDS 1 23371.806303 23371.806303 192.90 0.0001

INCOME 1 643.475809 643.475809 5.31 0.0333

Source DF Type III SS Mean Square F Value Pr > F

KIDS 1 5715.5058347 5715.5058347 47.17 0.0001

INCOME 1 643.4758090 643.4758090 5.31 0.0333

^L Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al

7

With bells and whistles

10:58 Saturday, January 19, 2002

General Linear Models Procedure
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Dependent Variable: SALES

T for H0: Pr > |T| Std Error of

Parameter Estimate Parameter=0 Estimate

Xh p249 191.103930 69.07 0.0001 2.76679783

T for H0: Pr > |T| Std Error of

Parameter Estimate Parameter=0 Estimate

INTERCEPT -68.85707315 -1.15 0.2663 60.01695322

KIDS 1.45455958 6.87 0.0001 0.21178175

INCOME 9.36550038 2.30 0.0333 4.06395814

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 8

With bells and whistles

11:32 Tuesday, January 15, 2002

OBS KIDS INCOME SALES PRESALE RESALE

1 68.5 16.7 174.4 187.184 -12.7841

2 45.2 16.8 164.4 154.229 10.1706

3 91.3 18.2 244.2 234.396 9.8037

4 47.8 16.3 154.6 153.329 1.2715

5 46.9 17.3 181.6 161.385 20.2151

6 66.1 18.2 207.5 197.741 9.7586

7 49.5 15.9 152.8 152.055 0.7449

8 52.0 17.2 163.2 167.867 -4.6666

9 48.9 16.6 145.4 157.738 -12.3382

10 38.4 16.0 137.2 136.846 0.3540

11 87.9 18.3 241.9 230.387 11.5126

12 72.8 17.1 191.1 197.185 -6.0849

13 88.4 17.4 232.0 222.686 9.3143

14 42.9 15.8 145.3 141.518 3.7816

15 52.5 17.8 161.1 174.213 -13.1132

16 85.7 18.4 209.7 228.124 -18.4239

17 41.3 16.5 146.4 145.747 0.6530

18 51.7 16.3 144.0 159.001 -15.0013

19 89.6 18.1 232.6 230.987 1.6130

20 82.7 19.1 224.1 230.316 -6.2161

21 52.3 16.0 166.5 157.064 9.4356

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 9

With bells and whistles

9

With bells and whistles

11:41 Saturday, January 19, 2002

Univariate Procedure

Variable=RESALE Residual

Moments

N 21 Sum Wgts 21
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Mean 0 Sum 0

Std Dev 10.44253 Variance 109.0464

Skewness -0.09705 Kurtosis -0.79427

USS 2180.927 CSS 2180.927

CV . Std Mean 2.278746

T:Mean=0 0 Pr>|T| 1.0000

Num ^= 0 21 Num > 0 13

M(Sign) 2.5 Pr>=|M| 0.3833

Sgn Rank 1.5 Pr>=|S| 0.9599

W:Normal 0.955277 Pr<W 0.4190

Quantiles(Def=5)

100% Max 20.21507 99% 20.21507

75% Q3 9.435601 95% 11.51263

50% Med 0.744918 90% 10.17057

25% Q1 -6.21606 10% -13.1132

0% Min -18.4239 5% -15.0013

1% -18.4239

Range 38.63896

Q3-Q1 15.65166

Mode -18.4239

^L Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 1

0

With bells and whistles

11:41 Saturday, January 19, 2002

Univariate Procedure

Variable=RESALE Residual

Extremes

Lowest Obs Highest Obs

-18.4239( 16) 9.758578( 6)

-15.0013( 18) 9.803676( 3)

-13.1132( 15) 10.17057( 2)

-12.7841( 1) 11.51263( 11)

-12.3382( 9) 20.21507( 5)

Stem Leaf # Boxplot

2 0 1 |

1 |

1 0002 4 |

0 99 2 +-----+

0 011124 6 *--+--*

-0 | |

-0 665 3 +-----+

-1 332 3 |

-1 85 2 |

----+----+----+----+

Multiply Stem.Leaf by 10**+1

^L Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 1

1

With bells and whistles
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11:41 Saturday, January 19, 2002

Univariate Procedure

Variable=RESALE Residual

Normal Probability Plot

22.5+ *++++

| +++++

| ++*+*

| **+*+*

2.5+ *****+*

| *+++

| +++**

| ++*+* *

-17.5+ *++++*

+----+----+----+----+----+----+----+----+----+----+

-2 -1 0 +1 +2

9

With bells and whistles

11:32 Tuesday, January 15, 2002

Plot of RESALE*KIDS. Legend: A = 1 obs, B = 2 obs, etc.
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Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 12

With bells and whistles

11:32 Tuesday, January 15, 2002
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Plot of RESALE*INCOME. Legend: A = 1 obs, B = 2 obs, etc.
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INCOME

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 13

With bells and whistles

11:32 Tuesday, January 15, 2002

Plot of RESALE*SALES. Legend: A = 1 obs, B = 2 obs, etc.
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Here are some comments.

• proc reg

– In the descriptive statistics produced by the simple option, one of
the “variables” is INTERCEP; it’s our friend X0 = 1. The SAS pro-
grammers (or the statisticians directing them) are really thinking
of this as an independent variable.

– The Type I (sequential) sum of squares starts with INTERCEP, and
a really big number for the explained sum of squares. Well, think
of a reduced model that does not even have an intercept — that
is, one in which there are not only no independent variables, but
the population mean is zero. Then add an intercept, so the full
model is E[Y ] = β0. The least squares estimate of β0 is Y , so
the improvement in explained sum of squares is

∑n
i=1(Yi − Y )2 =

SSTO. That’s the first line. It makes sense, in a twisted way.

– Then we have the custom tests, which reproduce the default tests,
in order. See how useful the names of the custom tests can be?

• proc iml: Everything works as advertised. F = t2 except for rounding
error, and a is exactly what we got as the answer to Sample Ques-
tion 3.5.12.

• proc glm

– After an overall test, we get tests labelled Type I SS and Type

III SS. As mentioned earlier, Type One sums of squares are se-
quential. Each variable is added in turn to the model, in the order
specified by the model statement. Each one is tested controlling
for the ones that precede it.
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– When independent variables are correlated with each other and
with the dependent variable, some of the variation in the depen-
dent variable is being explained by the variation shared by the
correlated independent variables. Which one should get credit?
If you use sequential sums of squares, the variable named first by
you gets all the credit. And your conclusions can change radically
as a result of the order in which you name the independent vari-
ables. This may be okay, if you have strong reasons for testing A
controlling for B and not the other way around.

In Type Three sums of squares, each variable is controlled for all
the others. This way, nobody gets credit for the overlap. It’s
conservative, and valuable. Naturally, the last lines of Type I and
Type III summary tables are identical, because in both cases, the
last variable named is being controlled for all the others.

– I can never remember what Type II and Type IV sums of squares
are.

– The estimate statement yielded an Estimate, that is, a |widehatY
value, of 191.103930, which is what we got with a calculator as the
answer to Sample Question 3.5.8. We also get a t-test for whether
this particular linear combination differs significantly from zero
— insane in this particular case, but useful at other times. The
standard error would be very useful if we were constructing con-
fidence intervals or prediction intervals around the estimate, but
we are not.

– Then we get a display of the b values and associated t-tests, as in
proc reg. I believe these are produced by proc glm only when
none of the independent variables is declared categorical with the
class statement.

• proc print output is self-explanatory. If you are using proc print

to print a large number of cases, consider specifying a large page size
in the options statement. Then, the logical page length will be very
long, as if you were printing on a long roll of paper, and SAS will not
print a new page header with the date and title and so on every 24 line
or 35 lines or whatever.

• proc univariate: There is so much output to explain, I almost can’t
stand it. I’ll do most of it in class, and just hit a few high points here.
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– T:Mean=0 A t-test for whether the mean is zero. If the variable
consisted of difference scores, this would be a matched t-test. Here,
because the mean of residuals from a multiple regression is always
zero as a by-product of least-squares, t is exactly zero and the
p-value is exactly one.

– M(Sign) Sign test, a non-parametric equivalent to the matched t.

– Sgn Rank Wilcoxon’s signed rank test, another non-parametric
equivalent to the matched t.

– W:Normal A test for normality. As you might infer from Pr<W, the
associated p-valuelower tail area of some distribution. If p < 0.05,
conclude that the data are not normally distributed.

The assumptions of the hypothesis tests for multiple regression
imply that the residuals are normally distributed, though not quite
independent. The lack of independence makes theW test a bit too
likely to indicate lack of normality. If the test is non-significant,
can one conclude that the data are normal? This is an example
of a more general question: When can one conclude that the null
hypothesis is true?

To answer this question “Never” is just plain stupid, but still I
don’t want to go there right now. Instead, just two comments:

∗ Like most tests, the W test for normality is much more sen-
sitive when the sample size is large. So failure to observe a
significant departure from normality does not imply that the
data really are normal, for a small sample like this one (n=21).

∗ In an observational study, residuals can appear non-normal
because important independent variables have been omitted
from the full model.

– Extremes are the 5 highest and 5 lowest scores. Very useful for
locating outliers. The largest residual in this data set is 20.21507;
it’s observation 5.

– Normal Probability Plot is supposed to be straight-line if the
data are normal. Even though I requested pagesize=35, this plot
is pretty squashed. Basically it’s useless.

• proc plot Does not show much of anything in this case. This is ba-
sically good news, though again the data are artificial. The default
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plotting symbol is A; if two points get too close together, they are plot-
ted as B, and so on.

Here are a few sample questions.

Sample Question 3.5.13 What is the mean of the average household in-
comes of the 21 towns?

Answer to Sample Question 3.5.13 $17,143

Sample Question 3.5.14 Is this the same as the average income of all the
households in the 21 towns?

Answer to Sample Question 3.5.14 No way.

Sample Question 3.5.15 The custom test labelled MONEY is identical to
what default test?

Answer to Sample Question 3.5.15 The t-test for INCOME. F = t2, and
the p-value is the same.

Sample Question 3.5.16 In the proc iml output, what can you learn from
comparing F to FCRIT?

Answer to Sample Question 3.5.16 p < 0.05

Sample Question 3.5.17 For a town with 68,500 children 16 and under,
and an average household income of $16,700, does the full model overpredict
or underpredict sales? By how much?

Answer to Sample Question 3.5.17 Underpredict by $12,784. This is
the first residual produced by proc print.
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Chapter Four: Multiple Regression II
Factorial ANOVA and Related Topics

4.1 A One-way Example

The following is a textbook example taken from Neter et al. (1996). The Kenton Food Company is interested in

testing the effect of different package designs on sales. Five grocery stores were randomly assigned to each of

four package designs. The package designs used either three or five colours, and 

either had cartoons or did not. Because of a fire in one of the stores, there were only four stores in the 5-colour

cartoon condition.

The dependent variable is sales, defined as number of cases sold.  Actually, there are two independent variables:

number of colours and presence versus absence of cartoons. But we will initially consider package design as a

single categorical independent variable with four values. 

Sample Question 4.1  If there is a statistically significant relationship between package design and sales,

would we be justified in concluding that differences in package design caused differences in sales? 

Answer to Sample Question 4.1  Yes, if the study is carried out properly. It's an experimental study.

Sample Question 4.2  Is there a problem with external validity here?

Answer to Sample Question 4.2  It's impossible to tell for sure, but there easily could be. The behaviour of

the sales force would have to be controlled somehow. A double blind would be ideal. 

The SAS program appkenton1.sas does a lot of things, starting with a oneway ANOVA using proc glm.

The strategy will be to first present the entire program, and then go through it piece by piece and explain what is

going on -- with a few major digressions to explain the statistics. 
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/********************** appkenton1.sas **************************/
options linesize=79 pagesize=35 noovp formdlim=' ';
title 'Kenton Oneway Example From Neter et al.';

proc format;
     value pakfmt 1 = '3Colour Cartoon'   2 = '3Col No Cartoon'
                  3 = '5Colour Cartoon'   4 = '5Col No Cartoon';
data food;
     infile 'kenton.dat';
     input package sales;
     label package = 'Package Design'
           sales   = 'Number of Cases Sold';
     format package pakfmt.;

     /* Define ncolours and cartoon */
     if package = 1 or package = 2 then ncolours = 3;
        else if package = 3 or package = 4 then ncolours = 5;
     if package = 1 or package = 3 then cartoon = 'No ';
        else if package = 2 or package = 4 then cartoon = 'Yes';

     /* Indicator Coding for package: Use p4 only if no intercept */
     if package = . then p1 = .; else if package = 1 then p1 = 1;
        else p1 = 0;
     if package = . then p2 = .; else if package = 2 then p2 = 1;
        else p2 = 0;
     if package = . then p3 = .; else if package = 3 then p3 = 1;
        else p3 = 0;
     if package = . then p4 = .; else if package = 4 then p4 = 1;
        else p4 = 0;

/* Basic one-way ANOVA -- well, fairly basic */
proc glm;
     class package;
     model sales = package;
     means package;
     means package / bon tukey scheffe;
     estimate '3Colourvs5Colour' package 1 1 -1 -1 / divisor = 2;

/* Now oneway using proc reg and dummy variables.
   First with intercept */

proc reg;
     model sales = p1 p2 p3;
     ncolour: test p1+p2 = p3; /* 3 vs 5 colours */
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/* Special tests are easier with cell means coding:
   No intercept => No algebra */

proc reg;
     model sales = p1 p2 p3 p4 / noint;
     alleq:   test p1=p2=p3=p4;
     numcol:  test p1+p2 = p3+p4;
     cartoon: test p1+p3 = p2+p4;
     inter1:  test p1-p2 = p3-p4;/* Effect of cartoon depends on ncolours*/
     inter2:  test p1-p3 = p2-p4;/* Effect of ncolours depends on cartoon */
     Y3_N3:   test p1=p2;  /* All pairwise tests */
     Y3_Y5:   test p1=p3;
     Y3_N5:   test p1=p4;
     N3_Y5:   test p2=p3;
     N3_N5:   test p2=p4;
     Y5_N5:   test p3=p4;

/* Actually it's a two-way ANOVA */

proc glm;
     class ncolours cartoon;
     model sales = ncolours|cartoon;

/*   The model statement could have been
     model sales = ncolours cartoon ncolours*cartoon; */

Proc format provides labels for the package designs. After reading the data in a routine way, if statements

are used to construct the categorical independent variables ncolours and cartoon. Notice the extra space in

the 'No ' value of the alphanumeric variable cartoon. At first I didn't have a space, and Yes was truncated to

Ye.  

The indicator dummy variables for package will be used to show how the one-way (and two-way) ANOVA is

really just a multiple regression. We'll come back to them later, but notice how proc freq is used to check that

they are defined correctly. 

Now we'll look at what the first  proc glm  does.
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proc glm;
     class package;
     model sales = package;

The class statement declares package to be categorical. Without it, proc glm would do a regression with package

as a quantitative independent variable. The main F-test for equality of the four means is

                        General Linear Models Procedure

Dependent Variable: SALES   Number of Cases Sold
                                     Sum of            Mean
Source                  DF          Squares          Square  F Value    Pr > F

Model                    3     588.22105263    196.07368421    18.59    0.0001
Error                   15     158.20000000     10.54666667
Corrected Total         18     746.42105263

                  R-Square             C.V.        Root MSE         SALES Mean
                  0.788055         17.43042       3.2475632          18.631579

We conclude that package design (or, if the study was poorly controlled, some variable confounded with package

design) caused a difference in sales. The statement       

means package;

produces mean sales for each value of the variable package:

              Level of              ------------SALES------------
              PACKAGE           N       Mean              SD

              3Col No Cartoon   5     13.4000000       3.64691651
              3Colour Cartoon   5     14.6000000       2.30217289
              5Col No Cartoon   5     27.2000000       3.96232255
              5Colour Cartoon   4     19.5000000       2.64575131

Such a display is essential for seeing what is going on, but it still does not tell you which means are different from

which other means. But before we lose control and start doing all possible t-tests, consider the following.
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The Curse of a Thousand t-tests   Significance tests are supposed to help screen out random garbage, and

help us ignore "trends" that could easily be due to chance. But all the common significance tests are designed in

isolation, as if each one were the only test you would ever be doing. The chance of getting significant results

when nothing is going on may be about 0.05 (more or less, depending on how well the assumptions are met), but

if you do a lot of tests on a data set that is purely noise (no true relationships between any independent variable

and any dependent variable), the chances of false significance mount up.  It's like looking for your birthday in

tables of stock market prices. If you look long enough, you will find it.

This problem definitely applies when you have a significant difference among more than two treatment means, and

you want to know which ones are different from each other. For example, in an experiment with 10 treatment

conditions (this is not an unusually large number, for real experiments), there are 45 pairwise differences among

means. 

You have to pity the poor scientist who learns about this and is honest enough to take this problem seriously (and

let's use the term "scientist" generously to apply to anyone trying to use significance test to learn something about

a data set). On one hand, good scientific practice and common sense dictate that if you have gone to the trouble to

collect data, you should explore thoroughly and try to learn something from the data.  But at the same time, it

appears that some stern statistical entity is scolding you, and saying that you're naughty if you peek.  

There are two main ways to resolve the dilemma.  One is to basically ignore the problem, while perhaps

acknowledging that it is there. According to this point of view, well, you're crazy if you don't explore the data.

Maybe the true significance level for the entire process is greater than 0.05, but still the use of significance tests is

a useful way to decide which results might be real. Nothing's perfect; let's carry on.

The other reaction is to look for ways that significance tests can be modified to allow for the fact that we're doing

a lot of them. What we want are methods for holding the chances of false significance to a single low level for a

set of tests, simultaneously. The general term for such methods is mmmmuuuullllttttiiiipppplllleeee    ccccoooommmmppppaaaarrrriiiissssoooonnnn procedures. Often,

when a significance test (like a one-way ANOVA) tests several things simultaneously and turns out to be

significant, multiple comparison procedures are used as a second step, to investigate where the effect came

from. In cases like this, the multiple comparisons are called ffffoooolllllllloooowwww----uuuupppp    tttteeeessssttttssss, or ppppoooosssstttt    hhhhoooocccc    tttteeeessssttttssss, or

sometimes pppprrrroooobbbbiiiinnnngggg.  
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It is generally acknowledged that multiple comparison methods are often helpful (even necessary) for following

up significant F-tests in order to see where an effect comes from. There is less agreement on how far the

principle should be extended. Personally, I like the idea of limiting the chance of false significance to 0.05 for

an entire study -- say, for all the tests reported in a scientific paper, and all the ones that were not reported,

too. This is a fairly radical view, shared by almost no one. But it can work in practice if you have enough

data. More on this later.  For now, let's concentrate on following up a significant F test in a one-way analysis

of variance.

In the Kenton package design data, there are 4 treatment conditions, and 6 potential pairwise comparisons. The

next line in the SAS program

means package / bon tukey scheffe;

requests three kinds of multiple comparison tests for all pairwise differences among means. 

Bonferroni  The Bonferroni method is very general, and extends far beyond pairwise comparisons of means. It

is a simple correction that can be applied when you are performing multiple tests, and you want to hold the

chances of false significance to a single low level for all the tests simultaneously.  It applies when you are
testing multiple sets of independent variables, multiple dependent variables, or both.

The Bonferroni correction consists of simply dividing the desired significance level (that's å, the maximum

probability of getting significant results when actually nothing is happening, usually å = 0.05) by the number

of tests. In a way, you're splitting the alpha equally among the tests you do.

For example, if you want to perform 5 tests at joint significance level 0.05, just do everything as usual, but

only declare the results significant at the joint 0.05 level if one of the tests gives you p < 0.01

(0.01 = 0.05/5).  If you want to perform 20 tests at joint significance level 0.05, do the individual tests and

calculate individual p-values as usual, but only believe the results of tests that give p < 0.0025

(0.0025 = 0.05/20).  Say something like "Protecting the 20 tests at joint significance level 0.05 by means of a

Bonferroni correction, the difference in reported liking between worms and spinach souffle´ was the only

significant food category effect."
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The Bonferroni correction is conservative.  That is, if you perform 20 tests, the probability of getting

significance at least once just by chance is less than or equal to 0.0025 --  usually less. The big advantages

of the Bonferroni approach are simplicity and flexibility.  It is the only way I know to analyze quantitative and

categorical dependent variables simultaneously.

The main disadvantages of the Bonferroni approach are 

1. You have to know how many tests you want to perform in advance, and you have to

know what they are.  In a typical data analysis situation, not all the significance tests are planned in advance.

The results of one test will give rise to ideas for other tests. If you do this and then apply a Bonferroni

correction to all the tests that you happened to do, it no longer protects all the tests simultaneously. On the

other hand, you could randomly split your data into an exploratory sample and a replication sample. Test to

your heart's content on the first sample. Then, when you think you know what your results are, perform

only those tests on the replication sample, and protect them simultaneously with a Bonferroni correction. This

could be called "Bonferroni-protected cross-validation."  It sounds good, eh.

2. The Bonferroni correction can be too conservative, especially when the number of tests

becomes large.  For example, to simultaneously test all 780 correlations in a 40 by 40 correlation matrix at

joint å = 0.05, you'd only believe correlations with p < 0.0000641 = 0.05/780.  

Is this "too" conservative?  Well, with n = 200 in that 40 by 40 example, you'd need r = 0.27 for significance

(compared to r = .14 with no correction).  With n = 100 you'd need r = .385, or about 14.8% of one variable

explained by another single variable.  Is this too much to ask?  You decide.

Tukey  This is Tukey's Honestly Significant Difference (HSD) method. It is not his Least Significant Different

(LSD) method, which has a better name but does not really get the job done. Tukey tests apply only to pairwise

differences among means in ANOVA. It is based on a deep study of the probability distribution of the difference

between the largest sample mean and the smallest sample mean, assuming the population means are in fact all

equal. 

° If you are interested in all pairwise differences among means and nothing else, and if the

sample sizes are equal, Tukey is the best (most powerful) test, period. 
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° If the sample sizes are unequal, the Tukey tests still get the job of simultaneous protection

done, but they are a bit conservative. When sample sizes are unequal, Bonferroni or Scheffé can sometimes be

more powerful. 

Scheffé    It is very easy for me to say too much about Scheffé tests, so this discussion will be limited to testing

whether certain linear combinations of treatment means (in a one-way design) are significantly different from zero.

Suppose there are p treatments (groups, values of the categorical independent variable, whatever you want to call

them). A contrast is a special kind of linear combination of means in which the weights add up to zero.  It has

the form

L =   a1Y1 +a2Y2 + +apYp ,

where   a1 +a2 + ap  = 0.  The case where all of the a values are zero is uninteresting, and is excluded.  

By setting a1 = 1 and a2 = -1, we get L =   Y1 –Y2 , so it's easy to see that any pairwise difference is a contrast.

Contrasts of sample means estimate the corresponding contrasts of population means, in a perfectly natural way.

The Scheffé tests allow testing whether any contrast of treatment means differs significantly from zero, with the

tests for all possible contrasts simultaneously protected.

When asked for Scheffé, SAS tests all pairwise differences, but there are infinitely many more contrasts that it

does not do, and they are all jointly protected against false significance at the 0.05 level. You can do as many of

them as you want easily, with SAS and a calculator. 

It's a miracle. You can do infinitely many tests, all simultaneously protected. You do not have to know what they

are in advance. It's an license for unlimited data fishing, at least within the class of contrasts of treatment means. 

Two more miracles:

° If the initial one-way ANOVA is not significant, it's impossible for any of the Scheffé

follow-ups to be significant. This is not quite true of Bonferroni or Tukey.

° If the initial one-way ANOVA is significant, there must be a contrast that is significantly

different from zero. It may not be a pairwise difference, you may not think of it, and if you do find one it may not

be easy to interpret, but there is at least one out there.  Well, actually, there are infinitely many, but they may all be

extremely similar to one another.
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Here's how you do it. First find the critical value of F for the initial oneway ANOVA   (Recall that if a test statistic

is greater than the critical value, it's significant).  This is part of the default output from proc glm when you

request Scheffé tests  -- or you can use proc iml. Then use SAS to compute the usual one-at-a-time F-test for

whether the contrast is different from zero. Such "usual" F-tests involve comparing full to reduced models.  You

can do them with the test statement of proc reg, but the estimate statement of proc glm may be more

convenient; use F = t2. 

Once you have F, use a calculator to compute 

Fsch =  F
p – 1 . (4.1)

If Fsch is greater than the critical value, the Scheffé test is significant. Keep doing tests until you run out of ideas.

Notice that dividing by the number of means (minus one) is a kind of penalty for the richness of the infinite family

of tests you could do. As soon as Scheffé discovered these tests, people started complaining that the penalty was

very severe, and it was too hard to get significance. In my opinion, what's remarkable is not that a license for

unlimited fishing is expensive, but that it's for sale at all.  You can pay for it by increasing the sample size. Choice

of sample size will be discussed later in this chapter.

SAS presents the tests for differences between treatment means in the form of confidence intervals. If the 95%

confidence interval does not include zero, the test (Bonferroni, Tukey or Scheffé) is significant at 0.05. Since all

three types of follow-up test point to exactly the same conclusions for these data, only the Scheffé will be

reproduced here.
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                    General Linear Models Procedure

                      Scheffe's test for variable: SALES

          NOTE: This test controls the type I experimentwise error rate but 
                generally has a higher type II error rate than Tukey's for all 
                pairwise comparisons.

             Alpha= 0.05  Confidence= 0.95  df= 15  MSE= 10.54667
                         Critical Value of F= 3.28738

       Comparisons significant at the 0.05 level are indicated by '***'.

                                      Simultaneous            Simultaneous
                                          Lower    Difference     Upper
              PACKAGE                  Confidence    Between   Confidence
             Comparison                   Limit       Means       Limit

 5Col No Cartoon - 5Colour Cartoon        0.859       7.700      14.541   ***
 5Col No Cartoon - 3Colour Cartoon        6.150      12.600      19.050   ***
 5Col No Cartoon - 3Col No Cartoon        7.350      13.800      20.250   ***

 5Colour Cartoon - 5Col No Cartoon      -14.541      -7.700      -0.859   ***
 5Colour Cartoon - 3Colour Cartoon       -1.941       4.900      11.741
 5Colour Cartoon - 3Col No Cartoon       -0.741       6.100      12.941

 3Colour Cartoon - 5Col No Cartoon      -19.050     -12.600      -6.150   ***
 3Colour Cartoon - 5Colour Cartoon      -11.741      -4.900       1.941
 3Colour Cartoon - 3Col No Cartoon       -5.250       1.200       7.650

 3Col No Cartoon - 5Col No Cartoon      -20.250     -13.800      -7.350   ***

Notice that the critical value for performing more tests is conveniently provided. Proc iml's

proc iml; /* Critical value for Scheffe tests */

     fcrit = finv(.95,3,15); print fcrit;

yields the same critical value.

                                       FCRIT

                                   3.2873821
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Pairwise differences are not the only contrasts of interest. The first proc glm has the line

estimate '3Colourvs5Colour' package 1 1 -1 -1 / divisor = 2;

Here, we are directly providing the a weights of the contrast, and estimating a population contrast. Syntax is

° The word estimate.

° A label, enclosed in quotes.

° The name of the independent variable. If you have more than one, or especially if it is a two

or higher way design, consult the SAS manual under  proc glm. 

° The coefficients of the contrast (or more generally, the linear combination). Here, the

weights are a1 = 1/2, a2 = 1/2, a3 = -1/2 and a4 = -1/2. We're estimating the difference between the average sales

for 3-colour and 5-colour packages.  The divisor option does not affect the tests. I did it so that estimate

would really produce an estimate of the difference between average population means. The weights could have

been decimal fractions, like 

estimate '3Colourvs5Colour' package .5 .5 -.5  -.5;

but sometimes it is more convenient to enter integer coefficients (for example, if the denominator is 3). The output

                        General Linear Models Procedure

Dependent Variable: SALES   Number of Cases Sold

                                        T for H0:    Pr > |T|   Std Error of

Parameter                  Estimate    Parameter=0                Estimate

3Colourvs5Colour        -9.35000000          -6.25     0.0001     1.49705266

includes a t-test for whether the specified linear combination is different from zero. To treat this as a Scheffé test,

calculate F = t2 = (-6.25)2 =39.0625, so that Fsch = F/3 = 13.02. This is far greater than the critical value of

3.29, so we can conclude that (averaging over cartoon versus no-cartoon designs) sales for 5-colour packages are

better than sales for 3-colour packages.
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We can do this oneway anova with multiple regression. First consider indicator dummy variable coding

with an intercept. Here is the part of the data step that defines the dummy variables. Because we have an intercept,

we'll represent the four categories of package design with three dummy variables. The table below shows the

model for population mean sales.

Design p1 p2 p3 E[Y] = β0 + β1p1 + β2p2 + β3p3

3Colour Cartoon 1 0 0 β0 + β1      = µ1

3Col No Cartoon 0 1 0 β0 + β2      = µ2

5Colour Cartoon 0 0 1 β0 + β3      = µ3

5Col No Cartoon 0 0 0 β0              = µ4

To clarify the parallel between population parameters and sample statistics, the corresponding table of estimated

sales figures is

Design p1 p2 p3  Y  = b0 + b1p1 + b2p2 + b3p3

3Colour Cartoon 1 0 0 b0 + b1      =  Y 1

3Col No Cartoon 0 1 0 b0 + b2      =  Y 2

5Colour Cartoon 0 0 1 b0 + b3      =  Y 3

5Col No Cartoon 0 0 0 b0              =  Y 4

One thing these tables show is something that is true of any valid dummy variable coding scheme (when there are

only categorical independent variables):  Y = Y  for each category or combination of categories.

It is also easy to see that to test for differences among means, we want to simultaneously test whether  β1,  β2 and

β3 are  different from zero -- or equivalently, whether  b1, b2 and b3 are significantly different from zero. That is,
we want to simultaneously test the dummy variables p1, p2 and p3. The overall F test of proc reg does the job.

proc reg;

     model sales = p1 p2 p3;
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Model: MODEL1  
Dependent Variable: SALES      Number of Cases Sold                    

                             Analysis of Variance

                                Sum of         Mean
       Source          DF      Squares       Square      F Value       Prob>F

       Model            3    588.22105    196.07368       18.591       0.0001
       Error           15    158.20000     10.54667
       C Total         18    746.42105

We got this same same F value for differences among the four means from proc glm.  The next line does the 3

versus 5 color comparison.

     ncolour: test p1+p2 = p3; /* 3 vs 5 colours */

It works because we want to test whether   1
2 ( µ1 + µ2 ) =  1

2 (µ3 + µ4), and

 1
2 (β0 + β1 + β0 + β2 ) =  1

2 (β0 + β3 + β0)

is algebraically equivalent to 

β1 + β2 = β3.

The estimate statement from proc glm yielded t = -6.25. Calculate F = t2 = 39.0625, and compare the output of

the test statement above:

Test: NCOLOUR  Numerator:    411.4000  DF:    1   F value:  39.0076

               Denominator:  10.54667  DF:   15   Prob>F:    0.0001

The difference is rounding error. It's the same test. But we'd rather avoid having to do algebra whenever we want

to test a contrast. In cell means coding, we use an indicator dummy variable for each category (four, in this case),

and omit the intercept. The tables that follow indicate why it's called cell mean coding.
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Cell Means Coding for Package Design

Design p1 p2 p3 p4 E[Y] = β1p1 + β2p2 + β3p3 + β4p4

3Colour Cartoon 1 0 0 0 β1 = µ1

3Col No Cartoon 0 1 0 0 β2 = µ2

5Colour Cartoon 0 0 1 0 β3 = µ3

5Col No Cartoon 0 0 0 1 β4 = µ4

Design p1 p2 p3 p4  Y  = b0 + b1p1 + b2p2 + b3p3 + b4p4

3Colour Cartoon 1 0 0 0 b1 =  Y 1

3Col No Cartoon 0 1 0 0 b2 =  Y 2

5Colour Cartoon 0 0 1 0 b3 =  Y 3

5Col No Cartoon 0 0 0 1 b4 =  Y 4

Here is the proc reg.

proc reg;

     model sales = p1 p2 p3 p4 / noint;

     alleq:    test p1=p2=p3=p4;

     numcol:   test p1+p2 = p3+p4;

     cartoon:  test p1+p3 = p2+p4;

     inter1:   test p1-p2 = p3-p4; /* Effect of cartoon depends on ncolours */

     inter2:   test p1-p3 = p2-p4; /* Effect of ncolours depends on cartoon */

     Y3_N3:    test p1=p2;  /* All pairwise tests */

     Y3_Y5:    test p1=p3;

     Y3_N5:    test p1=p4;

     N3_Y5:    test p2=p3;

     N3_N5:    test p2=p4;

     Y5_N5:    test p3=p4;
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And the output. First, the overall F test, which is very different from what we had before.

Model: MODEL1  
NOTE: No intercept in model. R-square is redefined.
Dependent Variable: SALES      Number of Cases Sold                    

                             Analysis of Variance

                                Sum of         Mean
       Source          DF      Squares       Square      F Value       Prob>F

       Model            4   7183.80000   1795.95000      170.286       0.0001
       Error           15    158.20000     10.54667
       U Total         19   7342.00000

           Root MSE       3.24756     R-square       0.9785
           Dep Mean      18.63158     Adj R-sq       0.9727
           C.V.          17.43042

With no intercept, 

   ° Total sum of squares is now   Yi
2Σ

i = 1

n

. It's no longer corrected for the mean; U means

uncorrected. R2 is radically affected
° The overall F-test is for whether ALL the betas are zero - usually uninteresting

Notice now the parameter estimates are exactly the cell means.

                              Parameter Estimates

                      Parameter      Standard    T for H0:               

     Variable  DF      Estimate         Error   Parameter=0    Prob > |T|

     P1         1     14.600000    1.45235441        10.053        0.0001

     P2         1     13.400000    1.45235441         9.226        0.0001

     P3         1     19.500000    1.62378159        12.009        0.0001

     P4         1     27.200000    1.45235441        18.728        0.0001

Now the custom tests.  I will repeat the test statement for each one, and provide some discussion.
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The Statement 

     alleq:    test p1=p2=p3=p4;

yields this output:

Dependent Variable: SALES   
Test: ALLEQ    Numerator:    196.0737  DF:    3   F value:  18.5911
               Denominator:  10.54667  DF:   15   Prob>F:    0.0001

This really is the overall test for whether all four means are equal -- again. The F value is the same

as we got earlier at least two times. But look at the test statement.  As usual, it specifies restrictions

on the betas that give us the reduced model. But this time, those restrictions are not of the simple

form we saw before, setting a subset of the betas equal to zero. Now we're setting them all to be

equal. This shows you two things:

° The test statement in proc reg is a little more general than it seemed at first. It

lets you test simultaneously whether several linear combinations of betas equal zero. Here, we're

testing three linear combinations: β1−β2=0, β2−β3=0, β3−β4=0. The test statement could have

read:        alleq:    test p1-p2=0, p2-p3=0, p3-p4=p4;

° The full versus reduced model business is also more general than you might think.

In ordinary regression, "all" we can do is test collections linear restrictions on the parameters. But

in the most general hypothesis testing framework, all one ever does is to compare the fit of a full

model to the fit of a reduced model in which some restriction has been placed on the values of the

parameters. Those restrictions are called the "null hypothesis."  You didn't really need to know

this.

To really understand the next several test statements, we need to recognize that the 4-category

variable Package Design actually represents the combination of two independent variables: Number

of Colours and Presence versus absence of cartoons. That is, we have a two-factor design.

Consider the following table:
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Population Cell Means and Marginal Means for the Kenton Example

Cartoon No Cartoon

3 Colours µ1 µ2   µ1 + µ2

2
5 Colours µ3 µ4   µ3 + µ4

2
  µ1 + µ3

2
  µ2 + µ4

2

In addition to population mean sales for each package design (denoted by µ1 through µ4), the table

above shows marginal means -- quantities like   µ2 + µ4

2 , which are obtained by averaging over

rows or columns. 

 If there are differences among marginal means for a categorical independent variable in a two-way
(or higher) layout like this, we say there is a main effect for that variable.  Tests for main effects
are of great interest; they can indicate whether, averaging over the values of the other categorical
independent variables in the design, whether the independent variable in question is related to the
dependent variable. Note that averaging over the values of other independent variables is not the
same thing as controlling for them, but it can still be a valuable thing to do. 
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The population means in the preceding table are estimated by corresponding sample quantities. The
numbers in the following table come from the means output of the first proc glm. 

Sample Cell and Marginal Means for the Kenton Example

Cartoon No Cartoon

3 Colours 14.6 13.4 14

5 Colours 19.5 27.2 23.35

17.05 20.3

(14.6+13.4)/2 = 14, and so on.

The next custom test is for the main effect of number of colours (3 vs. 5). It tests whether
  µ1 + µ2

2 =   µ3 + µ4

2 . It's the same thing as asking whether the marginal mean for 2 Colours (14) is

significantly different from the marginal mean for 5 colours (23.35).

The test command, obtained directly by multiplying both sides =f   µ1 + µ2

2 =   µ3 + µ4

2 by 2 (this has

no effect on the test), is

     numcol:   test p1+p2 = p3+p4;

yielding this output:

Dependent Variable: SALES   
Test: NUMCOL   Numerator:    411.4000  DF:    1   F value:  39.0076
               Denominator:  10.54667  DF:   15   Prob>F:    0.0001

So the answer is Yes. There is a significant main effect for number of colours, with 5-colour

packages generating more sales when you average across Cartoon and No-cartoon designs. And

notice how much more convenient the cell means coding makes this test. Recall 

     ncolour: test p1+p2 = p3; /* 3 vs 5 colours */

from Page 13.
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Similarly, the main effect for presence versus absence of cartoons on the package is tested by

asking whether   µ1 + µ3

2 =   µ2 + µ4

2 . 

     cartoon:  test p1+p3 = p2+p4;

Dependent Variable: SALES   
Test: CARTOON  Numerator:     49.7059  DF:    1   F value:   4.7129
               Denominator:  10.54667  DF:   15   Prob>F:    0.0464

 

So the main effect for Cartoon is barely significant, with Non-cartoon designs doing better.

The two-way design we have been looking at is called a factorial design. In a factorial design, there

are two or more categorical independent variables (called factors, in this context) typically with data

with for combinations of the factors being collected. Factorial designs are often found in

experimental studies, but not always.

When Sir Ronald Fisher (in whose honour the F-test is named) dreamed up factorial designs, he

pointed out that they enable the scientist to investigate the effects of several independent variables at

much less expense than if a separate experiment had to be conducted to test each one. In addition,

they allow one to ask systematically whether the effect of one independent variable depends on the

value of another independent variable. If the effect of one independent variable depends on

another, we will say there is an interaction between those variables. We talk about an A "by" B

or A x B interaction.  An interaction means "it depends."
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Let's look at the table of population means again.

Cartoon No Cartoon

3 Colours µ1 µ2   µ1 + µ2

2
5 Colours µ3 µ4   µ3 + µ4

2
  µ1 + µ3

2
  µ2 + µ4

2

The effect of Cartoons when the package has three colours is represented by µ1-µ2. The effect of

Cartoons when the package has five colours is represented by µ3-µ4. Therefore, the interaction of
Cartoon by number of colours is a difference between differences, and we want to test whether

µ1-µ2=µ3-µ4. That's what we're doing below:

     inter1:   test p1-p2 = p3-p4; /* Effect of cartoon depends on ncolours */

Dependent Variable: SALES   
Test: INTER1   Numerator:     93.1882  DF:    1   F value:   8.8358
               Denominator:  10.54667  DF:   15   Prob>F:    0.0095

Another way to think about the interaction is to ask whether the effect of number of colours

depends on presence versus absence of cartoon pictures. We are asking whether µ1-µ3=µ2-µ4.

Here's the test statement and the output.

     inter2:   test p1-p3 = p2-p4; /* Effect of ncolours depends on cartoon */

Dependent Variable: SALES   
Test: INTER2   Numerator:     93.1882  DF:    1   F value:   8.8358
               Denominator:  10.54667  DF:   15   Prob>F:    0.0095

Notice that this F test is identical to the last one? It happens because µ1–µ2=µ3–µ4 is algebraically

equivalent to µ1–µ3=µ2–µ4. So the two ways of talking about the interaction are the same thing,

mathematically. Fortunately, this always happens, no matter how big the design. If you express

an interaction correctly as a collection of differences between differences, it is algebraically

equivalent to all other correct ways of expressing the interaction. Choose the one that is easiest to

think about. 
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If an interaction is significant, you should graph it to figure out what it means. Here is one

example:

3 0

2 5

2 0

1 5

1 0

M
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n
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3 Colours 5 Colours

Package Design and Sales 1

No Cartoon

Cartoon

Whenever you have an interaction, such graphs will display non-parallel lines. Well actually, when

you plot an interaction with real data, the lines will always be at least a little non-parallel. The

question is whether they depart significantly from being parallel. Here, the advantage of 5 colours

over 3 is significantly greater for designs without cartoons, and we can see it in the graph. 

The post-hoc tests tell us that there is a significantly more sales with 5-colour designs, for both the

cartoon and non-cartoon conditions. The interaction tells us that this effect is significantly greater

when there are no cartoons.

Remember the significant main effect for cartoon? It was just barely significant: p = 0.0464.  The

graph above shows quite clearly that this effect is entirely due to the advantage of no-cartoon

designs in the 5-colour condition.  So here, we have a main effect that's significant, but we really

should not interpret it, because of the interaction. 

Some texts claim that if you have an interaction, you should never interpret the main effects. But

look at the next figure, which graphs the same interaction in the other direction (there are only two
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ways to do it, because it is a two-factor interaction).
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The picture that emerges here is that 5-colour designs are better overall, and the advantage is

greater in the No-cartoon condition. Here, we can see that it makes sense to interpret both the main

effect for number of colours and the interaction. This example shows why I disagree with the

advice to never interpret main effects when there is an interaction. 

The last six tests are the pairwise differences between means. Their value is that we can convert

them easily to post-hoc Bonferroni or Scheffé tests.  Personally, I like the idea of letting the tests

for main effects, interactions and all pairwise differences as follow-ups to the initial oneway

ANOVA.  
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Dependent Variable: SALES   
Test: Y3_N3    Numerator:      3.6000  DF:    1   F value:   0.3413
               Denominator:  10.54667  DF:   15   Prob>F:    0.5677

Dependent Variable: SALES   
Test: Y3_Y5    Numerator:     53.3556  DF:    1   F value:   5.0590
               Denominator:  10.54667  DF:   15   Prob>F:    0.0399

Dependent Variable: SALES   
Test: Y3_N5    Numerator:    396.9000  DF:    1   F value:  37.6327
               Denominator:  10.54667  DF:   15   Prob>F:    0.0001

Dependent Variable: SALES   
Test: N3_Y5    Numerator:     82.6889  DF:    1   F value:   7.8403
               Denominator:  10.54667  DF:   15   Prob>F:    0.0135

Dependent Variable: SALES   
Test: N3_N5    Numerator:    476.1000  DF:    1   F value:  45.1422
               Denominator:  10.54667  DF:   15   Prob>F:    0.0001

Dependent Variable: SALES   
Test: Y5_N5    Numerator:    131.7556  DF:    1   F value:  12.4926
               Denominator:  10.54667  DF:   15   Prob>F:    0.0030

Sample Question:  What p-value is required for significance if all 9 tests are to be protected with

a Bonferroni correction?

Answer:  0.05/9 = 0.0056
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Effect F p Fsch

=F/3*

Significant with
Bonferroni?

Significant with
Scheffé?

Main Effect for Ncolours 39.0076 0.0001 13.0025 Yes Yes

Main effect for Cartoon 4.7129 0.0464 1.57097 No No

Interaction 8.8358 0.0095 2.9453 No No

Cartoon3 vs NoCartoon3 0.3413 0.5677 0.1138 No No

Cartoon3 vs Cartoon5 5.0590  0.0399 1.6863 No No

Cartoon3 vs NoCartoon5 37.6327  0.0001 12.5442 Yes Yes

NoCartoon3 vs Cartoon5 7.8403 0.0135 2.6134 No No

NoCart3 vs Nocart5 45.1422 0.0001 15.0474 Yes Yes

Cartoon5 vs NoCartoon5 12.4926 0.0030 4.1642 Yes Yes

* Compare with critical value of F= 3.28738

The main thing to note here is that when you treat the test for interaction as a follow-up test instead

of a one-at-a-time test, it's no longer significant.  You are left with a simpler story. Five-colour

designs work better than three-colour designs, and designs without cartoons work better in the 5-

colour condition.

In general, if you go the multiple comparison route, it's going to make you more conservative.

You will draw fewer conclusions. On the other hand, in terms of this particular example, the

implications for action (marketing action) are the same whether or not you use multiple

comparisons. The Kenton company should use a 5-colour design without cartoons.
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We've seen how to do the tests above with dummy variables and proc reg.  If you are only

interested in testing single contrasts, the estimate command of proc glm is a bit more

convenient, because proc glm sets up the dummy variables for you. All you have to do is give the

coefficients of the contrast you want.

/* Single contrasts are just as convenient with the ESTIMATE
   statement of proc glm. Illustrate all pairwise. 
   Note F = t-squared  */

proc glm;
     class package;
     model sales=package;
     estimate 'Y3_N3' package 1 -1  0  0;
     estimate 'Y3_Y5' package 1  0 -1  0;
     estimate 'Y3_N5' package 1  0  0 -1;
     estimate 'N3_Y5' package 0  1 -1  0;
     estimate 'N3_N5' package 0  1  0 -1;
     estimate 'Y5_N5' package 0  0  1 -1;

It's nice to have this degree of control, but not always necessary.  In factorial analysis of variance,

we commonly wish to test all main effects and interactions.  Proc glm will compose the contrasts

for you, as well as setting up the dummy variables:

/* Actually it's a two-way ANOVA */

proc glm;
     class ncolours cartoon;
     model sales = ncolours|cartoon;
/*   The model statement could have been
     model sales = ncolours cartoon ncolours*cartoon; */

 

In proc glm, if you separate a collection of classification variables with vertical bars, it means

include all the main effects and interactions among the variables.

Here is the output:
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                        General Linear Models Procedure

Dependent Variable: SALES   Number of Cases Sold
                                     Sum of            Mean
Source                  DF          Squares          Square  F Value    Pr > F

Model                    3     588.22105263    196.07368421    18.59    0.0001

Error                   15     158.20000000     10.54666667

Corrected Total         18     746.42105263

                  R-Square             C.V.        Root MSE         SALES Mean

                  0.788055         17.43042       3.2475632          18.631579

Source                  DF        Type I SS     Mean Square  F Value    Pr > F

NCOLOURS                 1     452.86549708    452.86549708    42.94    0.0001
CARTOON                  1      42.16732026     42.16732026     4.00    0.0640
NCOLOURS*CARTOON         1      93.18823529     93.18823529     8.84    0.0095

Source                  DF      Type III SS     Mean Square  F Value    Pr > F

NCOLOURS                 1     411.40000000    411.40000000    39.01    0.0001
CARTOON                  1      49.70588235     49.70588235     4.71    0.0464
NCOLOURS*CARTOON         1      93.18823529     93.18823529     8.84    0.0095

The output starts with an overall test that is 100% identical to the initial oneway ANOVA. It has the same R2, the

same F, the same p-value --- everything. This always happens.  No matter how many independent variables you

have or how many values each one has, simultaneously testing all the main effects and interactions is the same as

defining a new independent variable whose values are the combinations of the variable values from the factorial

ANOVA --- and then doing a one-way analysis of variance using that variable.

By default, SAS proc glm produces two sets of tests for the main effects and interaction(s). In the tests based

on Type I Sums of Squares, each effect is controlled only for those before it in the table. In Type III Sums of

Squares, each effect is controlled for all the others.  That's why the last test is always identical for these two

methods.  When sample sizes are all equal or proportional, the independent variables are completely unrelated, and

tests based on Type I and Type III sums of squares are all the same -- not just the last one. 

The F and p values we get from Type III sums of squares match what we've done using proc reg. Most of the

time, the tests from the Type III sums of squares are what we want.
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Beyond the two-by-two Case

Methods for factorial ANOVA and testing interactions can easily be extended in several ways.

° More independent variables

° More than two values for an independent variable

° Interactions between continuous independent variables

° Interactions between categorical independent variables and continuous independent 

variables.

Extension to more than two factors is straightforward. Suppose we had grocery stores of three different

sizes (small, medium and large), and within each size, the four package designs were randomly allocated to

stores. We would have three factors -- store size, number of colours, and presence versus absence of cartoons. 

° For each independent variable, averaging over the other two variables would give marginal 

means -- the basis for estimating and testing for main effects.

° Averaging over each of the independent variables in turn, we would have a two-way 

marginal table of means for the other two variables, and the pattern of means in that table 

could show a two-way interaction.   

The full three-dimensional table of means would provide a basis for looking at a three-way, or three-factor

interaction. The interpretation of a three-way interaction is that the nature of the two-way interaction depends on

the value of the third variable.  This principle extends to any number of factors, so we would interpret a six-way

interaction to mean that the nature of the 5-way interaction depends on the value of the sixth variable.

° Fortunately, the order in which one considers the variables does not matter.  For example, 

we can say that the A by B interaction depends on the value of C, or that the A by C 

interaction depends on B, or that the B by C interaction depends on the value of A.  The 

translations of these statements into algebra are all equivalent to one another, always.  This 

principle extends to any number of factors. 
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° As you might imagine, as the number of factors becomes large, interpreting higher-way 

interactions -- that is, figuring out what they mean -- becomes more and more difficult.  

For this reason, sometimes the higher-order interactions are deliberately omitted from the 

full model in big experimental designs; they are never tested.  Is this reasonable?  Most of 

my answers are just elaborate ways to say I don't know.

More than two values for an independent variable  

Regardless of how many factors we have, or how many levels there are in each factor, we could always form a

combination variable -- that is, a single categorical independent variable whose values represent all the

combinations of independent variable values in the factorial design. We have seen that in a two-by-two design, the

tests for both main effects and the interaction resolve themselves into tests for single contrasts -- contrasts of the

means of the combination variable. When independent variables have more than two values, the same thing is

true, except that tests for main effects and interactions appear as test for collections of contrasts on the

combination variable.  

It is useful to pursue this principle in detail, for three reasons.  

° First, it thinking of an interaction as a collection of contrasts can really help you understand

what an interaction is.

° Second, once you have seen the tests for main effects and interactions as collections of 

contrasts, you can easily compose a test for any collection of contrasts that is of interest.

° Third, seeing main effects and interactions in terms of contrasts makes it easy to see how 

they can be modified to become Bonferroni or Scheffe follow-ups to initial significant one-

way ANOVA on the combination variable --- if you choose to follow this conservative 

data analytic strategy.

We'll start with an example. 
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The seeds of the canola plant yield a high-quality cooking oil.  Canola is one of Canada's biggest cash crops.  But

each year, millions of dollars are lost because of a fungus that kills canola plants. Or is it just one fungus?  All this

stuff looks the same. It's a nasty black rot that grows fastest under moist, warm conditions.  It looks quite a bit

like the fungus that grows in between shower tiles.

A team of botanists recognized that although the fungus may look the same, there are actually several different

kinds that are genetically distinct.  There are also quite a few strains of canola plant, so the questions arose

° Are some strains of fungus more aggressive than others? That is, do they grow faster and 

overwhelm the plant's defenses faster?

° Are some strains of canola plant more vulnerable to infection than others?

° Are some strains of fungus more dangerous to certain strains of plant and less dangerous to

others?

These questions can be answered directly by looking at main effects and the interaction, so a factorial experiment

was designed in which canola plants of three different varieties were randomly selected to be infected with one of

six genetically different types of fungus. The way they did it was to scrape a little patch at the base of the plant,

and wrap the wound with a moist band-aid that had some fungus on it.  Then the plant was placed in a very moist

dark environment for three days.  After three days the bandage was removed and the plant was put in a

commercial greenhouse.  On each of 14 consecutive days, various measurements were made on the plant. Here,

we will be concerned with lesion length, the length of the fungus patch on the plant, measured in millimeters.

The dependent variable will be mean lesion length; the mean is over the 14 daily lesion length measurements for

each plant.  The independent variables are Cultivar (type of canola plant) and MCG (type of fungus).  Type of

plant is called cultivar because the fungus grows (is "cultivated") on the plant.  MCG stands for "Mycelial

Compatibility Group."  This strange name comes from the way that the botanists decided whether two types of

fungus were genetically distinct.  The would grow two samples on the same dish in a nutrient solution, and if the

two fungus patches stayed separate, they were genetically different.  If they grew together into a single patch of

fungus (that is, they were compatible), then they were genetically identical.  Apparently, this phenomenon is well

established.

Here is the SAS program appgreen1.sas.  As usual, the entire program is listed first.  Then pieces of the

program are repeated, together with pieces of output and discussion.
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/* appgreen1.sas */
%include 'gh91read.sas';
options pagesize=100;
proc freq;
     tables plant*mcg /norow nocol nopercent;
proc glm;
     class plant mcg;
     model meanlng = plant|mcg;
     means plant|mcg;
proc tabulate;
     class mcg plant;
     var meanlng ;
     table (mcg all),(plant all) * (mean*meanlng);

/* Replicate tests for main effects and interactions, using contrasts on a 
   combination variable. This is the hard way to do it, but if you can do
   this, you understand interactions and you can test any collection of 
   contrasts. The definition of the variable combo could have been in 
   gh91read.sas   */

data slime;
     set mould; /* mould was created by ghread91.sas */
     if         plant=1 and mcg=1 then combo =  1;
        else if plant=1 and mcg=2 then combo =  2;
        else if plant=1 and mcg=3 then combo =  3;
        else if plant=1 and mcg=7 then combo =  4;
        else if plant=1 and mcg=8 then combo =  5;
        else if plant=1 and mcg=9 then combo =  6;
        else if plant=2 and mcg=1 then combo =  7;
        else if plant=2 and mcg=2 then combo =  8;
        else if plant=2 and mcg=3 then combo =  9;
        else if plant=2 and mcg=7 then combo = 10;
        else if plant=2 and mcg=8 then combo = 11;
        else if plant=2 and mcg=9 then combo = 12;
        else if plant=3 and mcg=1 then combo = 13;
        else if plant=3 and mcg=2 then combo = 14;
        else if plant=3 and mcg=3 then combo = 15;
        else if plant=3 and mcg=7 then combo = 16;
        else if plant=3 and mcg=8 then combo = 17;
        else if plant=3 and mcg=9 then combo = 18;
     label combo = 'Plant-MCG Combo';
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/* Getting main effects and the interaction with CONTRAST statements */
proc glm;
     class combo;
     model meanlng = combo;
     contrast 'Plant Main Effect' 
         combo 1  1  1  1  1  1  -1 -1 -1 -1 -1 -1   0  0  0  0  0  0,
         combo 0  0  0  0  0  0   1  1  1  1  1  1  -1 -1 -1 -1 -1 -1;
     contrast 'MCG Main Effect'
         combo 1 -1  0  0  0  0   1 -1  0  0  0  0   1 -1  0  0  0  0,
         combo 0  1 -1  0  0  0   0  1 -1  0  0  0   0  1 -1  0  0  0,
         combo 0  0  1 -1  0  0   0  0  1 -1  0  0   0  0  1 -1  0  0,
         combo 0  0  0  1 -1  0   0  0  0  1 -1  0   0  0  0  1 -1  0,
         combo 0  0  0  0  1 -1   0  0  0  0  1 -1   0  0  0  0  1 -1;
     contrast 'Plant by MCG Interaction'
         combo -1  1  0  0  0  0   1 -1  0  0  0  0   0  0  0  0  0  0,
         combo  0  0  0  0  0  0  -1  1  0  0  0  0   1 -1  0  0  0  0,
         combo  0 -1  1  0  0  0   0  1 -1  0  0  0   0  0  0  0  0  0,
         combo  0  0  0  0  0  0   0 -1  1  0  0  0   0  1 -1  0  0  0,
         combo  0  0 -1  1  0  0   0  0  1 -1  0  0   0  0  0  0  0  0,
         combo  0  0  0  0  0  0   0  0 -1  1  0  0   0  0  1 -1  0  0,
         combo  0  0  0 -1  1  0   0  0  0  1 -1  0   0  0  0  0  0  0,
         combo  0  0  0  0  0  0   0  0  0 -1  1  0   0  0  0  1 -1  0,
         combo  0  0  0  0 -1  1   0  0  0  0  1 -1   0  0  0  0  0  0,
         combo  0  0  0  0  0  0   0  0  0  0 -1  1   0  0  0  0  1 -1;

/* proc reg's test statement may be easier, but first we need to
   make 16 dummy variables for cell means coding. This will illustrate 
   arrays and loops, too */

data yucky;
     set slime;
     array mu{18} mu1-mu18;
     do i=1 to 18;
          if combo=. then mu{i}=.;
          else if combo=i then mu{i}=1;
          else mu{i}=0;
     end;

proc reg;
     model meanlng = mu1-mu18 / noint;
     alleq:   test mu1=mu2=mu3=mu4=mu5=mu6=mu7=mu8=mu9=mu10=mu11=mu12
                   = mu13=mu14=mu15=mu16=mu17=mu18;

     plant:   test mu1+mu2+mu3+mu4+mu5+mu6    = mu7+mu8+mu9+mu10+mu11+mu12,
                   mu7+mu8+mu9+mu10+mu11+mu12 = mu13+mu14+mu15+mu16+mu17+mu18;

     fungus:  test mu1+mu7+mu13 = mu2+mu8+mu14 = mu3+mu9+mu15
                   = mu4+mu10+mu16 = mu5+mu11+mu17 = mu6+mu12+mu18;

     p_by_f:  test mu2-mu1=mu8-mu7=mu14-mu13,
                   mu3-mu2=mu9-mu8=mu15-mu14,
                   mu4-mu3=mu10-mu9=mu16-mu15,
                   mu5-mu4=mu11-mu10=mu17-mu16,
                   mu6-mu5=mu12-mu11=mu18-mu17;
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/* Now illustrate effect coding, with the interaction represented by a 
   collection of product terms.  */

data nasty;
     set yucky;
     /* Two dummy variables for plant */
        if plant=. then p1=.;
        else if plant=1 then p1=1;
        else if plant=3 then p1=-1;
        else p1=0;
     if plant=. then p2=.;
        else if plant=2 then p2=1;
        else if plant=3 then p2=-1;
        else p2=0;
     /* Five dummy variables for mcg */
     if mcg=. then f1=.;
        else if mcg=1 then f1=1;
        else if mcg=9 then f1=-1;
        else f1=0;
     if mcg=. then f2=.;
        else if mcg=2 then f2=1;
        else if mcg=9 then f2=-1;
        else f2=0;
     if mcg=. then f3=.;
        else if mcg=3 then f3=1;
        else if mcg=9 then f3=-1;
        else f3=0;
     if mcg=. then f4=.;
        else if mcg=7 then f4=1;
        else if mcg=9 then f4=-1;
        else f4=0;
     if mcg=. then f5=.;
        else if mcg=8 then f5=1;
        else if mcg=9 then f5=-1;
        else f5=0;
     /* Product terms for interactions */
        p1f1 = p1*f1; p1f2=p1*f2 ; p1f3=p1*f3 ; p1f4=p1*f4; p1f5=p1*f5;
        p2f1 = p2*f1; p2f2=p2*f2 ; p2f3=p2*f3 ; p2f4=p2*f4; p2f5=p2*f5;

proc reg;
     model meanlng = p1 -- p2f5;
     plant:  test p1=p2=0;
     mcg:    test f1=f2=f3=f4=f5=0;
     p_by_f: test p1f1=p1f2=p1f3=p1f4=p1f5=p2f1=p2f2=p2f3=p2f4=p2f5 = 0;     
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The SAS program starts with a %include statement that reads ghread91.sas.  The file ghread91.sas

consists of a single big data step. We'll skip it, because all we really need are the two independent variables

plant and mcg, and the dependent variable meanlng. 

Just to see what we've got, we do a proc freq to show the sample sizes.  

proc freq;
     tables plant*mcg /norow nocol nopercent;

and we get 

                             TABLE OF PLANT BY MCG

    PLANT(Type of Plant)     MCG(Mycelial Compatibility Group)

    Frequency|       1|       2|       3|       7|       8|       9|  Total
    ---------+--------+--------+--------+--------+--------+--------+
    GP159    |      6 |      6 |      6 |      6 |      6 |      6 |     36
    ---------+--------+--------+--------+--------+--------+--------+
    HANNA    |      6 |      6 |      6 |      6 |      6 |      6 |     36
    ---------+--------+--------+--------+--------+--------+--------+
    WESTAR   |      6 |      6 |      6 |      6 |      6 |      6 |     36
    ---------+--------+--------+--------+--------+--------+--------+
    Total          18       18       18       18       18       18      108

So it's a nice 3 by 6 factorial design, with 6 plants in each treatment combination.  The proc glm for analyzing

this is straightforward. Again, we get all main effects and interactions for the factor names separated by vertical

bars.

proc glm;
     class plant mcg;
     model meanlng = plant|mcg;
     means plant|mcg;

And the output is
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                        General Linear Models Procedure
                            Class Level Information

                     Class    Levels    Values

                     PLANT         3    GP159 HANNA WESTAR

                     MCG           6    1 2 3 7 8 9

                   Number of observations in data set = 108

 
-------------------------------------------------------------------------------
 
                             1991 Greenhouse Study                            3
                                               10:42 Tuesday, February 19, 2002

                        General Linear Models Procedure

Dependent Variable: MEANLNG   Average Lesion length
                                     Sum of            Mean
Source                  DF          Squares          Square  F Value    Pr > F

Model                   17     328016.87350     19295.11021    19.83    0.0001

Error                   90      87585.62589       973.17362

Corrected Total        107     415602.49939

                  R-Square             C.V.        Root MSE       MEANLNG Mean

                  0.789256         48.31044       31.195731          64.573479

Source                  DF        Type I SS     Mean Square  F Value    Pr > F

PLANT                    2     221695.12747    110847.56373   113.90    0.0001
MCG                      5      58740.26456     11748.05291    12.07    0.0001
PLANT*MCG               10      47581.48147      4758.14815     4.89    0.0001

Source                  DF      Type III SS     Mean Square  F Value    Pr > F

PLANT                    2     221695.12747    110847.56373   113.90    0.0001
MCG                      5      58740.26456     11748.05291    12.07    0.0001
PLANT*MCG               10      47581.48147      4758.14815     4.89    0.0001

Chapter 4, Page 34



Notice that the Type I and Type III tests are the same.  This always happens when the sample sizes are equal.
 

 
                             1991 Greenhouse Study                            4
                                               10:42 Tuesday, February 19, 2002

                        General Linear Models Procedure

                 Level of        -----------MEANLNG-----------
                 PLANT       N       Mean              SD

                 GP159      36      14.055159       12.1640757
                 HANNA      36      55.700198       30.0137912
                 WESTAR     36     123.965079       67.0180440

                 Level of        -----------MEANLNG-----------
                 MCG         N       Mean              SD

                 1          18     41.4500000       33.6183462
                 2          18     92.1333333       78.3509451
                 3          18     87.5857143       61.7086751
                 7          18     81.7603175       82.6711755
                 8          18     50.8579365       39.3417859
                 9          18     33.6535714       39.1480830

            Level of   Level of       -----------MEANLNG-----------
            PLANT      MCG        N       Mean              SD

            GP159      1          6      12.863095       12.8830306
            GP159      2          6      21.623810       17.3001296
            GP159      3          6      14.460714        7.2165396
            GP159      7          6      17.686905       16.4258441
            GP159      8          6       8.911905        7.3162618
            GP159      9          6       8.784524        6.5970501
            HANNA      1          6      45.578571       26.1430472
            HANNA      2          6      67.296429       30.2424997
            HANNA      3          6      94.192857       20.2877876
            HANNA      7          6      53.621429       24.8563497
            HANNA      8          6      47.838095       12.6419109
            HANNA      9          6      25.673810       17.1723150
            WESTAR     1          6      65.908333       35.6968616
            WESTAR     2          6     187.479762       45.1992178
            WESTAR     3          6     154.103571       26.5469183
            WESTAR     7          6     173.972619       79.1793105
            WESTAR     8          6      95.823810       22.3712022
            WESTAR     9          6      66.502381       52.5253101

The main effects are fairly easy to look at, and we definitely can construct a plot from the 18 cell means (or copy
them into a nicer-looking table.  But the following proc tabulate prints a table that is much easier to look
at.
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proc tabulate;
     class mcg plant;
     var meanlng ;
     table (mcg all),(plant all) * (mean*meanlng);

The syntax of proc tabulate is fairly elaborate, and at times it's worth the effort. Any reader who has seen

the type of stub-and-banner tables favoured by professional market researchers will be impressed to hear that

proc tabulate can come close to that. I figured out how to make the table below by looking in the manual. I

then promptly forgot the overall principles, because it's not a tool I use a lot -- and the syntax is rather arcane.

However, this example is easy to follow if you want to produce good-looking two-way tables of means.  Here's

the output.

    -----------------------------------------------------------------------
    |                 |            Type of Plant             |            |
    |                 |--------------------------------------|            |
    |                 |   GP159    |   HANNA    |   WESTAR   |    ALL     |
    |                 |------------+------------+------------+------------|
    |                 |    MEAN    |    MEAN    |    MEAN    |    MEAN    |
    |                 |------------+------------+------------+------------|
    |                 |  Average   |  Average   |  Average   |  Average   |
    |                 |   Lesion   |   Lesion   |   Lesion   |   Lesion   |
    |                 |   length   |   length   |   length   |   length   |
    |-----------------+------------+------------+------------+------------|
    |Mycelial         |            |            |            |            |
    |Compatibility    |            |            |            |            |
    |Group            |            |            |            |            |
    |-----------------|            |            |            |            |
    |1                |       12.86|       45.58|       65.91|       41.45|
    |-----------------+------------+------------+------------+------------|
    |2                |       21.62|       67.30|      187.48|       92.13|
    |-----------------+------------+------------+------------+------------|
    |3                |       14.46|       94.19|      154.10|       87.59|
    |-----------------+------------+------------+------------+------------|
    |7                |       17.69|       53.62|      173.97|       81.76|
    |-----------------+------------+------------+------------+------------|
    |8                |        8.91|       47.84|       95.82|       50.86|
    |-----------------+------------+------------+------------+------------|
    |9                |        8.78|       25.67|       66.50|       33.65|
    |-----------------+------------+------------+------------+------------|
    |ALL              |       14.06|       55.70|      123.97|       64.57|
    -----------------------------------------------------------------------
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The proc tabulate output makes it easy to graph the means. But before we do so, let's look at the main effects and
interactions as collections of contrasts.  This will actually make it easier to figure out what the results mean, once
we see what they are.

We have a three by six factorial design that looks like this. Population means are shown in the cells. The single-
subscript notation encourages us to think of the combination of MCG and cultivar as a single categorical
independent variable with 18 categories.

MCG (Type of Fungus)

Cultivar (Type of Plant) 1 2 3 7 8 9

GP159 µ1 µ2 µ3 µ4 µ5 µ6

Hanna µ7 µ8 µ9 µ10 µ11 µ12

Westar µ13 µ14 µ15 µ16 µ17 µ18

Next is the part of the SAS program that creates the combination variable.  Notice that it involves a data step that
comes after the proc glm.  This usually doesn't happen. I did it by creating a new data set called slime that
starts by being identical to mould, which was created in the file gh91read.sas.  The set command is used to
read in the data set mould, and then we start from there.  This is done just for teaching purposes. Ordinarily, I
would not create multiple data sets that are mostly copies of each other. I'd put the whole thing in one data step.
Here's the code.

data slime;
     set mould; /* mould was created by ghread91.sas */
     if         plant=1 and mcg=1 then combo =  1;
        else if plant=1 and mcg=2 then combo =  2;
        else if plant=1 and mcg=3 then combo =  3;
        else if plant=1 and mcg=7 then combo =  4;
        else if plant=1 and mcg=8 then combo =  5;
        else if plant=1 and mcg=9 then combo =  6;
        else if plant=2 and mcg=1 then combo =  7;
        else if plant=2 and mcg=2 then combo =  8;
        else if plant=2 and mcg=3 then combo =  9;
        else if plant=2 and mcg=7 then combo = 10;
        else if plant=2 and mcg=8 then combo = 11;
        else if plant=2 and mcg=9 then combo = 12;
        else if plant=3 and mcg=1 then combo = 13;
        else if plant=3 and mcg=2 then combo = 14;
        else if plant=3 and mcg=3 then combo = 15;
        else if plant=3 and mcg=7 then combo = 16;
        else if plant=3 and mcg=8 then combo = 17;
        else if plant=3 and mcg=9 then combo = 18;
     label combo = 'Plant-MCG Combo';
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MCG (Type of Fungus)

Cultivar (Type of Plant) 1 2 3 7 8 9

GP159 µ1 µ2 µ3 µ4 µ5 µ6

Hanna µ7 µ8 µ9 µ10 µ11 µ12

Westar µ13 µ14 µ15 µ16 µ17 µ18

It is clear that the absence of a main effect for Cultivar is the same as

µ1+µ2+µ3+µ4+µ5+µ6 = µ7+µ8+µ9+µ10+µ11+µ12 = µ13+µ14+µ15+µ16.

There are two equalities here, and they are saying that two contrasts of the eighteen cell means are equal to zero.

To see why this is true, consider the first equality

µ1+µ2+µ3+µ4+µ5+µ6 = µ7+µ8+µ9+µ10+µ11+µ12 

Subtracting the quantity on the right-hand side from both sider of the equation, we get

µ1+µ2+µ3+µ4+µ5+µ6 − (µ7+µ8+µ9+µ10+µ11+µ12) = 0,

and then distributing the minus sign to get rid of the parentheses yields

µ1+µ2+µ3+µ4+µ5+µ6−µ7−µ8−µ9−µ10−µ11−µ12 = 0. (4.2)

Recall that here, a contrast is a linear combination of the form

L = a1µ1 + a2µ2 + ... + a18µ18.,

where the a weights add up to zero. Expression (4.2) fits this description, with the first 6 weights equal to one,

the next six weights equal to minus one (so they add to zero), and the last 6 weights equal to zero.
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The table below gives the weights of the contrasts defining the test for the main effect of plant, one set of weights

in each row.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18

1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1

This is the basis of the first contrast statement in proc glm. Notice how the contrasts are separated by commas.

Also notice that the variable on which we're doing contrasts (combo) has to be repeated.

/* Getting main effects and the interaction with CONTRAST statements */
proc glm;
     class combo;
     model meanlng = combo;
     contrast 'Plant Main Effect' 
         combo 1  1  1  1  1  1  -1 -1 -1 -1 -1 -1   0  0  0  0  0  0,
         combo 0  0  0  0  0  0   1  1  1  1  1  1  -1 -1 -1 -1 -1 -1;
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If there is no main effect for MCG, we are saying

µ1+µ7+µ13 = µ2+µ8+µ14 = µ3+µ9+µ15 = µ4+µ10+µ16 = µ5+µ11+µ17 = µ6+µ12+µ18.

There are 5 contrasts here, one for each equals sign; there is always an equals sign for each contrast. Here is the

table showing the contrasts.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18

1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0

0 1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0

0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1 0 0

0 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1 0

0 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1

And here is the corresponding test statement in proc glm.

     contrast 'MCG Main Effect'
         combo 1 -1  0  0  0  0   1 -1  0  0  0  0   1 -1  0  0  0  0,
         combo 0  1 -1  0  0  0   0  1 -1  0  0  0   0  1 -1  0  0  0,
         combo 0  0  1 -1  0  0   0  0  1 -1  0  0   0  0  1 -1  0  0,
         combo 0  0  0  1 -1  0   0  0  0  1 -1  0   0  0  0  1 -1  0,
         combo 0  0  0  0  1 -1   0  0  0  0  1 -1   0  0  0  0  1 -1;
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MCG (Type of Fungus)

Cultivar (Type of Plant) 1 2 3 7 8 9

GP159 µ1 µ2 µ3 µ4 µ5 µ6

Hanna µ7 µ8 µ9 µ10 µ11 µ12

Westar µ13 µ14 µ15 µ16 µ17 µ18

To compose the Plant by MCG interaction, consider the following hypothetical graph.  You can think of the

"effect" of MCG as a profile, representing a pattern of differences among means. If the three profiles are the same

shape for each type of plant -- that is, if they are parallel, the effect of MCG does not depend on the type of plant,

and there is no interaction.

1 2

1 1
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4

3

2
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Hypothetical Plant by MCG

For the profiles to be parallel, each set of corresponding line segments must be parallel.  To start with the three

line segments on the left, the rise represented by µ2−µ1 must equal the rise µ8−µ7, and µ8−µ7 must equal

µ14−µ13. This is two contrasts that equal zero:

µ2 − µ1 – µ8 + µ7 = 0 and µ8−µ7 –µ14+µ13 = 0.
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There are two contrasts for each of the four remaining sets of three line segments, for a total of ten contrasts. They

appear directly in the contrast statement of proc glm.  Notice how each row adds to zero; these are

contrasts, not just linear combinations.

     contrast 'Plant by MCG Interaction'

         combo -1  1  0  0  0  0   1 -1  0  0  0  0   0  0  0  0  0  0,

         combo  0  0  0  0  0  0  -1  1  0  0  0  0   1 -1  0  0  0  0,

         combo  0 -1  1  0  0  0   0  1 -1  0  0  0   0  0  0  0  0  0,

         combo  0  0  0  0  0  0   0 -1  1  0  0  0   0  1 -1  0  0  0,

         combo  0  0 -1  1  0  0   0  0  1 -1  0  0   0  0  0  0  0  0,

         combo  0  0  0  0  0  0   0  0 -1  1  0  0   0  0  1 -1  0  0,

         combo  0  0  0 -1  1  0   0  0  0  1 -1  0   0  0  0  0  0  0,

         combo  0  0  0  0  0  0   0  0  0 -1  1  0   0  0  0  1 -1  0,

         combo  0  0  0  0 -1  1   0  0  0  0  1 -1   0  0  0  0  0  0,

         combo  0  0  0  0  0  0   0  0  0  0 -1  1   0  0  0  0  1 -1;

Now we can compare the tests we get from these contrast statements with what we got from a two-way ANOVA.

For easy reference, here is part of the two-way output.

Source                  DF      Type III SS     Mean Square  F Value    Pr > F

PLANT                    2     221695.12747    110847.56373   113.90    0.0001
MCG                      5      58740.26456     11748.05291    12.07    0.0001
PLANT*MCG               10      47581.48147      4758.14815     4.89    0.0001

And here is the output from the contrast statements.

Contrast                DF      Contrast SS     Mean Square  F Value    Pr > F

Plant Main Effect        2     221695.12747    110847.56373   113.90    0.0001
MCG Main Effect          5      58740.26456     11748.05291    12.07    0.0001
Plant by MCG Interac    10      47581.48147      4758.14815     4.89    0.0001
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So it worked. Here are some comments.

° Of course this is not the way you'd want to test for main effects and interactions.  On the 

contrary, it makes you appreciate all the work that glm does for you when you say 

model meanlng = plant|mcg;

° These contrasts are supposed to be an aid to understanding --- understanding what main 

effects and interactions really are, and understanding how you can test nearly any 

hypothesis you can think of in a multi-factor design.  Almost without exception, what you 

want to do is test whether some collection of contrasts are equal to zero. Now you can do 

it, whether the collection you're interested in happens to be standard, or not.

° On the other hand, this was brutal.  Even though I am comfortable with high school 

algebra, the size of the design made specifying those contrasts an unpleasant experience.  

There is an easier way.

An Easier Way to test Sets of Contrasts in Factorial ANOVA

Because the test statement of proc reg has a more flexible syntax than the contrast statement of

proc glm, it's a lot easier if you use cell means dummy variable coding, fit a model with no intercept in proc

reg, and use test statements.  In the following example, the indicator dummy variables are named mu1 to

mu18.  This choice makes it possible to directly transcribe statements about the population cell means into test

statements.  I highly recommend it.  Of course if you really hate Greek letters, you could always name them m1 to

m18 or something.

First, we need to define 18 dummy variables.  In general, it's a bit more tedious to define dummy variables than to

make a combination variable.  Here, I use the combination variable combo (which has already been created) to

make the task a bit easier -- and also to illustrate the use of arrays and loops in the data step.
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/* proc reg's test statement may be easier, but first we need to
   make 16 dummy variables for cell means coding. This will illustrate 
   arrays and loops, too */

data yucky;
     set slime;
     array mu{18} mu1-mu18;
     do i=1 to 18;
          if combo=. then mu{i}=.;
          else if combo=i then mu{i}=1;
          else mu{i}=0;
     end;

proc reg;
     model meanlng = mu1-mu18 / noint;
     alleq:   test mu1=mu2=mu3=mu4=mu5=mu6=mu7=mu8=mu9=mu10=mu11=mu12
                   = mu13=mu14=mu15=mu16=mu17=mu18;

     plant:   test mu1+mu2+mu3+mu4+mu5+mu6    = mu7+mu8+mu9+mu10+mu11+mu12,
                   mu7+mu8+mu9+mu10+mu11+mu12 = mu13+mu14+mu15+mu16+mu17+mu18;

     fungus:  test mu1+mu7+mu13 = mu2+mu8+mu14 = mu3+mu9+mu15
                   = mu4+mu10+mu16 = mu5+mu11+mu17 = mu6+mu12+mu18;

     p_by_f:  test mu2-mu1=mu8-mu7=mu14-mu13,
                   mu3-mu2=mu9-mu8=mu15-mu14,
                   mu4-mu3=mu10-mu9=mu16-mu15,
                   mu5-mu4=mu11-mu10=mu17-mu16,
                   mu6-mu5=mu12-mu11=mu18-mu17;

Looking again at the table of means, it's easy to see how natural the syntax is.

MCG (Type of Fungus)

Cultivar (Type of Plant) 1 2 3 7 8 9

GP159 µ1 µ2 µ3 µ4 µ5 µ6

Hanna µ7 µ8 µ9 µ10 µ11 µ12

Westar µ13 µ14 µ15 µ16 µ17 µ18

Chapter 4, Page 44



And again, the tests are correct.  First, repeat the output from the contrast statements of proc glm (which

matched the proc glm two-way ANOVA output).

Contrast                DF      Contrast SS     Mean Square  F Value    Pr > F

Plant Main Effect        2     221695.12747    110847.56373   113.90    0.0001
MCG Main Effect          5      58740.26456     11748.05291    12.07    0.0001
Plant by MCG Interac    10      47581.48147      4758.14815     4.89    0.0001

Then, compare output  from the test statements of proc reg.

Dependent Variable: MEANLNG 
Test: ALLEQ    Numerator:  19295.1102  DF:   17   F value:  19.8270
               Denominator:  973.1736  DF:   90   Prob>F:    0.0001

Dependent Variable: MEANLNG 
Test: PLANT    Numerator: 110847.5637  DF:    2   F value: 113.9032
               Denominator:  973.1736  DF:   90   Prob>F:    0.0001

Dependent Variable: MEANLNG 
Test: FUNGUS   Numerator:  11748.0529  DF:    5   F value:  12.0719
               Denominator:  973.1736  DF:   90   Prob>F:    0.0001

Dependent Variable: MEANLNG 
Test: P_BY_F   Numerator:   4758.1481  DF:   10   F value:   4.8893
               Denominator:  973.1736  DF:   90   Prob>F:    0.0001

Okay, now we know how to do anything.  Finally, it is time to graph the interaction, and find out what these
results mean!
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First, we see a sizable and clear main effect for Plant.  In fact, going back to the analysis of variance summary

tables and dividing the Sum of Squares explained by Plant by the Total Sum of Squares, we observe that Plant

explains around 53% of the variation in mean lesion length.  That's huge.  We will definitely want to look at

pairwise comparisons of marginal means, too; we'll get back to this later.

Looking at the pattern of means, it's clear that while the main effect of fungus type is statistically significant, this

is not something that should be interpreted, because which one is best (worst) depends on the type of plant.  That

is, we need to look at the interaction.

The profiles really look different.  In particular, GP159 not only has a smaller average lesion length, but it seems

to exhibit less responsiveness to different strains of fungus.  A test for the equality of µ1 through µ6 would be

valuable.  Pairwise comparisons of the 6 means for Hanna and the 6 means for Westar look promising, too. 
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A Brief Consideration of Multiple Comparisons

The mention of pairwise comparisons brings up the issue of formal multiple comparison follow-up tests for this

problem.  The way people often do follow-up tests for factorial designs is to make a combination variable and then

do all pairwise comparisons. It seems like they do this because they think it's the only thing the software will let

them do. Certainly it's better than nothing. Some comments:

With SAS, pairwise comparisons of cell means are not the only thing you can do.  Proc glm will do all

pairwise comparisons of marginal means quite easily. This means it's easy to follow up a significant and

meaningful main effect. 

For the present problem, there are 120 possible pairwise comparisons of the 16 cell means.  If we do all these as

one-at-a-time tests, the chances of false significance are certainly mounting.   There is a strong case here for doing

multiple comparisons.

Since the sample sizes are equal, Tukey tests are most powerful for all pairwise comparisons.  But it's not so

simple.  Pairwise comparisons within plants (for example, comparing the 6 means for Westar) are interesting, and

pairwise comparisons within fungus types (for example, comparison of Hanna, Westar and GP159 for fungus

Type 1) are interesting, but the remaining 57 pairwise comparisons are a lot less so.

Also, pairwise comparisons of cell means are not all we want to do.  We've already mentioned the need for

pairwise comparisons of the marginal means for plants, and we'll soon see that other, less standard comparisons

are of interest.  

Everything we need to do will involve testing collections of contrasts. The approach we'll take is to do everything

as a one-at-a-time custom test initially, and then figure out how we should correct for the fact that we've done a lot

of tests. 

It's good to be guided by the data.  Here we go. The analyses will be done in the SAS program

appgreen2.sas.  As usual, the entire program is given first.  But you should be aware that the program was

written one piece at a time and executed many times, with later analyses being suggested by the earlier ones.

The program starts by reading in the file gh91bread.sas, which is just gh91read.sas with the additional

variables defined (especially combo and mu1 through mu18) that were defined in appgreen1.sas.
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/* appgreen2.sas:  */
%include 'gh91bread.sas';
options pagesize=100;

proc glm;
     title 'Repeating initial Plant by MCG ANOVA, full design';
     class plant mcg;
     model meanlng = plant|mcg;
     means plant|mcg;

/*  A.  Pairwise comparisons of marginal means for plant, full design
    B.  Test all GP159 means equal, full design
    C.  Test profiles for Hanna & Westar parallel, full design         */

proc reg;
     model meanlng = mu1-mu18 / noint;
     A_GvsH:   test  mu1+mu2+mu3+mu4+mu5+mu6 = mu7+mu8+mu9+mu10+mu11+mu12;
     A_GvsW:   test  mu1+mu2+mu3+mu4+mu5+mu6 = mu13+mu14+mu15+mu16+mu17+mu18;
     A_HvsW:   test  mu7+mu8+mu9+mu10+mu11+mu12 = mu13+mu14+mu15+mu16+mu17+mu18;
     B_G159eq: test  mu1=mu2=mu3=mu4=mu5=mu6;
     C_HWpar:  test  mu8-mu7=mu14-mu13,  mu9-mu8=mu15-mu14,
                     mu10-mu9=mu16-mu15, mu11-mu10=mu17-mu16,
                     mu12-mu11=mu18-mu17;

/*  D.  Oneway on mcg, GP158 subset  */

data just159;  /* This data set will have just GP159 */
     set mould;
     if plant=1;

proc glm data=just159;
     title 'D.  Oneway on mcg, GP158 subset';
     class mcg;
     model meanlng = mcg;

/*  E.  Plant by MCG, Hanna-Westar subset   */

data hanstar;  /* This data set will have just Hanna and Westar */
     set mould;
     if plant ne 1;
     
proc glm data=hanstar;
     title 'E.  Plant by MCG, Hanna-Westar subset';
     class plant mcg;
     model meanlng = plant|mcg;
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/*  F.  Plant by MCG followup, Hanna-Westar subset 
                     Interaction:  Follow with all pairwise differences of 
                     Westar minus Hanna differences   
   G.   Differences within Hanna?
   H.   Differences within Westar?  */
   
proc reg;
     model meanlng = mu7-mu18 / noint;
     F_inter: test   mu13-mu7=mu14-mu8=mu15-mu9
                   = mu16-mu10=mu17-mu11=mu18-mu12;
     F_1vs2:   test   mu13-mu7=mu14-mu8;
     F_1vs3:   test   mu13-mu7=mu15-mu9;
     F_1vs7:   test   mu13-mu7=mu16-mu10;
     F_1vs8:   test   mu13-mu7=mu17-mu11;
     F_1vs9:   test   mu13-mu7=mu18-mu12;
     F_2vs3:   test   mu14-mu8=mu15-mu9;
     F_2vs7:   test   mu14-mu8=mu16-mu10;
     F_2vs8:   test   mu14-mu8=mu17-mu11;
     F_2vs9:   test   mu14-mu8=mu18-mu12;
     F_3vs7:   test   mu15-mu9=mu16-mu10;
     F_3vs8:   test   mu15-mu9=mu17-mu11;
     F_3vs9:   test   mu15-mu9=mu18-mu12;
     F_7vs8:   test   mu16-mu10=mu17-mu11;
     F_7vs9:   test   mu16-mu10=mu18-mu12;
     F_8vs9:   test   mu17-mu11=mu18-mu12;
     G_Hanaeq: test   mu7=mu8=mu9=mu10=mu11=mu12;
     H_Westeq: test   mu13=mu14=mu15=mu16=mu17=mu18;

proc iml; /* Critical values for Scheffe tests */
     interac = finv(.95,5,60) ; print interac;
     oneway = finv(.95,11,60); print oneway;

After reading and defining the data with a %include statement, the program repeats the initial three by six

ANOVA from appgreen1.sas.  This is just for completeness.

A.   It then uses proc reg to fit a cell means model, and then tests for all three pairwise differences among

Plant means.  They are all significantly different from each other, confirming what appears visually in the

interaction plot.

proc reg;
     model meanlng = mu1-mu18 / noint;
     A_GvsH: test  mu1+mu2+mu3+mu4+mu5+mu6 = mu7+mu8+mu9+mu10+mu11+mu12;
     A_GvsW: test  mu1+mu2+mu3+mu4+mu5+mu6 = mu13+mu14+mu15+mu16+mu17+mu18;
     A_HvsW: test  mu7+mu8+mu9+mu10+mu11+mu12 = mu13+mu14+mu15+mu16+mu17+mu18;
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Dependent Variable: MEANLNG
Test: A_GVSH   Numerator:  31217.5679  DF:    1   F value:  32.0781
               Denominator:  973.1736  DF:   90   Prob>F:    0.0001

Dependent Variable: MEANLNG
Test: A_GVSW   Numerator: 217443.4318  DF:    1   F value: 223.4374
               Denominator:  973.1736  DF:   90   Prob>F:    0.0001

Dependent Variable: MEANLNG
Test: A_HVSW   Numerator:  83881.6915  DF:    1   F value:  86.1940
               Denominator:  973.1736  DF:   90   Prob>F:    0.0001
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As mentioned earlier,  GP159 not only has a smaller average lesion length, but it seems to exhibit less variation in

its vulnerability to different strains of fungus. Part of the significant interaction must come from this, and part

from differences in the profiles of Hanna and Westar. Two questions arise:

1. Are  µ1 through µ6 (the means for GP159) actually different from each other?

2. Are the profiles for Hanna and Westar different?

There are two natural ways to address these questions. The naive way is to subset the data --- that is, do a one-

way ANOVA to compare the 6 means for GP159, and a two-way (2 by 6) on the Hanna-Westar subset. In the

latter analysis, the interaction of Plant by MCG would indicate whether the two profiles were different.
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A more sophisticated approach is not to subset the data, but to recognize that both questions can be answered by

testing collections of contrasts of the entire set of 18 means; it's easy to do with the test statement of proc

reg.

The advantage of the sophisticated approach is this. Remember that the model specifies a conditional normal

distribution of the dependent variable for each combination of independent variable values (in this case there are 18

combinations of independent variable values), and that each conditional distribution has the same variance.    The

test for, say, the equality of  µ1 through µ6 would use only  Y1  through  Y6  (that is, just GP159 data) to estimate

the 5 contrasts involved, but it would use all the data to estimate the common error variance.  From both a

commonsense viewpoint and the deepest possible theoretical viewpoint, it's better not to throw information away.

This is why the sophisticated approach should be better.

However, this argument is convincing only if it's really true that the dependent variable has the same variance for

every combination of independent variable values.  Repeating some output from the means command of the

very first proc glm, 

            Level of   Level of       -----------MEANLNG-----------
            PLANT      MCG        N       Mean              SD

            GP159      1          6      12.863095       12.8830306
            GP159      2          6      21.623810       17.3001296
            GP159      3          6      14.460714        7.2165396
            GP159      7          6      17.686905       16.4258441
            GP159      8          6       8.911905        7.3162618
            GP159      9          6       8.784524        6.5970501
            HANNA      1          6      45.578571       26.1430472
            HANNA      2          6      67.296429       30.2424997
            HANNA      3          6      94.192857       20.2877876
            HANNA      7          6      53.621429       24.8563497
            HANNA      8          6      47.838095       12.6419109
            HANNA      9          6      25.673810       17.1723150
            WESTAR     1          6      65.908333       35.6968616
            WESTAR     2          6     187.479762       45.1992178
            WESTAR     3          6     154.103571       26.5469183
            WESTAR     7          6     173.972619       79.1793105
            WESTAR     8          6      95.823810       22.3712022
            WESTAR     9          6      66.502381       52.5253101
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we see that the sample standard deviations for GP159 look quite a bit smaller on average.  Without bothering to do

a formal test, we have some reason to doubt the equal variances assumption. 

It's easy to see why GP159 would have less plant-to-plant variation in lesion length.  It's so resistant to the

fungus that there's just not that much fungal growth, period.  So there's less opportunity for variation.

Note that the equal variances assumption is essentially just a mathematical convenience.  Here, it's clearly

unrealistic.  But what's the consequence of violating it?  It's well known that the equal variance assumption can be

safely violated if the cell sample sizes are equal and large.  Well, here they're equal, but n=6 is not large.  So this

is not reassuring.

In general, it's not easy to say HOW the tests will be affected when the equal variance assumption is violated, but

for the two particular cases we're interested in here (are the GP159 means equal and are the Hanna and Westar

profiles parallel), we can figure it out.  Recall Formula (3.3) for the F-test.

F =   (SSRF –SSRR) / s
MSEF

.

The denominator --- Mean Squared Error from the full model --- is the estimated population error variance.  That's

the variance that's supposed to be the same for each conditional distribution.  Since

MSEF = 

   
(Yi –Yi)

2Σ
i = 1

n

n – p , 

and the predicted value  Yi  is always the cell mean, we can draw the following conclusions.

1. When we test for equality of the GP159 means, using the Hanna-Westar data to help

compute MSE will make the denominator of F bigger than it should be -- so F is made smaller, and the test is too

conservative. 

2. When we test whether the Hanna and Westar profiles are parallel, use of the GP159 data to

help compute MSE will make the denominator of F smaller than it should be -- so F is made bigger, and the test

is not conservative enough.  That is, the chance of significance if the effect is absent will be greater than 0.05. 
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This makes me inclined to favour the "naive" subsetting approach.  Because the GP159 means LOOK so equal,

and I want them to be equal, I'd like to give the test for difference among them the best possible chance. And

because it looks like the profiles for Hanna and Westar are not parallel (and I want them to be non-parallel,

because it's more interesting for the effect of Fungus type to depend on type of Plant), I want a more conservative

test.

Another argument in favour of subsetting is based on botany rather than statistics.  Hanna and Westar are

commercial canola crop varieties, but while GP159 is definitely in the canola family, it is more like a hardy weed

than a food plant. It's just a different kind of entity, and so analyzing its data separately makes a lot of sense.  

You may wonder, if it's so different, why was it included in the design in the first place?  Well, taxonomically it's

quite similar to Hanna and Westar; really no one knew it would be such a vigorous monster in terms of resisting

fungus.  That's why people do research -- to find out things they didn't already know.

Anyway, we'll do the analysis both ways -- both the seemingly naive way which is probably better once you think

about it, and the sophisticated way that uses the complete set of data for all analyses.

Parts B and C represent the "sophisticated" approach that does not subset the data.

B.  Test all GP159 means equal, full design

C.  Test profiles for Hanna & Westar parallel, full design

proc reg;
     model meanlng = mu1-mu18 / noint;
     A_GvsH:   test  mu1+mu2+mu3+mu4+mu5+mu6 = mu7+mu8+mu9+mu10+mu11+mu12;
     A_GvsW:   test  mu1+mu2+mu3+mu4+mu5+mu6 = mu13+mu14+mu15+mu16+mu17+mu18;
     A_HvsW:   test  mu7+mu8+mu9+mu10+mu11+mu12 = mu13+mu14+mu15+mu16+mu17+mu18;
     B_G159eq: test  mu1=mu2=mu3=mu4=mu5=mu6;
     C_HWpar:  test  mu8-mu7=mu14-mu13,  mu9-mu8=mu15-mu14,
                     mu10-mu9=mu16-mu15, mu11-mu10=mu17-mu16,
                     mu12-mu11=mu18-mu17;

Dependent Variable: MEANLNG
Test: B_G159EQ Numerator:    151.5506  DF:    5   F value:   0.1557
               Denominator:  973.1736  DF:   90   Prob>F:    0.9778

Dependent Variable: MEANLNG
Test: C_HWPAR  Numerator:   5364.0437  DF:    5   F value:   5.5119
               Denominator:  973.1736  DF:   90   Prob>F:    0.0002

Chapter 4, Page 53



This confirms the visual impression of no differences among means for GP159, and non-parallel profiles for

Hanna and Westar. Now compare the subsetting approach. Notice the creation of SAS data sets with subsets of

the data.

D.  Oneway on mcg, GP158 subset

E.  Plant by MCG, Hanna-Westar subset

data just159; /* This data set will have just GP159 */
     set mould;
     if plant=1;

proc glm data=just159;
     title 'D.  Oneway on mcg, GP158 subset';
     class mcg;
     model meanlng = mcg;

                        D.  Oneway on mcg, GP158 subset                       2
                                                10:52 Friday, February 22, 2002

                        General Linear Models Procedure

Dependent Variable: MEANLNG   Average Lesion length
                                     Sum of            Mean
Source                  DF          Squares          Square  F Value    Pr > F

Model                    5     757.75319161    151.55063832     1.03    0.4189

Error                   30    4421.01258503    147.36708617

Corrected Total         35    5178.76577664

                  R-Square             C.V.        Root MSE       MEANLNG Mean

                  0.146319         86.37031       12.139485          14.055159

Source                  DF        Type I SS     Mean Square  F Value    Pr > F

MCG                      5     757.75319161    151.55063832     1.03    0.4189

Source                  DF      Type III SS     Mean Square  F Value    Pr > F

MCG                      5     757.75319161    151.55063832     1.03    0.4189

This analysis is consistent with what we got without subsetting the data.  That is, it does not provide evidence that

the means for GP159 are different.  But when we didn't subset the data, we had p = 0.9778.  This happened

exactly because including Hanna and Westar data made MSE larger, F smaller, and hence p bigger.  
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data hanstar; /* This data set will have just Hanna and Westar */
     set mould;
     if plant ne 1;
     
proc glm data=hanstar;
     title 'E.  Plant by MCG, Hanna-Westar subset';
     class plant mcg;
     model meanlng = plant|mcg;

-------------------------------------------------------------------------------

                     E.  Plant by MCG, Hanna-Westar subset                    3
                                                10:52 Friday, February 22, 2002

                        General Linear Models Procedure
                            Class Level Information

                        Class    Levels    Values

                        PLANT         2    HANNA WESTAR

                        MCG           6    1 2 3 7 8 9

                    Number of observations in data set = 72

-------------------------------------------------------------------------------

                     E.  Plant by MCG, Hanna-Westar subset                    4
                                                10:52 Friday, February 22, 2002

                        General Linear Models Procedure

Dependent Variable: MEANLNG   Average Lesion length
                                     Sum of            Mean
Source                  DF          Squares          Square  F Value    Pr > F

Model                   11     189445.68433     17222.33494    12.43    0.0001

Error                   60      83164.61331      1386.07689

Corrected Total         71     272610.29764

                  R-Square             C.V.        Root MSE       MEANLNG Mean

                  0.694932         41.44379       37.230054          89.832639

Chapter 4, Page 55



Source                  DF        Type I SS     Mean Square  F Value    Pr > F

PLANT                    1     83881.691486    83881.691486    60.52    0.0001
MCG                      5     78743.774570    15748.754914    11.36    0.0001
PLANT*MCG                5     26820.218272     5364.043654     3.87    0.0042

Source                  DF      Type III SS     Mean Square  F Value    Pr > F

PLANT                    1     83881.691486    83881.691486    60.52    0.0001
MCG                      5     78743.774570    15748.754914    11.36    0.0001
PLANT*MCG                5     26820.218272     5364.043654     3.87    0.0042

=========

The significant interaction indicates that the profiles for Hanna and Westar are non-parallel, confirming the visual

impression we got from the interaction plot.  But the p-value is larger this time. When all the data were used to

calculate the error term, we had p = 0.0002.  This is definitely due to the low variation in GP159.  

Further analyses will be limited to the Hanna-Westar subset.
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Now think of the interaction in a different way. Overall, Hanna is more vulnerable than Westar, but the interaction

says that the degree of that greater vulnerability depends on the type of fungus. Look at all pairwise comparisons

of the DIFFERENCE between Hanna and Westar. First, verify that the interaction can be expressed this way. Of

course it can.

F.  Plant by MCG followup, Hanna-Westar subset 

                 All pairwise differences of Westar minus Hanna differences

proc reg;
     model meanlng = mu7-mu18 / noint;
     F_inter: test   mu13-mu7=mu14-mu8=mu15-mu9
                   = mu16-mu10=mu17-mu11=mu18-mu12;
     F_1vs2:  test   mu13-mu7=mu14-mu8;
     F_1vs3:  test   mu13-mu7=mu15-mu9;
     F_1vs7:  test   mu13-mu7=mu16-mu10;
     F_1vs8:  test   mu13-mu7=mu17-mu11;
     F_1vs9:  test   mu13-mu7=mu18-mu12;
     F_2vs3:  test   mu14-mu8=mu15-mu9;
     F_2vs7:  test   mu14-mu8=mu16-mu10;
     F_2vs8:  test   mu14-mu8=mu17-mu11;
     F_2vs9:  test   mu14-mu8=mu18-mu12;
     F_3vs7:  test   mu15-mu9=mu16-mu10;
     F_3vs8:  test   mu15-mu9=mu17-mu11;
     F_3vs9:  test   mu15-mu9=mu18-mu12;
     F_7vs8:  test   mu16-mu10=mu17-mu11;
     F_7vs9:  test   mu16-mu10=mu18-mu12;
     F_8vs9:  test   mu17-mu11=mu18-mu12;

Dependent Variable: MEANLNG
Test: F_INTER  Numerator:   5364.0437  DF:    5   F value:   3.8699
               Denominator:  1386.077  DF:   60   Prob>F:    0.0042

Dependent Variable: MEANLNG
Test: F_1VS2   Numerator:  14956.1036  DF:    1   F value:  10.7902
               Denominator:  1386.077  DF:   60   Prob>F:    0.0017

Dependent Variable: MEANLNG
Test: F_1VS3   Numerator:   2349.9777  DF:    1   F value:   1.6954
               Denominator:  1386.077  DF:   60   Prob>F:    0.1979

Dependent Variable: MEANLNG
Test: F_1VS7   Numerator:  15006.4293  DF:    1   F value:  10.8265
               Denominator:  1386.077  DF:   60   Prob>F:    0.0017
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Dependent Variable: MEANLNG
Test: F_1VS8   Numerator:   1147.2776  DF:    1   F value:   0.8277
               Denominator:  1386.077  DF:   60   Prob>F:    0.3666

Dependent Variable: MEANLNG
Test: F_1VS9   Numerator:    630.3018  DF:    1   F value:   0.4547
               Denominator:  1386.077  DF:   60   Prob>F:    0.5027

Dependent Variable: MEANLNG
Test: F_2VS3   Numerator:   5449.1829  DF:    1   F value:   3.9314
               Denominator:  1386.077  DF:   60   Prob>F:    0.0520

Dependent Variable: MEANLNG
Test: F_2VS7   Numerator:      0.0423  DF:    1   F value:   0.0000
               Denominator:  1386.077  DF:   60   Prob>F:    0.9956

Dependent Variable: MEANLNG
Test: F_2VS8   Numerator:   7818.7443  DF:    1   F value:   5.6409
               Denominator:  1386.077  DF:   60   Prob>F:    0.0208

Dependent Variable: MEANLNG
Test: F_2VS9   Numerator:   9445.7674  DF:    1   F value:   6.8147
               Denominator:  1386.077  DF:   60   Prob>F:    0.0114

Dependent Variable: MEANLNG
Test: F_3VS7   Numerator:   5479.5767  DF:    1   F value:   3.9533
               Denominator:  1386.077  DF:   60   Prob>F:    0.0513

Dependent Variable: MEANLNG
Test: F_3VS8   Numerator:    213.3084  DF:    1   F value:   0.1539
               Denominator:  1386.077  DF:   60   Prob>F:    0.6962

Dependent Variable: MEANLNG
Test: F_3VS9   Numerator:    546.1923  DF:    1   F value:   0.3941
               Denominator:  1386.077  DF:   60   Prob>F:    0.5326

Dependent Variable: MEANLNG
Test: F_7VS8   Numerator:   7855.1432  DF:    1   F value:   5.6672
               Denominator:  1386.077  DF:   60   Prob>F:    0.0205
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Dependent Variable: MEANLNG
Test: F_7VS9   Numerator:   9485.7704  DF:    1   F value:   6.8436
               Denominator:  1386.077  DF:   60   Prob>F:    0.0112

Dependent Variable: MEANLNG
Test: F_8VS9   Numerator:     76.8370  DF:    1   F value:   0.0554
               Denominator:  1386.077  DF:   60   Prob>F:    0.8147

These analyses are summarized in the table below. Westar-Hanna differences marked with the same letter are not

significantly different.

MCG Westar-Hanna
Difference

7 120.35 A

2 120.18 A

3  59.91 A B

8  47.98 B

9  40.83 B

1  20.33 B

The last two tests investigate whether there are significant differences in response to type of fungus, separately

within Hanna and within Westar.  We see that they are statistically significant for Westar, and almost reach

significance for Hanna.

     G_Hanaeq: test   mu7=mu8=mu9=mu10=mu11=mu12;
     H_Westeq: test   mu13=mu14=mu15=mu16=mu17=mu18;

Dependent Variable: MEANLNG
Test: G_HANAEQ Numerator:   3223.5872  DF:    5   F value:   2.3257
               Denominator:  1386.077  DF:   60   Prob>F:    0.0536

Dependent Variable: MEANLNG
Test: H_WESTEQ Numerator:  17889.2114  DF:    5   F value:  12.9064
               Denominator:  1386.077  DF:   60   Prob>F:    0.0001
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It makes sense to follow up with pairwise comparisons of the means with Westar, but first let's review what

we've done so far, limiting the discussion to just the Hanna-Westar subset of the data. We've tested

° Overall difference among the 12 means

° Main effect for PLANT    

° Main effect for MCG      

° PLANT*MCG interaction

° 15 pairwise comparisons of the Hanna-Westar difference, following up the interaction

° One comparison of the 6 means for Hanna

° One comparison of the 6 means for Westar

That's 21 tests in all, and we really should do at least 15 more, testing for pairwise differences among the Westar

means.  Somehow, we should make this into a set of proper post-hoc tests, and correct for the fact that we've

done a lot of them.  But how?

Tukey tests are only good for pairwise comparisons, and a Bonferroni correction is very ill-advised, since these

tests were not all planned before seeing the data.  This pretty much leaves us with Scheffé or nothing.  The earlier

discussion of Scheffé tests was limited to testing single contrasts.  Here, some of our involve testing collections of

contrasts, so we need a little more generality.  

General Scheffé Tests  Assume a multifactor design.  Create a combination independent variable whose

values are all combinations of factor levels.  All the tests we do will be tests for collections consisting of one or

more contrasts of the cell means.

Start with an initial test, an F-test for s contrasts.  A Scheffé follow-up test will be a test for d contrasts, not

necessarily a subset of the contrasts of the initial test.  The follow-up test must obey these rules:

° d < s

° If all s contrasts of the initial test are zero in the population, then all d contrasts of the

follow-up test must be zero in the population.  In other words, the null hypothesis of the follow-up test must be

implied by the null hypothesis of the initial test.  
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Next, compute the ordinary one-at-a-time F statistic for the follow-up test (it will have d and n-p degrees of

freedom).  Then, use a calculator to compute

Fsch =  d
s F , (4.2)

and if Fsch is bigger than the critical value of F for the initial test, the Scheffé follow-up is significant.

Actually, Formula (4.2) is more general.  It applies to testing linear combinations of regression coefficients in a

multiple regression setting.  The initial test is a test of s linear constraints on the regression coefficients, and the

follow-up test is a test of d linear constraints, where d < s and the linear constraints of the initial test imply the

linear constraints of the follow-up test. This is very nice because it allows, for example,  Scheffé follow-ups to a

significant analysis of covariance. 

Before applying Scheffé follow-ups to the greenhouse data, a few comments are in order.

° The term "linear constraints" sounds imposing, but a linear constraint is just a statement that some

linear combination equals a constant.  Almost always, the constant is zero.  So for example, saying that a contrast

of cell means is equal to zero is the same as specifying a linear constraint on the betas of a multiple regression

model (with cell means coding).

° If you're testing 6 independent variables controlling for some other set of independent variables,

the null hypothesis says that 6 regression coefficients are equal to zero.  That's six linear constraints on the

regression coefficients.

° In the initial one-way ANOVA setting where we were testing single contrasts of p cell means, the

Scheffe F statistic was defined by Fsch = F/(p-1).  This was a special case of formula (4.2).  The initial test for

equality of p means involved p-1 contrasts, so s = p-1.  The followup tests were all for single contrasts, so

d=1.

° As in the case of testing single contrasts in a one-way design, it is impossible for a followup to be

significant if the initial test is not.  And if the initial test is significant, there is always something to find in the

family of Scheffé follow-ups.
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° Suppose we have a follow-up test for d linear constraints, and it's not significant.  Then every

follow-up test whose null hypothesis is implied by those constraints will also be non-significant.  To use the

metaphor of data fishing, once you've looked for fish in a particular region of the lake and determined that there's

nothing there, further detailed exploration in that region is a waste of time. 

Formula (4.2) is very simple to apply.  There are only two potential complications, and they are related to one

another.

° First, you have to know what significance test you are following up. For example, if your initial

test is the test for equality of all cell means, then the test for a given main effect could be carried out as a Scheffé

followup, and a pairwise comparison of marginal means would be another followup to the same initial test.  Or,

you could start with the test for the main effect.  Then, the pairwise comparison of marginal means would be a

follow-up to the one-at-a-time test for the main effect.  You could do it either way, and the conclusions might

differ.  Where you start is a matter of data-analytic philosophy.  But starting with the standard tests for main

effects and interactions is more traditional.  

° The second potential complication is that you really have to be sure that the null hypothesis of the

initial test implies the null hypothesis of the follow-up test.  In terms of proc reg syntax, it means that the

test statement of the initial test implies the test statements of all the follow-up tests. Sometimes this is easy

to check, and sometimes it is tricky.  To a large extent, how easy it is to check depends on what the initial test is.

a. If the initial test is a test for all cell means being equal (a one-way ANOVA on the

combination variable), then it's easy, because if all the cell means are equal, then any possible contrast of the cell

means equals zero.  The proof is one line of High School algebra.

b. Similarly, suppose we are using a regression model with an intercept, and the initial test is

for all the regression coefficients except β0 simultaneously.  This means that the null hypothesis of the initial test

is β1 = ... = βp−1 = 0, and therefore any linear combination of those quantities is zero.  This means that you

can test any subset of independent variables controlling for all the others as a proper Scheffé follow-up to the first

test SAS prints.

c. If you're following up tests for main effects, then the standard test for any contrast of

marginal means is a proper follow-up to the test for the main effect.
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Beyond these principles, the logical connection between initial and follow-up tests really needs to be checked on a

case-by-case basis.  Often, the initial test can be expressed more than one way in the test statement of proc

reg, and one of those statements will make things clear enough so you don't need to do any algebra.  This is

what I did with the significant Plant by Fungus interaction for the Hanna-Westar subset.  When the interaction

was written as

     F_inter: test   mu13-mu7=mu14-mu8=mu15-mu9
                   = mu16-mu10=mu17-mu11=mu18-mu12;

it was clear that all the pairwise comparisons of Westar-Hanna differences were implied.

     F_1vs2:  test   mu13-mu7=mu14-mu8;
     F_1vs3:  test   mu13-mu7=mu15-mu9;
     F_1vs7:  test   mu13-mu7=mu16-mu10;
     F_1vs8:  test   mu13-mu7=mu17-mu11;
     F_1vs9:  test   mu13-mu7=mu18-mu12;
     F_2vs3:  test   mu14-mu8=mu15-mu9;
     F_2vs7:  test   mu14-mu8=mu16-mu10;
     F_2vs8:  test   mu14-mu8=mu17-mu11;
     F_2vs9:  test   mu14-mu8=mu18-mu12;
     F_3vs7:  test   mu15-mu9=mu16-mu10;
     F_3vs8:  test   mu15-mu9=mu17-mu11;
     F_3vs9:  test   mu15-mu9=mu18-mu12;
     F_7vs8:  test   mu16-mu10=mu17-mu11;
     F_7vs9:  test   mu16-mu10=mu18-mu12;
     F_8vs9:  test   mu17-mu11=mu18-mu12;

Sometimes it is easy to get this wrong.  Just note that SAS will do all pairwise comparisons of marginal means (in

the means statement of proc glm) as Scheffé follow-ups, but don't trust it unless the sample sizes are

equal.  Do it yourself.  This warning applies up to SAS version 6.10. Is it a real error, or was it done deliberately

to minimize calls to technical support?  It's impossible to tell.

Now let's proceed, limiting the analysis to the Hanna-Westar subset. Just for fun, we'll start in two places.  Our

initial test will be either the test for equality of all 12 cell means, or the test for the Plant by Fungus interaction.

Thus, we need two critical values.
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proc iml; /* Critical values for Scheffe tests */
     interac = finv(.95,5,60) ; print interac;
     oneway = finv(.95,11,60); print oneway;

                                     INTERAC
                                   2.3682702

                                      ONEWAY
                                   1.9522119

Initial Test is for Difference Among 12 Cell Means

Let's start by treating the tests for main effects and the interaction as follow-ups to the significant ANOVA on the

combination variable (F = 12.43; df=11,71; p < .0001).  The table below is based on numbers displayed earlier.  

Effect One-at-a-time F Fsch =  d
s F d Significant with

Scheffé?

PLANT 60.52 5.50 1 Yes

MCG 11.36 5.16 5 Yes

PLANT*MCG  3.87 1.75 5 No

All Hanna Equal?  2.33 1.06 5 No

All Westar Equal? 12.91 5.87 5 Yes

The main effect for Plant is still significant; it means that Westar is more vulnerable than Hanna.  The main effect

for Fungus (MCG) is significant, but as mentioned earlier, it should not be interpreted.

The interesting Plant by MCG interaction is no longer significant as a Scheffe test.  This means that all the

pairwise comparisons among Westar-Hanna differences will also be non-significant, as Scheffe follow-ups to the

oneway ANOVA on the combination variable. There are no fish in that part of the lake.  Just to check, the biggest

Westar-Hanna difference was 120.35 for MCG 7, and the smallest was 20.33 for MCG 1.  Comparing these two

differences yielded a one-at-a-time F of 10.83. But d=1 here and s=11, so that Fsch=.98. This falls short of the

1.95 required for significance, and as expected, none of the proper follow-ups to a non-significant follow-up are

significant.
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Pairwise comparisons of the Westar means are of interest, and the easiest way to get them is to ask proc glm

for all pairwise comparisons of cell means. 

proc glm data=hanstar;
     class combo;
     model meanlng = combo;
     means combo / scheffe;

                   Scheffe's test for variable: MEANLNG

          NOTE: This test controls the type I experimentwise error rate but
                generally has a higher type II error rate than REGWF for all
                pairwise comparisons

                      Alpha= 0.05  df= 60  MSE= 1386.077
                         Critical Value of F= 1.95221
                    Minimum Significant Difference= 99.608

          Means with the same letter are not significantly different.

               Scheffe Grouping              Mean      N  COMBO

                              A            187.48      6  14
                              A
                              A            173.97      6  16
                              A
                      B       A            154.10      6  15
                      B       A
                      B       A   C         95.82      6  17
                      B       A   C
                      B       A   C         94.19      6  9
                      B           C
                      B           C         67.30      6  8
                      B           C
                      B           C         66.50      6  18
                      B           C
                      B           C         65.91      6  13
                                  C
                                  C         53.62      6  10
                                  C
                                  C         47.84      6  11
                                  C
                                  C         45.58      6  7
                                  C
                                  C         25.67      6  12

On Westar, Fungus types 2, 3 and 7 grow significantly faster than types 1 and 9, while type 8 is not significantly

different from either group.  As expected, there are no significant differences among Fungus types for Hanna.
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Starting with the Interaction

Logically, a test for interaction can be a follow-up test, but almost no one ever does this in practice.  It's much

more traditional to start with a one-at a time test for interaction and then, if you're very sophisticated, do Scheffe

follow-ups to that initial test.  Now s = 5 and the critical value is 2.3682702.  

Again, the biggest Westar-Hanna difference was 120.35 for MCG 7, and the smallest was 20.33 for MCG 1.

Comparing these two differences yielded a one-at-a-time F of 10.83. This yields Fsch =  d
s F  =   1

5 * 10.83

= 2.16.  But this falls short of the critical value of 2.37, so none of the pairwise comparisons of Westar-Hanna

differences reaches significance as a Scheffe follow-up -- even though they look very promising.

As a mathematical certainty, there is a single-contrast Scheffe follow-up to the interaction that is significant, but I

am still looking for it.  The next place I will look is:  pairwise comparisons of the differences of line-segment

slopes from the interaction plot. 

200

100

0

Type of Fungus

1 2 3 7 8 9

Mean Lesion Length

GP159

Hanna

Westar

Chapter 4, Page 66



Interactions as Products of Independent Variables

Categorical by Quantitative

An interaction between a quantitative variable and a categorical variable means that differences in E[Y] between

categories depend on the value of the quantitative variable, or (equivalently) that the slope of the lines relating

x to E[Y] are different, depending on category membership.  Such an interaction is represented by pppprrrroooodddduuuuccccttttssss

of the quantitative variable and the dummy variables for the categorical variable.  

For example, consider the metric cars data (mcars.dat).  It has length, weight, origin and fuel efficiency in

kilometers per litre, for a sample of cars.  The three origins are US, Japanese and Other. Presumably these

refer to the location of the head office, not to where the car was manufactured.  

Let's use indicator dummy variable coding for origin, with an intercept.  In an Analysis of Covariance

(ANCOVA), we'd test country of origin controlling, say, for weight.  Letting x represent weight and c1 and

c2 the dummy variables for country of origin, the model would be

E[Y] = β0 + β1x + β2c1 + β3c2.

This model assumes no interaction between country and weight.  The following model includes product terms

for the interaction, and would allow you to test it.

E[Y] = β0 + β1x + β2c1 + β3c2 + β4c1x + β5c2x

Country c1 c2 Expected KPL (let x = weight)

U. S. 1 0 (β0 + β2) + (β1+β4)x

Japan 0 0  β0           +  β1        x

European 0 1 (β0 + β3) + (β1+β5)x

It's clear that the slopes are parallel if and only if β4=β5=0, and that in this case the relationship of fuel efficiency

to country would not depend on weight of the car.
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As the program below shows, interaction terms are created by literally multiplying independent variables, and

using products as additional independent variables in the regression equation.

/********************** mcars.sas **************************/
options linesize=79 pagesize=100 noovp formdlim='-';
title 'Metric Cars Data: Dummy Vars and Interactions';

proc format; /* Used to label values of the categorical variables */
     value carfmt    1 = 'US'
                     2 = 'Japanese'
                     3 = 'European' ;
data auto;
     infile 'mcars.dat';
     input id country kpl weight length;
/* Indicator dummy vars: Ref category is Japanese */
     if country = 1 then c1=1;  else c1=0;
     if country = 3 then c2=1;  else c2=0;
     /* Interaction Terms */
     cw1 = c1*weight; cw2 = c2*weight;
     label country = 'Country of Origin'
           kpl = 'Kilometers per Litre';
     format country carfmt.;

proc means;
     class country;
     var weight kpl;

proc glm;
     title 'One-way ANOVA';
     class country;
     model kpl = country;
     means country / tukey;

proc reg;
     title 'ANCOVA';
     model kpl = weight c1 c2;
     country: test c1 = c2 = 0;

proc reg;
     title 'Test parallel slopes (Interaction)';
     model kpl = weight c1 c2 cw1 cw2;
     interac: test cw1 = cw2 = 0;
     useuro:  test cw1=cw2;
     country: test c1 = c2 = 0;
     eqreg:   test c1=c2=cw1=cw2=0;

proc iml; /* Critical value for Scheffe tests */
     critval = finv(.95,4,94) ; print critval;
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/* Could do most of it with proc glm: ANCOVA, then test interaction */

proc glm;
     class country;
     model kpl = weight country;
     lsmeans country;

proc glm;
     class country;
     model kpl = weight country weight*country;

Let's take a look at the output.  First, proc means indicates that the US cars get lower gas mileage, and that weight

is a potential confounding variable.

       COUNTRY  N Obs  Variable  Label                   N          Mean
      ------------------------------------------------------------------
      US           73  WEIGHT                           73       1540.23
                       KPL       Kilometers per Litre   73     8.1583562

      Japanese     13  WEIGHT                           13       1060.27
                       KPL       Kilometers per Litre   13     9.8215385

      European     14  WEIGHT                           14       1080.32
                       KPL       Kilometers per Litre   14    11.1600000
      ------------------------------------------------------------------

   COUNTRY  N Obs  Variable  Label                      Std Dev       Minimum
  ---------------------------------------------------------------------------
  US           73  WEIGHT                           327.7785402   949.5000000
                   KPL       Kilometers per Litre     1.9760813     5.0400000

  Japanese     13  WEIGHT                           104.8370989   891.0000000
                   KPL       Kilometers per Litre     2.3976719     7.5600000

  European     14  WEIGHT                           240.9106607   823.5000000
                   KPL       Kilometers per Litre     4.2440764     5.8800000
  ---------------------------------------------------------------------------

          COUNTRY  N Obs  Variable  Label                      Maximum
         -------------------------------------------------------------
         US           73  WEIGHT                               2178.00
                          KPL       Kilometers per Litre    12.6000000

         Japanese     13  WEIGHT                               1237.50
                          KPL       Kilometers per Litre    14.7000000

         European     14  WEIGHT                               1539.00
                          KPL       Kilometers per Litre    17.2200000
         -------------------------------------------------------------
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The one-way ANOVA indicates that fuel efficiency is significantly related to country of origin; country explains

17% of the variation in fuel efficiency.

                        General Linear Models Procedure

Dependent Variable: KPL   Kilometers per Litre
                                     Sum of            Mean
Source                  DF          Squares          Square  F Value    Pr > F

Model                    2     121.59232403     60.79616201    10.09    0.0001
Error                   97     584.29697197      6.02368012
Corrected Total         99     705.88929600

                  R-Square             C.V.        Root MSE           KPL Mean
                  0.172254         27.90648       2.4543187          8.7948000

The Tukey follow-ups are not shown, but they indicate that only the US-European difference is significant.

Maybe the US cars are less efficient because they are big and heavy. So let's do the same test, controlling for

weight of car. Here's the SAS code.  Note this is a standard Analysis of Covariance, and we're assuming no

interaction.

proc reg;
     title 'ANCOVA';
     model kpl = weight c1 c2;
     country: test c1 = c2 = 0;

Dependent Variable: KPL        Kilometers per Litre

                             Analysis of Variance

                                Sum of         Mean
       Source          DF      Squares       Square      F Value       Prob>F

       Model            3    436.21151    145.40384       51.761       0.0001
       Error           96    269.67779      2.80914
       C Total         99    705.88930

           Root MSE       1.67605     R-square       0.6180
           Dep Mean       8.79480     Adj R-sq       0.6060
           C.V.          19.05728
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                              Parameter Estimates

                      Parameter      Standard    T for H0:
     Variable  DF      Estimate         Error   Parameter=0    Prob > |T|

     INTERCEP   1     16.226336    0.76312281        21.263        0.0001
     WEIGHT     1     -0.006041    0.00057080       -10.583        0.0001
     C1         1      1.236147    0.57412989         2.153        0.0338
     C2         1      1.459591    0.64565633         2.261        0.0260

-------------------------------------------------------------------------------

Dependent Variable: KPL
Test: COUNTRY  Numerator:      8.6168  DF:    2   F value:   3.0674
               Denominator:  2.809144  DF:   96   Prob>F:    0.0511

First notice that by including weight, we're now explaining 61% of the variation, while before we explained just

17%. Also, while the effect for country was comfortably significant before we controlled for weight, now it

narrowly fails to reach the traditional criterion (p = 0.0511). But to really appreciate these results, we need to

make a table.

Country c1 c2 E[Y] = β0 + β1x + β2c1 + β3c2

U. S. 1 0 (β0 + β2) + β1x

Japan 0 0  β0           + β1x

European 0 1 (β0 + β3) + β1x

                              Parameter Estimates

                      Parameter      Standard    T for H0:
     Variable  DF      Estimate         Error   Parameter=0    Prob > |T|

     INTERCEP   1     16.226336    0.76312281        21.263        0.0001
     WEIGHT     1     -0.006041    0.00057080       -10.583        0.0001
     C1         1      1.236147    0.57412989         2.153        0.0338
     C2         1      1.459591    0.64565633         2.261        0.0260

Observe that both b2 and b3 are positive -- and significant.  Before we controlled for weight, Japanese gas mileage

was a little better than US, though not significantly so.  Now, because b2 estimates β2, and β2 is the population
difference between U.S. and Japanese mileage (for any fixed weight), a positive value of b2 means that once you
control for weight, the U.S. cars are getting better gas mileage than the Japanese -- significantly better, too, if you
believe the t-test and not the F-test.  

Chapter 4, Page 71



The direction of the results has changed because we controlled for weight.  This can happen. 

Also, may seem strange that the tests for β2 and β3 are each significant individually, but the simultaneous test for

both of them is not.  But this the simultaneous test implicitly includes a comparison between U.S. and European

cars, and they are very close, once you control for weight.

The best way to summarize these results would be to calculate Y-hat for each country of origin, with weight set

equal to its mean value in the sample. Instead of doing that, though, let's first test the interaction, which this

analysis is assuming to be absent. 

proc reg;
     title 'Test parallel slopes (Interaction)';
     model kpl = weight c1 c2 cw1 cw2;

     interac: test cw1 = cw2 = 0;
     useuro:  test cw1=cw2;
     country: test c1 = c2 = 0;
     eqreg:   test c1=c2=cw1=cw2=0;

Dependent Variable: KPL        Kilometers per Litre

                                Sum of         Mean
       Source          DF      Squares       Square      F Value       Prob>F

       Model            5    489.27223     97.85445       42.463       0.0001
       Error           94    216.61706      2.30444
       C Total         99    705.88930

           Root MSE       1.51804     R-square       0.6931
           Dep Mean       8.79480     Adj R-sq       0.6768
           C.V.          17.26062

                              Parameter Estimates

                      Parameter      Standard    T for H0:
     Variable  DF      Estimate         Error   Parameter=0    Prob > |T|

     INTERCEP   1     29.194817    4.45188417         6.558        0.0001
     WEIGHT     1     -0.018272    0.00418000        -4.371        0.0001
     C1         1    -12.973668    4.53404398        -2.861        0.0052
     C2         1     -4.891978    4.85268101        -1.008        0.3160
     CW1        1      0.013037    0.00421549         3.093        0.0026
     CW2        1      0.006106    0.00453064         1.348        0.1810
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-------------------------------------------------------------------------------

Dependent Variable: KPL
Test: INTERAC  Numerator:     26.5304  DF:    2   F value:  11.5127
               Denominator:  2.304437  DF:   94   Prob>F:    0.0001

Dependent Variable: KPL
Test: USEURO   Numerator:     33.0228  DF:    1   F value:  14.3301
               Denominator:  2.304437  DF:   94   Prob>F:    0.0003

Dependent Variable: KPL
Test: COUNTRY  Numerator:     24.4819  DF:    2   F value:  10.6238
               Denominator:  2.304437  DF:   94   Prob>F:    0.0001

Dependent Variable: KPL
Test: EQREG    Numerator:     17.5736  DF:    4   F value:   7.6260
               Denominator:  2.304437  DF:   94   Prob>F:    0.0001

Now the coefficients for the dummy variables are both negative, and the coefficients for the interaction terms are

positive. To see what's going on, we need a table and a picture -- of  Y .
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 Y  = b0 + b1x + b2c1 + b3c2 + b4c1x + b5c2x

    = 29.194817 - 0.018272x - 12.973668c1 - 4.891978c2 + 0.013037c1x + 0.006106c2x

Country c1 c2 Predicted KPL (let x = weight)

U. S. 1 0 (b0 + b2) + (b1+b4)x      = 16.22 - 0.005235 x

Japan 0 0  b0           +  b1       x       = 29.19 - 0.018272 x

European 0 1 (b0 + b3) + (b1+b5)x       = 24.30 - 0.012166 x

From the proc means output, we find that the lightest car was 823.5kg, while the heaviest was 2178kg.  So we

will let the graph range from 820 to 2180.

800 1200 1600 2000

-1
0

0
5

10
15

Weight in kg

K
P

L

U.S.

Japan

Euro

Fuel Efficiency as a Function of Weight

Chapter 4, Page 74



When there were no interaction terms, b2 and b3 represented a main effect for country.  What do they represent

now?

From the picture, it is clear that the most interesting thing is that the slope of the line relating weight to fuel

efficiency is least steep for the U.S.  Is it significant?  0.05/3 = 0.0167.

Repeating earlier material, ...

                             Parameter Estimates

                      Parameter      Standard    T for H0:
     Variable  DF      Estimate         Error   Parameter=0    Prob > |T|

     INTERCEP   1     29.194817    4.45188417         6.558        0.0001
     WEIGHT     1     -0.018272    0.00418000        -4.371        0.0001
     C1         1    -12.973668    4.53404398        -2.861        0.0052
     C2         1     -4.891978    4.85268101        -1.008        0.3160
     CW1        1      0.013037    0.00421549         3.093        0.0026
     CW2        1      0.006106    0.00453064         1.348        0.1810

     useuro:  test cw1=cw2;

Dependent Variable: KPL
Test: USEURO   Numerator:     33.0228  DF:    1   F value:  14.3301
               Denominator:  2.304437  DF:   94   Prob>F:    0.0003

The conclusion is that with a Bonferroni correction, the slope is less (less steep) for US than for either Japanese or

European, but Japanese and European are not significantly different from each other.

Another interesting follow-up would be to use Scheffe tests to compare the heights of the regression lines at many

values of weight; infinitely many comparisons would be protected simultaneously.  This is not a proper follow-up

to the interaction. What is the initial test?
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Quantitative by Quantitative

An interaction of two quantitative variables is literally represented by their product.  For example, consider the

model

E[Y] = ∫
0
 + ∫

1
x

1
 + ∫

2
x

2
 +∫

3
x

1
x

2

Hold x
2
 fixed at some particular value, and re-arrange the terms.  This yields

E[Y] =(∫
0
 + ∫

2
x

2
) + (∫

1
+∫

3
x

2
 )x

1
.

so that there is a linear relationship between x
1
 and E[Y], with both the slope and the intercept depending on the

value of x
2
.  Similarly, for a fixed value of x

1
,

E[Y] =(∫
0
 + ∫

1
x

1
) + (∫

2
+∫

3
x

1
 )x

2
,

and the (linear) relationship of x2 to E[Y] depends on the value of x1.  We always have this kind of

symmetry.

Three-way interactions are represented by 3-way products, etc.  Its interpretation would be "the 2-way

interaction depends ..."

Product terms represent interactions ONLY when all the variables involved and all lower order interactions

involving those variables are also included in the model!
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Categorical by Categorical

It is no surprise that interactions between categorical independent variables are represented by products.  If A

and B are categorical variables, IVs representing the A by B interaction are obtained by multiplying each

dummy variable for A by each dummy variable for B.  If there is a third IV cleverly named C and you want

the 3-way interaction, multiply each of the dummy variables for C by each of the products representing the A

by B interaction.  This rule extends to interactions of any order.  

Up till now, we have represented categorical independent variables with indicator dummy variables, coded 0 or

1.  If interactions between categorical IVs are to be represented, it is much better to use "effect coding," so

that the regression coefficients for the dummy variables correspond to main effects.  (In a 2-way design,

products of indicator dummy variables still correspond to interaction terms, but if an interaction is present, the

interpretation of the coefficients for the indicator dummy variables is not what you might guess.)

EEEEffffffffeeeecccctttt    ccccooooddddiiiinnnngggg.  There is an intercept.  As usual, a categorical independent variable with k categories is

represented by k-1 dummy variables.  The rule is

Dummy var 1:  First value of the IV gets a 1, last gets a minus 1, all others get zero.

Dummy var 2:  Second value of the IV gets a 1, last gets a minus 1, all others get zero.

. . .

Dummy var k-1:  k-1st value of the IV gets a 1, last gets a minus 1, all others get zero.

Here is a table showing effect coding for Plant from the Greenhouse data.

Country p1 p2 E[Y] = β0 + β1p1 + β2p2

GP159  1  0 µ1 = β0 + β1

Hanna  0  1 µ2 = β0 + β2

Westar -1 -1 µ3 = β0 − β1 − β2

It is clear that µ1 = µ2 = µ3 if and only if β1=β2=0, so it's a valid dummy variable coding scheme even though it

looks strange.
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Country p1 p2 E[Y] = β0 + β1p1 + β2p2

GP159  1  0 µ1 = β0 + β1

Hanna  0  1 µ2 = β0 + β2

Westar -1 -1 µ3 = β0 − β1 − β2

Effect coding has these properties, which extend to any number of categories.

° µ1 = µ2 = µ3 if and only if β1=β2=0.  

° The average population mean (grand mean) is (µ1+µ2+µ3)/3 = β0.

° β1, β2 and -(β1+β2) are deviations from the grand mean.

The real advantage of effect coding is that the dummy variables behave nicely when multiplied together, so that

main effects correspond to collections of dummy variables, and interactions correspond to their products -- in a

simple way. This is illustrated for Plant by MCG analysis, using the full greenhouse data set).

data nasty;

     set yucky;

     /* Two dummy variables for plant */

        if plant=. then p1=.;

        else if plant=1 then p1=1;

        else if plant=3 then p1=-1;

        else p1=0;

     if plant=. then p2=.;

        else if plant=2 then p2=1;

        else if plant=3 then p2=-1;
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        else p2=0;

     /* Five dummy variables for mcg */

     if mcg=. then f1=.;

        else if mcg=1 then f1=1;

        else if mcg=9 then f1=-1;

        else f1=0;

     if mcg=. then f2=.;

        else if mcg=2 then f2=1;

        else if mcg=9 then f2=-1;

        else f2=0;

     if mcg=. then f3=.;

        else if mcg=3 then f3=1;

        else if mcg=9 then f3=-1;

        else f3=0;

     if mcg=. then f4=.;

        else if mcg=7 then f4=1;

        else if mcg=9 then f4=-1;

        else f4=0;

     if mcg=. then f5=.;

        else if mcg=8 then f5=1;

        else if mcg=9 then f5=-1;

        else f5=0;

     /* Product terms for the interaction */

        p1f1 = p1*f1; p1f2=p1*f2 ; p1f3=p1*f3 ; p1f4=p1*f4; p1f5=p1*f5;

        p2f1 = p2*f1; p2f2=p2*f2 ; p2f3=p2*f3 ; p2f4=p2*f4; p2f5=p2*f5;

proc reg;

     model meanlng = p1 -- p2f5;

     plant:  test p1=p2=0;

     mcg:    test f1=f2=f3=f4=f5=0;

     p_by_f: test p1f1=p1f2=p1f3=p1f4=p1f5=p2f1=p2f2=p2f3=p2f4=p2f5 = 0;     
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Here is the output from the test statement.  For comparison, it is followed by proc glm output from

model meanlng = plant|mcg.

Dependent Variable: MEANLNG 
Test: PLANT    Numerator: 110847.5637  DF:    2   F value: 113.9032
               Denominator:  973.1736  DF:   90   Prob>F:    0.0001

Dependent Variable: MEANLNG 
Test: MCG      Numerator:  11748.0529  DF:    5   F value:  12.0719
               Denominator:  973.1736  DF:   90   Prob>F:    0.0001

Dependent Variable: MEANLNG 
Test: P_BY_F   Numerator:   4758.1481  DF:   10   F value:   4.8893
               Denominator:  973.1736  DF:   90   Prob>F:    0.0001

-------------------------------------------------------------------------------

Source                  DF      Type III SS     Mean Square  F Value    Pr > F

PLANT                    2     221695.12747    110847.56373   113.90    0.0001
MCG                      5      58740.26456     11748.05291    12.07    0.0001
PLANT*MCG               10      47581.48147      4758.14815     4.89    0.0001

It worked.

Effect coding works as expected in conjunction with quantitative independent variables.  In particular, products of

quantitative and indicator variables still represent interactions.  In fact, the big advantage of effect coding is that

you can use it to test categorical independent variables, and interactions between categorical independent variables

-- in a bigger multiple regression context.
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Nested and Random Effect models

Nested Designs

Suppose a chain of commercial business colleges is teaching a software certification course.  After 6 weeks of

instruction, students take a certification exam and receive a score ranging from zero to 100.  The owners of the

business school chain want to see whether performance is related to which school students attend, or which

instructor they have -- or both. They compare two schools; one of the schools has three instructors teaching the

course, and the other school has 4 instructors teaching the course.  A teacher only works in one school.

There are two independent variables, school and teacher.  But it's not a factorial design, because ``Teacher 1"

does not mean the same thing in School 1 and School 2; it's a different person.  This is called a nested design.

By the way, it's also unbalanced, because there are different numbers of teachers withing each school.  We say

that teacher is nested within school.  The diagram below shows what is going on, and give a clue about how to

conduct the analysis.

School One School Two

Teacher 1 Teacher 2 Teacher 3 Teacher 1 Teacher 2 Teacher 3 Teacher 4

µ1 µ2 µ3 µ4 µ5 µ6 µ7

To compare schools, we want to test  1
3 (µ1+µ2+µ3) =  1

4 (µ4+µ5+µ6+µ7).  

To compare instructors within schools, we want to test µ1=µ2=µ3 and µ4=µ5=µ6=µ7 simultaneously. 

The first test involves one contrast of µ1 through µ7; the second test involves five contrasts. There really is

nothing to it. 
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You can do it with proc reg and cell means coding, or you can take advantage of proc glm's syntax for

nested models.

proc glm;
     class school teacher;
     model score = school teacher(school);

The notation teacher(school) should be read ``teacher within school."

° It's easy to extend this to more than one level of nesting.  You could have climate zones, 

lakes within climate zones, fishing boats within lakes, ...

° There is no problem with combining nested and factorial structures.  You just have to keep 

track of what's nested within what.  Factors that are not nested are sometimes called 

``crossed."  

Random Effect Models  The preceding discussion (and indeed, the entire course to this point) has been limited

to ``fixed effects" models.  In a random effects model, the values of the categorical independent variables

represent a random sample from some population of values.  For example, suppose the business school had 200

branches, and just selected 2 of them at random for the investigation.  Also, maybe each school has a lot of

teachers, and we randomly sampled teachers within schools.  Then, teachers within schools would be a random

effects factor too.

It's quite possible to have random effect factors and fixed effect factors in the same design; such designs are called

``mixed."  SAS proc mixed is built around this, but it does a lot of other things too.

Nested models are often viewed as random effects models, but there is no necessary connection between the two

concepts.  It depends on how the study was conducted.  Were the two schools randomly selected from some

population of schools, or did someone just pick those two (maybe because there are just two schools)? 
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Of course lots of the time, nothing is randomly selected -- but people use random effects models anyway.  Why

pretend?  Well, sometimes they are thinking that in a better world, lakes would have been randomly selected.  Or

sometimes, the scientists are thinking that they really would like to generalize to the entire population of lakes, and

therefore should use statistical tools that support such generalization -- even if there was no random sampling.

(By the way, no statistical method can compensate for a biased sample.) Or sometimes it's just a tradition in

certain sub-areas of research, and everybody expects to see random effects models.  

In the traditional analysis of models with random or mixed effects and a normal assumption, F-tests are often

possible, but they don't always use Mean Squared Error in the denominator of the F statistic.  Often, it's the Mean

Square for some interaction term or other.  The choice of what error term to use is relatively mechanical for

balanced models with equal sample sizes, but even then, sometimes (especially when it's a mixed model) a valid

F-test for an effect of interest just doesn't exist.  

When the design is unbalanced or has unequal sample sizes, a valid F-test rarely exists.  It's a real pain.

Sometimes, you can find an error term that produces a valid F-test assuming that some interaction (or maybe

more than one interaction) is absent.  Usually, you can't test for that interaction either.  But people do it anyway

and hope for the best.

SAS proc mixed goes a long way toward solving these problems.  It's a great piece of software, based on

recent, state-of the-art research as well as more venerable stuff.  But we're running out of time.  Goodbye, proc

mixed.  Goodbye, random effects.
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Choosing Sample Size

The purpose of this section is to describe three related methods for choosing sample size before data are

collected -- the classical power method, the sample variation method and the population variation method.

The classical power method applies to almost any statistical test.  After presenting general principles, the

discussion zooms in on the important special case of factorial analysis of variance with no covariates.

The sample variation method and the population variation methods are limited to multiple linear

regression, including the analysis of variance and covariance.   Throughout, it will be assumed that the

person designing the study is a scientist who will only be allowed to discuss results if a null hypothesis is

rejected at some conventional significance level such as α = 0.05 or α = 0.01.  Thus, it is vitally

important that the study be designed so that scientifically interesting effects can be detected as statistically

significant.  

The classical power method.  The term "null hypothesis" has mostly been avoided until now, but

it's much easier to talk about the classical power method if we're allowed to use it.  Most statistical tests

are based on comparing a full model to a reduced model.  Under the reduced model, the values of

population parameters are constrained in some way.  For example, in a one-way ANOVA comparing

three treatments, the parameters are  µ1, µ2, µ3 and σ2.  The reduced model says that µ1=µ2=µ3.  This is

a constraint on the parameter values.  The null hypothesis (symbolized H0) is a statement of how the

parameters are constrained under the reduced model. When a test of a null hypothesis yields a small p-

value, it means that the data are quite unlikely if the null hypothesis is true. We then reject the null

hypothesis -- that is, we conclude it's not true, and therefore that some effect of interest is present in the

population.

The following definition applies to hypothesis tests in general, not just those associated with common

multiple regression.  Assume that data are drawn from some population with parameter θ -- that's the

Greek letter theta. Theta is typically a vector; for example, in simple linear regression with normal errors,

θ = (β0, β1, σ2). 

The ppppoooowwwweeeerrrr of a statistical test is the probability of obtaining significant results. Power is a function of

the true parameter values. That is, it is a function of θ.
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The ppppoooowwwweeeerrrr of a statistical test is the probability of obtaining significant results. Power is a function of

the true parameter values. That is, it is a function of θ.

a) The common statistical tests have infinitely many power values.

b) If the null hypothesis is true, power cannot exceed å; in fact, this is the technical 

definition of å.  Usually, å = 0.05.

c) If the null hypothesis is false, more power is good.

d) For a good test, power £ 1 (for fixed n) as the true parameter values get farther 

from those specified by the null hypothesis. 

e) For a good test, power £ 1 as n £ ª for any combination of fixed parameter 

values, provided the null hypothesis is false.  

Classical power analysis is used to select a sample size n as follows.  Choose an effect -- a particular
combination of parameter values that makes the null hypothesis false. If possible, select the weakest
effect that would still be scientifically important if it were present in the population.  If the null
hypothesis is false in this way, we would like to have a high probability of rejecting it and obtaining
significance. Choose a sample size n, and calculate the probability of significance (that is, calculate
power) for that sample size and that set of parameter values. Increase (or decrease) n, calculating
power each time.  Stop when the power is what you want. A common target value for power is 0.80.
My guess is that it would be higher, except that, for common tests and effect sizes, the sample would
have to be prohibitively large.

There are only two difficulties with carrying out a classical power analysis in practice; one is
conceptual, the other technical.  The conceptual problem is that scientists often have difficulty choosing
a configuration of parameter values corresponding to an effect that is scientifically interesting.  Maybe
that's not too surprising, because scientists usually think in terms of data rather than in terms of
statistical models.  It could be different if the statistical models were serious scientific models of what
the scientists are studying, but usually they're quite generic.  
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The technical problem is that sometimes -- especially for statistical methods other than those based on
common multiple regression -- it can be difficult to calculate the probability of significance when the
null hypothesis is false.  This problem is not really serious; it can always be overcome with some
effort and the right software.  Once you move beyond multiple regression, SAS is not the right
software.

PPPPoooowwwweeeerrrr    ffffoooorrrr    FFFFaaaaccccttttoooorrrriiiiaaaallll    AAAANNNNOOOOVVVVAAAA.  Considering this special case will provide a concrete example of

the classical power method.  It is also the most common example of power analysis.

The distributions commonly used for practical hypothesis testing (mainly the chi-square, t and F) are

ones that hold when the null hypothesis is true.  When the null hypothesis is false, these are no longer

the distributions of the common test statistics; instead, they have probability distributions that migrate

more into the rejection region (tail area, above the critical value) of the statistical test.  The F

distribution used for testing hypotheses in multiple regression is the central F distribution.  If the null

hypothesis is false, the F statistic has a non-central F distribution with parameters s, n-p and ƒ.

The quantity ƒ is a kind of squared distance between the reduced model and the true model.  It is

called the nnnnoooonnnn–cccceeeennnnttttrrrraaaalllliiiittttyyyy    ppppaaaarrrraaaammmmeeeetttteeeerrrr of the non-central F distribution; ƒ≥0, and ƒ = 0 gives the

usual central F distribution.  The larger the non-centrality parameter, the greater the chance of

significance -- that is, the greater the power. 

The general formula for ƒ is best written in the notation of matrix algebra; it will not be given here.

But the general idea, and some of its essential properties, are shown by the special case where we are

comparing two treatment means (as in a two-sample t-test, or a simple regression with a binary

independent variable).  In this situation, the general formula for the non-centrality parameter of the

non-central F distribution reduces to

ƒ = 
  (µ1 – µ2)

2

σ2( 1
n1

+ 1
n2

)
=   δ2

( 1
n1

+ 1
n2

)
, (4.3)

where ∂ = 
  |µ1 – µ2|

σ .  Right away, it is possible to make some useful comments.  
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ƒ = 
  (µ1 – µ2)

2

σ2( 1
n1

+ 1
n2

)
=   δ2

( 1
n1

+ 1
n2

)
, (4.3)

where ∂ = 
  |µ1 – µ2|

σ .

° The quantity δ is called effect size.  It specifies how wrong the statement  µ1=µ2 is, 

by expressing the absolute difference between  µ1 and µ2 in units of the common 

within-cell standard deviation σ.  

° For any statistical test, power is a function of the parameter values.  Here, the non-

centrality parameter (and hence, power) depends on the three parameters  µ1, µ2 and σ2

only through the effect size.  This is quite wonderful; it does not always happen, even 

in the analysis of variance.

° The larger the effect size (that is, the more wrong the reduced model is -- in this 

metric), the larger the non-centrality parameter ƒ, and therefore the larger the 

probability of significance.

° If µ1=µ2, then ∂=0, ƒ=0,the non-central F distribution becomes the usual central F 

distribution, and the probability of significance becomes exactly α=0.05.  

° The size of the non-centrality parameter depends on another quantity involving both n1

and n2, not just the total sample size n = n1+n2.  
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This last point can be illuminated by a bit of algebra.  Let

°  ∂ = 
  |µ1 – µ2|

σ
° n = n1+n2

° q =  n1
n , the proportion of the sample allocated to Group One. 

Then expression (4.3) can be re-written

ƒ = n q(1-q) ∂2. (4.4)

Now it's clear.  

° For any non-zero effect size and any (?) allocation of sample size to the two treatments,

the greater the total sample size, the greater the power.

° For any sample size and any (?) allocation of sample size to the two treatments, the 

greater the effect size, the greater the power.

° Power depends not just on sample size and effect size, but on an aspect of design -- 

the allocation of sample size to the two treatments.  This is a general feature of power in

the analysis of variance and other statistical methods.  It is important, but usually not 

mentioned.

Let's continue to pursue this interesting special case.  For any given sample size and any non-zero effect

size, we can maximize power by choosing q (the proportion of cases allocated to Group One) so that the

function f(q) = q(1-q) is as large as possible.  What's the best value of q?  

This is a simple calculus exercise, but the following plot gives the answer by brute force. I just computed

f(q) = q(1–q) for 100 equally spaced values of q ranging from zero to one.
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So the best value of q is 1/2.  That is, for comparing two means using the classical normal model, power

is highest when the sample sizes are equal -- and this holds regardless of the total sample size or the

magnitude of the effect.

This is a clear, simple example of something that holds for any classical ANOVA.  The non-centrality

parameter, and hence the power, depends on the total sample size, the effect, and the allocation of the

sample to treatment combinations.  

Equal sample sizes do not always yield the highest power.  In general, the optimal allocation depends on

the hypothesis being tested and the nature of the true effect.  For example, suppose you have a design

with 18 treatment combinations, and the test in question is to compare µ1 with the average of µ2 and µ3.

Further, suppose that  µ2 = µ3 ≠ µ1 (σ2 can be anything); this is the effect.  The optimal allocation is to

give half the sample to Treatment One, split the other half any way at all between Treatments 2 and 3, and

let n=0 for the other 15 treatments.   This is why observations are not usually allocated to treatments

based on a power analysis; it often advises you to put all your eggs in one basket. 
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In the analysis of variance, power analysis is used to select a sample size n as follows. 

1. Choose an allocation of observations to treatments; usually, this is done without 

formal analysis, equal sample sizes being the most common choice. 

2. Choose an effect.  Your null hypothesis says that some collection of contrasts (of the

treatment combination means) are all zero in the population.  The "effect" you need 

to specify is that one or more of those contrasts is not zero.  You must provide 

exact non-zero values, in units of the common within-treatment population standard

deviation σ -- like, the difference between µ1 and the average of µ2 and µ3 is -

0.75σ. You don't need to know the numerical value of σ (thank goodness!), but you 

do need to be able to express differences between population means in units of σ.  If 

possible, select the weakest effect that is still scientifically important.  

3. Choose a desired power; again, a common choice is 0.80, but it's up to you.  

4. Start with a modest but realistic value for the total sample size n.  Increase it, each 

time determining the critical value of F, calculating the non-centrality parameter ƒ 

(you have enough information), and using ƒ to compute the probability that F will 

exceed the critical value.  When that power becomes high enough, stop.

This is a rational strategy for choosing sample size.  In practice, the hard part is selecting an effect.

Scientists often can say what's a scientifically meaningful difference between means, but they usually

have no clue about σ.  Statisticians respond with the suggestion that σ2 be estimated by MSEF from

similar studies. Scientists respond that there are no "similar" studies; the investigation being planned is

new -- that's why we're doing it.  In the end, the whole thing is based on so much guesswork that

everyone feels uncomfortable.  In my experience, this is what happens most of the time when people

try to do a classical power analysis.  Of course, there are exceptions; sometimes, everyone is happy.
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The Sample Variation Method

There are at least two main meanings of ``significance." One is statistical significance, and another is

explanatory significance in the sense of explained variation. Formula (3.4) from Chapter 3 is relevant.  It

is reproduced here.

F =  n – p
s  a

1 – a ,  (3.4)

where, after controlling for the effects in a reduced model, a is the proportion of the remaining variation

that is explained by the full model.

Formula (3.4) tells us that the two meanings of ``significance" need not coincide, since statistical

significance can come from either strong results or from a large sample. The sample variation method can

be viewed as a way of bringing the two types of significance into agreement. It's not really a power

analysis, but it is a rational way to decide on sample size.

In equation (3.4), F is an increasing function of both n and a, so its p-value (the tail area beyond F) is a

decreasing function of both n and a.  The sample variation method is to choose a value of a that is just

large enough to be interesting, and increase n, calculating F and its p-value each time until p < 0.05; then

stop.  The final value of n is the smallest sample size for which an effect explaining that much of the

remaining variation will be significant.  With that sample size, the effect will be significant if and only if it

explains a or more of the remaining variation.   

That's all there is to it.  You tell me a proportion of remaining variation that you want to be significant,

and I'll tell you a sample size. In exchange, you agree not to moan and complain and go fishing for more

covariates if your results are almost significant, because they were too weak to be interesting anyway.
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There are two questions you might want to ask.  

° For a given proportion of the remaining variation, what sample size do I need for 

statistical significance?

° For a given sample size, what proportion of the remaining variation do I need for 

statistical significance?

To make things more definite, let us suppose we are contemplating a 2x3x4 analysis of covariance, with

two covariates and factors cleverly named A, B and C.  We are setting it up as a regression model, with

one dummy variable for A, 2 dummy variables for B, and 3 for C.  Interactions are represented by

product terms, and there are 2 products for the AxB interaction, 3 for AxC, 6 for BxC, and 1*2*3 = 6

for AxBxC.  The regression coefficients for these plus two for the covariates and one for the intercept

give us p = 26.  The null hypothesis is that of no BxC interaction, so s = 6.  The "other effects in the

model" for which we are "controlling" are represented by 2 covariates and 17 dummy variables and

products of dummy variables.

First, let's find out what sample size we need for the interaction to be significant provided it explains at

least 10% of the remaining variation after controlling for other effects in the model.  This is accomplished

by the program sampvar1.sas.  It is a little unusual in that it uses the SAS put statement to write

results to the log file. It never produces a list file, because there is no proc step.
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/**************************  sampvar1.sas **************************/
/*      Finds n needed for significance, for a given proportion of */
/*      remaining variation                                        */
/*******************************************************************/

options linesize = 79 pagesize = 200;
data explvar;     /* Can replace alpha, s, p, and a below.   */
   alpha = 0.05;  /* Significance level.                     */
   s = 6;         /* Numerator df = # IVs being tested.      */
   p = 26;        /* There are p beta parameters.            */
   a = .10  ;     /* Proportion of remaining variation after */
                  /* controlling for all other variables.    */

   /* Initializing ... */  pval = 1; n = p+1;
   do until (pval <= alpha);
      F = (n-p)/s * a/(1-a);
      df2 = n-p;
      pval = 1-probf(F,s,df2);
      n = n+1 ;
   end;
   /* When finished, n is one too many */
   n = n-1; F = (n-p)/s * a/(1-a); df2 = n-p;
   pval = 1-probf(F,s,df2);

   put ' *********************************************************';
   put ' ';
   put '  For a multiple regression model with ' p 'betas, ';
   put '  testing ' s ' variables controlling for the others,';
   put '  a sample size of ' n 'is needed for significance at the';
   put '  alpha = ' alpha 'level, when the effect explains a = ' a ;
   put '  of the remaining variation after allowing for all other ';
   put '  variables in the model. ';
   put '  F = ' F ',df = (' s ',' df2 '), p = ' pval;
   put ' ';
   put ' *********************************************************';

Here is the part of the log file produced by the put statements.

 *********************************************************

  For a multiple regression model with 26 betas,
  testing 6  variables controlling for the others,
  a sample size of 144 is needed for significance at the
  alpha = 0.05 level, when the effect explains a = 0.1
  of the remaining variation after allowing for all other
  variables in the model.
  F = 2.1851851852 ,df = (6 ,118 ), p = 0.0491182815

 *********************************************************
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Suppose you were considering n=120, and you wanted to know what proportion of the remaining

variation the interaction must explain in order to be significant.  This is accomplished by

sampvar2.sas.

/**************************  sampvar2.sas ****************************/
/*  Finds proportion of remaining variation needed for significance, */
/*  given sample size n                                              */
/*********************************************************************/

options linesize = 79 pagesize = 200;
data explvar;     /* Replace alpha, s, p, and a below.  */
   alpha = 0.05;  /* Significance level.                */
   s = 6;         /* Numerator df = # IVs being tested. */
   p = 26;        /* There are p beta parameters.       */
   n = 120  ;     /* Sample size                        */

   /* Initializing ... */  pval = 1; a = 0; df2 = n-p;
   do until (pval <= alpha);
      F = (n-p)/s * a/(1-a);
      pval = 1-probf(F,s,df2);
      a = a + .001 ;
     end;
  /* When finished, a is .001 too much */
   a = a-.001; F = (n-p)/s * a/(1-a); pval = 1-probf(F,s,df2);

   put ' ******************************************************';
   put ' ';
   put '  For a multiple regression model with ' p 'betas, ';
   put '  testing ' s ' variables at significance level ';
   put '  alpha = ' alpha ' controlling for the other variables,';
   put '  and a sample size of ' n', the variables need to explain';
   put '  a = ' a ' of the remaining variation to be significant.';
   put '  F = ' F ', df = (' s ',' df2 '), p = ' pval;
   put '   ';
   put ' *******************************************************';
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And here is the output.

 ******************************************************

  For a multiple regression model with 26 betas,
  testing 6  variables at significance level
  alpha = 0.05  controlling for the other variables,
  and a sample size of 120 , the variables need to explain
  a = 0.123  of the remaining variation to be significant.
  F = 2.1972633979 , df = (6 ,94 ), p = 0.0499350803

 *******************************************************

It's worth mentioning that the Sample Variation method is so simple that lots of people must know about it -- but I

have never seen it described in print.  

The Population Variation Method

This is a method of sample size selection for multiple regression due to Cohen (1988).  It combines elements of

classical power analysis and the sample variation method. Cohen does not call it the ``Population Variation

Method;" he calls it ``Statistical Power Analysis."  For most research psychologists, the population variation

method is statistical power analysis, period.  

Cohen's book on power has the curious property that if a statistician and a scientist both read it, the statistician

will likely come away more confused than the scientist. I think this happened Cohen has worked extremely hard to

translate statistical concepts into language that can be understood by non-statisticians, and in the process has

incorporated some very good ideas of his own (and maybe some bad ideas, too), while providing exactly the same

flavor of intuitive justification for the standard concepts and the ones he has invented. For the scientist, everything

flows and makes sense.  For the statistician, it's a lot harder to follow than a more mathematical discussion.

The basic idea is this.  Looking closely at the formula for the non-centrality parameter φ, Cohen decides that it is

based on something interprets as a population version of the quantity we are denoting by a.  That is, one thinks

of it as the proportion of remaining variation (Cohen uses the term variance instead of variation) that is explained

by the effect in question -- in the population.  He calls it ``effect size." 
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Just a comment:  Of course the problem of comparing two means is a special case of multiple regression, but

``effect size" in the population variation method does not reduce to the traditional definition of effect size for the

two-sample t-test with equal variances.  In fact, effect size in the population variation method mixes the effect

together with the design in such a way that they cannot be separated (by the way, this is true of the sample

variation method too).

Still, from a so-called ``effect size" and a sample size, it's easy to calculate a non-centrality parameter, and then

you can compute power, and increase the sample size until the power is as high as you wish.  For most people,

most of the time, it's a lot easier to think about proportions of explained variation than to think about collections of

non-zero contrasts in units of σ.  Plus, it applies to regression models in general, not just factorial ANOVA.  To

do a classical power analysis with observational data, you need the joint probability distribution of all the observed

independent variables (which are presumably independent of any manipulated independent variables).  Cohen's

method is a lot easier, even if it is a bit murky.  Here's a program that does it.

/***********************  popvar.sas *****************************/
options linesize = 79 pagesize = 200;
data fpower;        /* Replace alpha, s, p, and wantpow below    */
     alpha = 0.05;  /* Significance level                        */
     s = 6;         /* Numerator df = # IVs being tested         */
     p = 26;        /* There are p beta parameters               */
     a = .10  ;     /* Effect size                               */
     wantpow = .80; /* Find n to yield this power.               */
     power = 0; n = p+1; oneminus = 1-alpha; /* Initializing ... */
     do until (power >= wantpow);
        ncp = (n-p)*a/(1-a);
        df2 = n-p;
        power = 1-probf(finv(oneminus,s,df2),s,df2,ncp);
        n = n+1 ;
     end;
     n = n-1;
     put ' *********************************************************';
     put '   ';
     put '   For a multiple regression model with ' p 'betas, ';
     put '   testing ' s 'independent variables using alpha = ' alpha ',';
     put '   a sample size of ' n 'is needed';
     put '   in order to have probability ' wantpow 'of rejecting H0';
     put '   for an effect of size a = ' a ;
     put '   ';
     put ' *********************************************************';
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 *********************************************************

   For a multiple regression model with 26 betas,
   testing 6 independent variables using alpha = 0.05 ,
   a sample size of 155 is needed
   in order to have probability 0.8 of rejecting H0
   for an effect of size a = 0.1

 *********************************************************

For comparison, when we specified a sample proportion of remaining variation equal to 10%, a sample size of

144 was required for significance.  Getting into the spirit of the population variation method, we can talk about it

like this.  If the population effect size is 0.10 and n=155, then with 80% probability we'll get a sample effect

size large enough for significance.  How big does the sample effect size have to be?  Running sampvar2.sas,

it turns out that with n=155, you need a sample a=0.092 for significance.  So if a=0.10 in the population and

n=155, the probability that the sample a > 0.092 = 0.80.

Loosely speaking, that is.
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/***************** obspow.sas *********************
   Estimate power after the fact. Given a multiple 
   regression model with p betas, testing s linear 
   constraints, sample size n. Estimate non-centrality
   parameter with phi-hat = s * F, where F is the 
   F-statistic computed from the data. 
   
   This is Cohen's ex 9.8 on P. 430. He gets .77 with
   linear interpolation; I get .75.
   
   Just replace the values of alpha, s, p, n and F below 
   as appropriate.
****************************************************/

options linesize = 79 pagesize = 200;
data power;         /* Replace alpha, s, & p below        */
     alpha = 0.01;  /* Significance level                 */
     s = 2;         /* Numerator df = # IVs being tested  */
     p = 6;         /* There are p beta parameters        */
     n = 90  ;      /* Sample size                        */
     F = 6.72 ;     /* F Statistic                        */
     
     ncp = s*F;     df2 = n-p;    oneminus = 1 - alpha;
     power = 1-probf(finv(oneminus,s,df2),s,df2,ncp);

     put '   ';
     put ' ***************************************************';
     put '   ';
     put '   For a multiple regression model with ' p 'betas, ';
     put '   testing ' s 'independent variables using ';
     put '   alpha = ' alpha ' and a sample size of ' n ',';
     put '   an F value of ' F ' yields an estimated' ;
     put '   non-centrality parameter of phi-hat = ' ncp;
     put '   and estimated power = ' power ;
     put '   ';
     put ' ****************************************************';
     put '   ';
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Chapter 5:  Multivariate Analysis and Repeated
Measures 

MMMMuuuullllttttiiiivvvvaaaarrrriiiiaaaatttteeee  -- More than one dependent variable at once.  Why do it?  Primarily
because if you do parallel analyses on lots of outcome measures, the probability of
getting significant results just by chance will definitely exceed the apparent å = 0.05
level.  It is also possible in principle to detect results from a multivariate analysis that
are not significant at the univariate level.

The simplest way to do multivariate analysis is to do a univariate analysis on each
dependent variable separately, and apply a Bonferroni correction.  The disadvantage is
that testing this way is less powerful than doing it with real multivariate tests. 

Another advantage of a true multivariate analysis is that it can "notice" things missed by
several Bonferroni-corrected univariate analyses, because ...

Under the surface, a classical multivariate analysis involves the construction of the
unique linear combination of the dependent variables that shows the strongest
relationship (in the sense explaining the remaining variation) with the independent
variables. 

The linear combination in question is called the first ccccaaaannnnoooonnnniiiiccccaaaallll    vvvvaaaarrrriiiiaaaatttteeee    or    ccccaaaannnnoooonnnniiiiccccaaaallll
vvvvaaaarrrriiiiaaaabbbblllleeee.  

The number of canonical variables equals the number of dependent 
variables (or IVs, whichever is fewer).

The canonical variables are all uncorrelated with each other.  The second 
one is constructed so that it has as strong a relationship as possible to the 
independent variables -- subject to the constraint that it have zero 
correlation with the first one, and so on.
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This why it is not optimal to do a principal components analysis (or factor 
analysis) on a set of dependent variables, and then treat the components 
(or factor scores) as dependent variables.  Ordinary multivariate analysis is 
already doing this, and doing it much better.

AAAAssssssssuuuummmmppppttttiiiioooonnnnssss

As in the case of univariate analysis, the statistical assumptions of multivariate analysis
concern conditional distributions -- conditional upon various configurations of
independent variable XXXX values.  Here we are talking about the conditional joint
distribution of several dependent variables observed for each case, say Y1, ..., Yk.
These are often described as a "vector" of observations.  It may help to think of the
collection of DV values for a case as a point in k-dimensional space, and to imagine an
arrow pointing from the origin (0, ...,0) to the point (Y1, ..., Yk); the arrow is literally
a vector.  As I say, this may help.  Or it may not.  

The classical assumptions of multivariate analysis depend on the idea of a population
covariance.  The population covariance between Y2 and Y4 is denoted ß2,4, and is
defined by ß2,4 =   ß2 ß4, where 

ß2 is the population standard deviation of Y2, 
ß4 is the population standard deviation of Y4, and
 is the population correlation between Y2 and Y4 

(that's the Greek letter rho).

The population covariance can be estimated by the sample covariance, defined in a
parallel way by   s2,4  =  r s2 s4, where s2 and s4 are the sample standard deviations
and r is the Pearson correlation coefficient.  

Whether we are talking about population parameters or sample statistics, it is clear that
zero covariance means zero correlation and vice versa.
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We will use Í (the capital Greek letter sigma) to stand for the population variance-
covariance matrix.  This is a k by k rectangular array of numbers with variances on
the main diagonal, and covariances on the off-diagonals. For 4 dependent variables it
would look like this:

Σ = 

  
σ1

2 σ1,2 σ1,3 σ1,4

σ1,2 σ2
2 σ2,3 σ2,4

σ1,3 σ2,3 σ3
2 σ3,4

σ1,4 σ2,4 σ3,4 σ4
2

With this background, the assumptions of classical multivariate analysis are that
(conditional on the X values) 

Sample vectors Y = (Y1, ..., Yk) represent independent observations

for different cases.

Each conditional distribution is multivariate normal.

Each conditional distribution has the same population variance-
covariance matrix  Í.  

These assumptions are directly parallel to those of classical univariate regression.
Also parallel to univariate analysis is a linear model for each population mean
(now we have k of them).
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E[Y|x]  = 

  µ1

µ2

µk

=

  
E[Y1|x]
E[Y2|x]

E[Yk|x]

 =

  
β0,1 + β1,1x1 + + βp – 1,1xp – 1

β0,2 + β1,2x1 + + βp – 1,2xp – 1

β0,k + β1,kx1 + + βp – 1,kxp – 1

There are k different sets of regression coefficients -- one for each
dependent variable.

There is only one set of independent variables -- the same for each DV.
Dummy variables, interactions etc. are exactly as in univariate regression.

Estimation:  The least squares estimates of those doubly-subscripted betas are
exactly what one would get from k separate univariate analyses.  Since
the estimated regression coefficients are the same, so are the Yô values and so are
the residuals.  All methods for univariate residual analysis apply.

Only the tests and confidence intervals (probability statements) are different for
univariate and multivariate analysis.

Testing: In univariate analysis, different standard methods for deriving tests
(these are hidden from you) all point to Fisher's F test.  In multivariate analysis
there are four major test statistics, Wilks' Lambda, Pillai's Trace, the
Hotelling-Lawley Trace, and Roy's Greatest Root.  
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When there is only one dependent variable, these are all equivalent to F.  When
there is more than one DV they are all about equally "good" (in any reasonable
sense), and conclusions from them generally agree -- but not always.  Sometimes
one will designate a finding as significant and another will not.  In this case you
have borderline results and there is no conventional way out of the dilemma.  

The four multivariate test statistics all have F approximations that are used by
SAS and other stat packages to compute p-values.  Tables are available in
textbooks on multivariate analysis.  For the first three tests (Wilks' Lambda,

Pillai's Trace and the Hotelling-Lawley Trace), the F approximations are very
good.  For Roy's greatest root the F approximation is lousy.  This is a problem
with the cheap method for getting p-values, not with the test itself.  One can
always use tables.

When a multivariate test is significant, many people then follow up with ordinary
univariate tests to see "which dependent variable the results came from."  More
conservative (and better) is to follow up with Bonferroni-corrected
univariate tests.  When you do this, there is no guarantee that any of the
Bonferroni-corrected tests will be significant.  

It is also possible, and in some ways very appealing, to follow up a significant
multivariate test with Scheffe tests.  For example, Scheffe follow-ups to a
significant one-way multivariate ANOVA would include adjusted versions of all
the corresponding univariate one-way ANOVAs, all multivariate pairwise
comparisons, all univariate pairwise comparisons, and lots of other possibilities
–– all simultaneously protected at the 0.05 level. 

You can also try interpret a significant multivariate effect by looking at the
canonical variates, but there is no guarantee they will make sense.  
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/******************** senicmv96a.sas *************************/
options linesize=79;
title 'Senic data: SAS glm & reg multivariate intro';

%include 'senicdef.sas';  /* senicdef.sas reads data, etc.  
                             Includes reg1-reg3, ms1 & mr1-mr3 */

/* First a nice two-factor MANOVA on infrisk & stay */

proc glm;
     class region medschl;
     model infrisk stay = region|medschl; 
     manova h = _all_;

The glm output starts with full univariate output for each DV.  Then (for each
effect tested) some multivariate output you ignore,  

                        General Linear Models Procedure
                       Multivariate Analysis of Variance

           Characteristic Roots and Vectors of: E Inverse * H, where
         H = Type III SS&CP Matrix for REGION   E = Error SS&CP Matrix

        Characteristic   Percent        Characteristic Vector  V'EV=1
             Root
                                               INFRISK           STAY

            0.14830859     95.46           -0.00263408     0.06067199
            0.00705986      4.54            0.08806967    -0.03251114

Followed by the interesting part.

                Manova Test Criteria and F Approximations for
                  the Hypothesis of no Overall REGION Effect
         H = Type III SS&CP Matrix for REGION   E = Error SS&CP Matrix

                              S=2    M=0    N=51

 Statistic                     Value          F      Num DF    Den DF  Pr > F

 Wilks' Lambda              0.86474110     2.6127         6       208  0.0183
 Pillai's Trace             0.13616432     2.5570         6       210  0.0207
 Hotelling-Lawley Trace     0.15536845     2.6672         6       206  0.0163
 Roy's Greatest Root        0.14830859     5.1908         3       105  0.0022

         NOTE: F Statistic for Roy's Greatest Root is an upper bound.
                 NOTE: F Statistic for Wilks' Lambda is exact.
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. . .
               Manova Test Criteria and Exact F Statistics for
                  the Hypothesis of no Overall MEDSCHL Effect
        H = Type III SS&CP Matrix for MEDSCHL   E = Error SS&CP Matrix

                              S=1    M=0    N=51

 Statistic                     Value          F      Num DF    Den DF  Pr > F

 Wilks' Lambda              0.92228611     4.3816         2       104  0.0149
 Pillai's Trace             0.07771389     4.3816         2       104  0.0149
 Hotelling-Lawley Trace     0.08426224     4.3816         2       104  0.0149
 Roy's Greatest Root        0.08426224     4.3816         2       104  0.0149

         NOTE: F Statistic for Roy's Greatest Root is an upper bound.

. . .
                Manova Test Criteria and F Approximations for
              the Hypothesis of no Overall REGION*MEDSCHL Effect
     H = Type III SS&CP Matrix for REGION*MEDSCHL   E = Error SS&CP Matrix

                              S=2    M=0    N=51

 Statistic                     Value          F      Num DF    Den DF  Pr > F

 Wilks' Lambda              0.95784589     0.7546         6       208  0.6064
 Pillai's Trace             0.04228179     0.7559         6       210  0.6054
 Hotelling-Lawley Trace     0.04387599     0.7532         6       206  0.6075
 Roy's Greatest Root        0.04059215     1.4207         3       105  0.2409

         NOTE: F Statistic for Roy's Greatest Root is an upper bound.
                 NOTE: F Statistic for Wilks' Lambda is exact.

Remember the output started with the univariate analyses.  We'll look at them
here (out of order) -- just Type III SS, because that's parallel to the multivariate
tests.  We are tracking down the significant multivariate effects for Region and
Medical School Affiliation.  Using Bonferroni correction means only believe it if
p < 0.025.

Dependent Variable: INFRISK   prob of acquiring infection in hospital

Source                  DF      Type III SS     Mean Square  F Value    Pr > F

REGION                   3       6.61078342      2.20359447     1.35    0.2623
MEDSCHL                  1       6.64999500      6.64999500     4.07    0.0461
REGION*MEDSCHL           3       5.32149160      1.77383053     1.09    0.3581
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Dependent Variable: STAY   av length of hospital stay, in days

Source                  DF      Type III SS     Mean Square  F Value    Pr > F

REGION                   3      41.61422755     13.87140918     5.19    0.0022
MEDSCHL                  1      22.49593643     22.49593643     8.41    0.0045
REGION*MEDSCHL           3       0.92295998      0.30765333     0.12    0.9511
                                                                           

We conclude that the multivariate effect comes from a univariate relationship
between the IVs and stay.  Question:  If this is what we were going to do in the
end, why do a multivariate analysis at all?  Why not just two univariate analyses
with a Bonferroni correction?

The command file senicmv96a.sas continues as follows;

/* Now do it with proc reg. Syntax is the same, except list more
   than one dependent variable, and say "mtest" instead of "test." */

proc reg;
     model infrisk stay = reg1-reg3 ms1 mr1-mr3;
     regtest:  mtest reg1=reg2=reg3=0;
     mstest:   mtest ms1=0;
     m_by_r:   mtest mr1=mr2=mr3=0; 

This gives us exactly the same results we got from proc glm.  The point is that
multivariate analysis of variance is just a special case of multivariate regression;
you can do it either way.  Proc reg can give you a little more control over the
details, but at the cost of setting up your own dummy variables.
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Repeated measures

In certain kinds of experimental research, it is common to obtain repeated
measurements of a variable from the same individual at several

different points in time.  Usually it is unrealistic to assume that these repeated
observations are uncorrelated, and it is very desirable to build their inter-
correlations into the statistical model.

Sometimes, an individual (in some combination of experimental conditions) is
measured under essentially the same conditions at several different points in time.
In that case we will say that time is a within-subjects factor, because each
subject contributes data at more than one value of the IV "time."  If a subject
experiences only one value of an IV, it is called a between subjects factor.

.Sometimes, an individual (in some combination of other experimental
conditions) experiences more than one experimental treatment -- for example
judging the same stimuli under different background noise levels.  In this case the
order of presentation of different noise levels would be counterbalanced so that
time and noise level are unrelated (not confounded).  Here noise level would be a
within-subjects factor.  The same study can definitely have more than one
within-subjects factor and more than one between subjects factor.

The meaning of main effects and interactions, as well as their graphical
presentation, is the same for within and between subjects factors.  

We will discuss three methods for analyzing repeated measures data.  In an order
that is convenient but not chronological they are

1. The multivariate approach.
2. The classical univariate approach.
3. The covariance structure approach.
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The multivariate approach to repeated measures

First, note that any of the 3 methods can be multivariate, in the sense that several
dependent variables can be measured at more than one time point.  We will start
with the simpler case in which a single dependent variable is measured for each
subject on several different occasions.

The basis of the multivariate approach to repeated measures is that the different
measurements conducted on each individual should be considered as

multiple dependent variables.

If there are k dependent variables, regular multivariate analysis allows for the
analysis of up to k linear combinations of those DVs, instead of the original
dependent variables.  

All the multivariate approach does is to set up those linear combinations to be
meaningful in terms of representing the repeated measures structure of the data.

For example, suppose that men and women in 3 different age groups are tested on
their ability to detect a signal under 5 different levels of background noise.
There are 10 women and 10 men in each age group for a total n = 60.  Order of
presentation of noise levels is randomized for each subject, and the subjects
themselves are tested in random order.  This is a three-factor design.  Age and
sex are between subjects factors, and noise level is a within-subjects factor.

Let Y1, Y2, Y3, Y4 and Y5 be the "Detection Scores" under the 5 different noise
levels.
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Let Y1, Y2, Y3, Y4 and Y5 be the "Detection Scores" under the 5 different noise
levels.  Their population means are µ1, µ2, µ3, µ4 and µ5 respectively.

Now construct 5 linear combinations of the Y's, as follows.

W1 = (Y1+Y2+Y3+Y4+Y5 ) / 5 E(W1) =   (µ1+µ2+µ3+µ4+µ5 ) / 5
W2 = Y1 - Y2 E(W2) =   µ1 - µ2
W3 = Y2 - Y3 E(W3) =   µ2 - µ3
W4 = Y3 - Y4 E(W4) =   µ3 - µ4
W5 = Y4 - Y5 E(W5) =   µ4 - µ5

All the population means are of course conditional on the values of some
independent variables.   We will adopt a linear model for each one, as in the usual
multivariate setup.  In this case the independent variables (the weights for the
linear combinations of ∫'s) are dummy variables for the categorical independent
variables sex & age, and the product terms for their interactions.

Between-subjects effects:  The main effects for age and sex, and the age by
sex interaction, are just analyses conducted as usual on a single linear combination
of the DVs, that is, on W1.  This is what we want; we are just averaging across
within-subject values.  

Within-subject effects:  Suppose that (for each configuration of X values) 

E(W2) =  E(W2) =  E(W2) =  E(W2) =  0
This means µ1 = µ2,  µ2 = µ3,  µ3 = µ4,  µ4 = µ5.

That is, no difference among noise level means, i.e., no main effect for the
within-subjects factor.  
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Interactions of between and within-subjects factors are between-
subjects effects tested simultaneously on the dependent variables

representing differences among within-subject values -- W2 through
W5 in this case.  For example, a significant sex difference in W2 through W5
means that the pattern of differences in mean discrimination among noise levels is
different for males and females.  Conceptually, this is exactly a noise level by sex
interaction.

Similarly, a sex by age interaction on W2 through W5 simultaneously means that
the pattern of differences in mean discrimination among noise levels depends on
special combinations of age and sex -- a three-way (age by sex by noise)
interaction.

Note: There is nothing in this discussion that limits us to dummy variables for
categorical independent variables.  Thus, multiple regression with repeated
measures is completely reasonable and presents no special difficulties.

Here is noise.dat.  Order of vars is 

ident, interest, sex, age, noise level, time noise level presented, discrim score

esc> less noise.dat
   1  2.5  1  2  1  4  50.7
   1  2.5  1  2  2  1  27.4
   1  2.5  1  2  3  3  39.1
   1  2.5  1  2  4  2  37.5
   1  2.5  1  2  5  5  35.4
   2  1.9  1  2  1  3  40.3
   2  1.9  1  2  2  1  30.1
   2  1.9  1  2  3  5  38.9
   2  1.9  1  2  4  2  31.9
   2  1.9  1  2  5  4  31.6
   3  1.8  1  3  1  2  39.0
   3  1.8  1  3  2  5  39.1
   3  1.8  1  3  3  4  35.3
   3  1.8  1  3  4  3  34.8
   3  1.8  1  3  5  1  15.4
   4  2.2  0  1  1  2  41.5
   4  2.2  0  1  2  4  42.5
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/**************** noise96a.sas ***********************/
options linesize=79 pagesize=250;
title 'Repeated measures on Noise data:  Multivariate approach';
proc format;      value sexfmt    0 = 'Male'  1 = 'Female' ;

data loud;
     infile 'noise.dat';  /* Multivariate data read */
     input ident  interest  sex  age  noise1 time1 discrim1
           ident2 inter2    sex2 age2 noise2 time2 discrim2
           ident3 inter3    sex3 age3 noise3 time3 discrim3
           ident4 inter4    sex4 age4 noise4 time4 discrim4
           ident5 inter5    sex5 age5 noise5 time5 discrim5 ;
     format sex sex2-sex5 sexfmt.;
     /* noise1 = 1, ... noise5 = 5. time1 = time noise 1 presented etc.
        ident, interest, sex & age are identical on each line */
     label interest = 'Interest in topic (politics)';

proc glm;
     class age sex;
     model discrim1-discrim5 = age|sex;
     repeated noise profile/ short summary;

First we get univariate analyses of discrim1-discrim5 -- not the transformed
vars yet.  Then,

                        General Linear Models Procedure
                    Repeated Measures Analysis of Variance
                      Repeated Measures Level Information

       Dependent Variable   DISCRIM1 DISCRIM2 DISCRIM3 DISCRIM4 DISCRIM5

           Level of NOISE          1        2        3        4        5

               Manova Test Criteria and Exact F Statistics for
                       the Hypothesis of no NOISE Effect
         H = Type III SS&CP Matrix for NOISE   E = Error SS&CP Matrix

                             S=1    M=1    N=24.5

 Statistic                     Value          F      Num DF    Den DF  Pr > F

 Wilks' Lambda              0.45363698    15.3562         4        51  0.0001
 Pillai's Trace             0.54636302    15.3562         4        51  0.0001
 Hotelling-Lawley Trace     1.20440581    15.3562         4        51  0.0001
 Roy's Greatest Root        1.20440581    15.3562         4        51  0.0001
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                Manova Test Criteria and F Approximations for
                     the Hypothesis of no NOISE*AGE Effect
       H = Type III SS&CP Matrix for NOISE*AGE   E = Error SS&CP Matrix

                            S=2    M=0.5    N=24.5

 Statistic                     Value          F      Num DF    Den DF  Pr > F

 Wilks' Lambda              0.84653930     1.1076         8       102  0.3645
 Pillai's Trace             0.15589959     1.0990         8       104  0.3700
 Hotelling-Lawley Trace     0.17839904     1.1150         8       100  0.3597
 Roy's Greatest Root        0.16044230     2.0857         4        52  0.0960

         NOTE: F Statistic for Roy's Greatest Root is an upper bound.
                 NOTE: F Statistic for Wilks' Lambda is exact.

               Manova Test Criteria and Exact F Statistics for
                     the Hypothesis of no NOISE*SEX Effect
       H = Type III SS&CP Matrix for NOISE*SEX   E = Error SS&CP Matrix

                             S=1    M=1    N=24.5

 Statistic                     Value          F      Num DF    Den DF  Pr > F

 Wilks' Lambda              0.93816131     0.8404         4        51  0.5060
 Pillai's Trace             0.06183869     0.8404         4        51  0.5060
 Hotelling-Lawley Trace     0.06591477     0.8404         4        51  0.5060
 Roy's Greatest Root        0.06591477     0.8404         4        51  0.5060

                Manova Test Criteria and F Approximations for
                   the Hypothesis of no NOISE*AGE*SEX Effect
     H = Type III SS&CP Matrix for NOISE*AGE*SEX   E = Error SS&CP Matrix

                            S=2    M=0.5    N=24.5

 Statistic                     Value          F      Num DF    Den DF  Pr > F

 Wilks' Lambda              0.84817732     1.0942         8       102  0.3735
 Pillai's Trace             0.15679252     1.1058         8       104  0.3654
 Hotelling-Lawley Trace     0.17313932     1.0821         8       100  0.3819
 Roy's Greatest Root        0.12700316     1.6510         4        52  0.1755

         NOTE: F Statistic for Roy's Greatest Root is an upper bound.
                 NOTE: F Statistic for Wilks' Lambda is exact.
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                        General Linear Models Procedure
                    Repeated Measures Analysis of Variance
               Tests of Hypotheses for Between Subjects Effects

Source                  DF      Type III SS     Mean Square  F Value    Pr > F

AGE                      2      1751.814067      875.907033     5.35    0.0076
SEX                      1        77.419200       77.419200     0.47    0.4946
AGE*SEX                  2       121.790600       60.895300     0.37    0.6911

Error                   54      8839.288800      163.690533
                                                                    

Then we are given "Univariate Tests of Hypotheses for Within Subject Effects"
We will discuss these later.  After that in the lst file, ...

            Repeated measures on Noise data:  Multivariate approach        

                        General Linear Models Procedure
                    Repeated Measures Analysis of Variance
                  Analysis of Variance of Contrast Variables

           NOISE.N represents the nth successive difference in NOISE

Contrast Variable: NOISE.1

Source                  DF      Type III SS     Mean Square  F Value    Pr > F

MEAN                     1     537.00416667    537.00416667     5.40    0.0239
AGE                      2      10.92133333      5.46066667     0.05    0.9466
SEX                      1      45.93750000     45.93750000     0.46    0.4996
AGE*SEX                  2      83.67600000     41.83800000     0.42    0.6587

Error                   54    5370.09100000     99.44612963

Contrast Variable: NOISE.2

Source                  DF      Type III SS     Mean Square  F Value    Pr > F

MEAN                     1     140.14816667    140.14816667     1.36    0.2489
AGE                      2     106.89233333     53.44616667     0.52    0.5985
SEX                      1      33.90016667     33.90016667     0.33    0.5688
AGE*SEX                  2     159.32233333     79.66116667     0.77    0.4670

Error                   54    5569.94700000    103.14716667
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Contrast Variable: NOISE.3

Source                  DF      Type III SS     Mean Square  F Value    Pr > F

MEAN                     1      50.41666667     50.41666667     0.72    0.4012
AGE                      2      56.40633333     28.20316667     0.40    0.6720
SEX                      1     195.84266667    195.84266667     2.78    0.1012
AGE*SEX                  2     152.63633333     76.31816667     1.08    0.3456

Error                   54    3802.61800000     70.41885185

Contrast Variable: NOISE.4

Source                  DF      Type III SS     Mean Square  F Value    Pr > F

MEAN                     1     518.61600000    518.61600000     7.77    0.0073
AGE                      2     449.45100000    224.72550000     3.37    0.0418
SEX                      1      69.55266667     69.55266667     1.04    0.3118
AGE*SEX                  2     190.97433333     95.48716667     1.43    0.2479

Error                   54    3602.36600000     66.71048148
                                                                         

The classical univariate approach to repeated measures

The univariate approach to repeated measures is chronologically the oldest.  It
can be derived in a clever way from the multivariate tests involving within
subjects factors.  It's what you get at the end of the default glm output -- before
the analysis of transformed variables, which you have to request specially. 

                        General Linear Models Procedure
                    Repeated Measures Analysis of Variance
           Univariate Tests of Hypotheses for Within Subject Effects

Source: NOISE
                                                                 Adj  Pr > F
     DF      Type III SS      Mean Square   F Value   Pr > F    G - G    H - F
      4    2289.31400000     572.32850000     14.12   0.0001   0.0001   0.0001

Source: NOISE*AGE
                                                                 Adj  Pr > F
     DF      Type III SS      Mean Square   F Value   Pr > F    G - G    H - F
      8     334.42960000      41.80370000      1.03   0.4134   0.4121   0.4134

(The adj. G - G business will be explained later)
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Source: NOISE*SEX
                                                                 Adj  Pr > F
     DF      Type III SS      Mean Square   F Value   Pr > F    G - G    H - F
      4     142.42280000      35.60570000      0.88   0.4777   0.4722   0.4777

Source: NOISE*AGE*SEX
                                                                 Adj  Pr > F
     DF      Type III SS      Mean Square   F Value   Pr > F    G - G    H - F
      8     345.66440000      43.20805000      1.07   0.3882   0.3877   0.3882

Source: Error(NOISE)

     DF      Type III SS      Mean Square
    216    8755.83320000      40.53626481

                      Greenhouse-Geisser Epsilon = 0.9356
                             Huynh-Feldt Epsilon = 1.1070
                                                                 

To explain the classical univariate approach to repeated measures, we need to
introduce some concepts that have been avoided until now.

Nested effects.  Suppose a company runs computer training schools in three
different cities.  One of the cities has 2 schools, the second city has 3 schools, and
the third city also has 3 schools.  In each school, 4 instructors are selected for
evaluation (students' knowledge is measured somehow).  

There are three factors in this study, city, school and instructor.  But each school
is of course only in one city, and let's also say that an instructor teaches in only
one school.  We say that school is nested within city, and instructor is nested
within school.  There is a good dummy variable coding scheme for nested
designs, but we'll skip it.  Proc glm uses the syntax 

model learn = city school(city) instr(school);
Designs can have some factors that are nested, and others that are not (these are
called "crossed").  The patterns can be complex, and the designs can be very
useful, very relevant to certain types of research.
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Random effects.  The models we have been dealing with until now have
included only fixed effects.  In a random effects model, the values of the
independent variable represent a random sample from some

population of values.  In the computer school example, if instructors were just
designated for inclusion in the study, instructor would be a fixed effect (we are
comparing Chris to Pat).  If they were randomly sampled from a population of
instructors (this is a big company), instructor would be a random effect.  A
model that contains both fixed and random effects is called "mixed."

Significance tests in random and mixed models use F statistics, but the
denominator is not always MSE, as it is for purely fixed effects models.
Sometimes it is an interaction term.  Choosing the right error term for mixed
models can be complicated job, guided by expected values of the mean square
(SS/df) terms; these are called expected mean squares.  Sometimes there is no
right error term and certain hypotheses are untestable with this technology.
Fortunately the whole process can be automated, and SAS does a good job.  
When the design is unbalanced, usually none of the error terms is

useful, and the expected mean squares approach breaks down.

Random effects, like fixed effects, can either be nested or not; it depends on the
logic of the design.  An interesting case of nested and purely random effects is
provided by sub-sampling.  For example, we take a random sample of towns,
from each town we select a random sample of households, and from each
household we select a random sample of individuals to test, or measure, or
question.

In such cases the population variance of the DV can truly be partitioned into
pieces -- the variance due to towns, the variance due to households within towns,
and the variance due to individuals within households.  These components of
variance can be estimated, and they are, by a program called proc nested, a
specialized tool for just exactly this design.  All effects are random, and each is
nested within the preceding one.
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Another example:  Suppose we are studying waste water treatment, specifically
the porosity of "flocks," nasty little pieces of something floating in the tanks.  We
randomly select a sample of flocks, and then cut each one up into very thin slices.
We then randomly select a sample of slices (called "sections") from each flock,
look at it under a microscope, and assign a number representing how porous it is
(how much empty space there is in a designated region of the section).  The
independent variables are flock and section.  The research question is whether
section is explaining a significant amount of the variance in porosity -- because
if not, we can use just one section per flock, and save considerable time &
expense.

The SAS syntax for this would be

proc sort; by flock section; /* Data must be sorted */

proc nested;

     class flock section;

     var por;

The F tests on the output are easy to locate.  The last column of output ("Percent
of total") is estimated percent of total variance due to the effect.  It's fairly close
to R2, but not the same.  To include a covariate (say "window"), just use
var window por; instead of var por;.  You'll get an analysis of por with
window as the covariate (which is what you want) and an analysis of window with
por as the covariate (which you should ignore).

Anyway, the classical univariate approach to repeated measures is to
treat "subjects" as a random effect that is nested within the between-

subjects factors, and which does not interact with any other factors.
Interactions between subjects and various factors may be formally computed, but
actually these are error terms; they are not tested.
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In the noise level example, we could do

/**************** noise96b.sas ***********************/
options linesize=79 pagesize=250;
title 'Repeated measures on Noise data:  Univariate approach';
proc format;      value sexfmt    0 = 'Male'  1 = 'Female' ;

data loud;
     infile 'noise.dat';  /* Univariate data read */
     input ident interest sex age noise time discrim ;
     format sex sexfmt.;
     label interest = 'Interest in topic (politics)'
           time     = 'Order of presenting noise level';

proc glm;
     class age sex noise ident;
     model discrim = ident(age*sex) age|sex|noise;
     random ident(age*sex) / test;

Notice the univariate data read!  We are assuming n = number of
observations, not number of cases.

The results are identical to the univariate output produced as a by-product of the
multivariate approach to repeated measures -- if you know where to look.

The overall test, and tests associated with Type I & Type III SS are all invalid.

There are expected mean squares, which you should probably ignore.

There are also repeated warnings that "This test assumes one or more
other fixed effects are zero."   SAS is buying testability of the hypotheses
by assuming that you're only interested in an effect if all the higher-order
interactions involving the effect are absent.

Why do it this way at all?  Time-varying covariates.
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The univariate approach to repeated measures has some real virtues, sometimes.

Because n = the number of observations rather than the number of cases, it is
possible to have more parameters in a model than cases, or even more
measurements than cases.  In this situation the multivariate approach just blows
up. 

(Statistical methods should not be a Procrustean bed.)

The univariate approach may assume n is the number of observations, but it does
not assume those observations are independent.  In fact, the observations that
come from the same subject are assumed to be correlated, as follows.

The "random effect" for subjects is a little piece of random error, characteristic
of an individual. We think of it as random because the individual was randomly
sampled from a population.  If, theoretically, the only reason that the
measurements from a case are correlated is that each one is affected by this same
little piece of under-performance or over-performance, the univariate approach
represents a very good model.  

The "random effect for a subject" idea implies a variance-covariance matrix of
the DVs (say Y1, ..., Y4) with a compound symmetry structure.

Σ = 

  
σ2 + σ1 σ1 σ1 σ1

σ1 σ2 + σ1 σ1 σ1

σ1 σ1 σ2 + σ1 σ1

σ1 σ1 σ1 σ2 + σ1

Actually, compound symmetry is sufficient but not necessary for the univariate
repeated F tests to be valid.  All that's necessary is "sphericity," which means
the covariances of all differences among Y's within a case are the same.
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Another virtue of the univariate approach is that it allows time-dependent
covariates.  Standard multivariate analysis has the same X values for each
dependent variable.  

Now some weak points of the classical univariate approach:

The model is good if the only reason for correlation among the repeated
measures is that one little piece of individuality added to each measurement by a
subject.  However, if there are other sources of covariation among the repeated
measures (like learning, or fatigue, or memory of past performance), there is too
much chance rejection of the null hypothesis.  In this case the multivariate
approach, with its unknown variance-covariance matrix, is more conservative.

Even more conservative (overly so, if the assumptions of the multivariate
approach are met) is the Greenhouse-Geisser correction, which compensates for
the problem by reducing the error degrees of freedom.

If the design is unbalanced (non-proportional n's), the "F-tests" of the classical
univariate approach do not have an F distribution (even if all the statistical
assumptions are satisfied), and it is unclear what they mean, if anything.  

Like the multivariate approach, the univariate approach to repeated measures
analysis throws out a case if any of the observations are missing.  Did somebody
say "mean substitution?" Oh no!)

It has real trouble with unequally spaced observations, and with very natural and
high quality data sets where (probably) different numbers of observations are
collected for each individual. 
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The covariance structure approach to repeated measures.  

In the covariance structure approach, the data are set up to be read in a univariate
manner, and one of the variables is a case identification, which will be used to
determine which observations of a variable come from the same case.  Naturally,
data lines from the same case should be adjacent in the file.

Instead of assuming independence or inducing compound symmetry within
subjects by random effects assumptions, one directly specifies the structure
of the covariance matrix of the observations that come from the same

subject.

The following present no problem at all:

Time-varying covariates (categorical, too)
Unbalanced designs
Unequally spaced observations*
Missing or unequal numbers of observations within subjects*
More variables than subjects (but not more parameters than subjects)

It's implemented with SAS proc mixed.  Only SAS seems to have it.

• Lots of different covariance structures are possible, including 
compound symmetry and unknown.

• A good number of powerful features will not be discussed here.
• Everything's still assumed multivariate normal.

* Provided this is unrelated to the variable being repeatedly measured.  Like if
the DV is how sick a person is, and the data might be missing because the person
is too sick to be tested, there is a problem.
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/**************** noise96c.sas ***********************/
options linesize=79 pagesize=250;
title 'Repeated measures on Noise data:  Cov Struct Approach';
proc format;      value sexfmt    0 = 'Male'  1 = 'Female' ;

data loud;
     infile 'noise.dat';  /* Univariate data read */
     input ident  interest  sex  age  noise  time  discrim ;
     format sex sexfmt.;
     label interest = 'Interest in topic (politics)'
           time     = 'Order of presenting noise level';

proc mixed method = ml;
     class age sex noise;
     model discrim = age|sex|noise;
     repeated / type = un subject = ident r;
     lsmeans age noise;

proc mixed method = ml;
     class age sex noise;
     model discrim = age|sex|noise;
     repeated / type = cs subject = ident r;  

Now part of noise95c.lst

                             The MIXED Procedure

                           Class Level Information

                        Class     Levels  Values

                        AGE            3  1 2 3
                        SEX            2  Female Male
                        NOISE          5  1 2 3 4 5

                       ML Estimation Iteration History

              Iteration  Evaluations     Objective     Criterion

                      0            1  1521.4783527
                      1            1  1453.7299937    0.00000000

                           Convergence criteria met.

                            R Matrix for Subject 1
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   Row          COL1          COL2          COL3          COL4          COL5

     1   54.07988333   17.08300000   21.38658333   17.91785000   24.27668333
     2   17.08300000   69.58763333   15.56748333   29.98861667   21.71448333
     3   21.38658333   15.56748333   54.37978333   25.15906667   21.00126667
     4   17.91785000   29.98861667   25.15906667   59.31531667   27.58265000
     5   24.27668333   21.71448333   21.00126667   27.58265000   55.88941667

                     Covariance Parameter Estimates (MLE)

          Cov Parm           Estimate     Std Error       Z  Pr > |Z|

          DIAG UN(1,1)    54.07988333    9.87359067    5.48    0.0001
               UN(2,1)    17.08300000    8.22102992    2.08    0.0377
               UN(2,2)    69.58763333   12.70490550    5.48    0.0001
               UN(3,1)    21.38658333    7.52577602    2.84    0.0045
               UN(3,2)    15.56748333    8.19197469    1.90    0.0574
               UN(3,3)    54.37978333    9.92834467    5.48    0.0001
               UN(4,1)    17.91785000    7.66900119    2.34    0.0195
               UN(4,2)    29.98861667    9.15325956    3.28    0.0011
               UN(4,3)    25.15906667    8.01928166    3.14    0.0017
               UN(4,4)    59.31531667   10.82944565    5.48    0.0001
               UN(5,1)    24.27668333    7.75870531    3.13    0.0018
               UN(5,2)    21.71448333    8.52518917    2.55    0.0109
               UN(5,3)    21.00126667    7.61610965    2.76    0.0058
               UN(5,4)    27.58265000    8.24206793    3.35    0.0008
               UN(5,5)    55.88941667   10.20396474    5.48    0.0001
          Residual         1.00000000             .       .         .

                    Model Fitting Information for DISCRIM

                   Description                        Value

                   Observations                    300.0000
                   Variance Estimate                 1.0000
                   Standard Deviation Estimate       1.0000
                   Log Likelihood                  -1002.55
                   Akaike's Information Criterion  -1017.55
                   Schwarz's Bayesian Criterion    -1045.32
                   -2 Log Likelihood               2005.093
                   Null Model LRT Chi-Square        67.7484
                   Null Model LRT DF                14.0000
                   Null Model LRT P-Value            0.0000
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                            Tests of Fixed Effects

                 Source          NDF   DDF  Type III F  Pr > F

                 AGE               2    54        5.95  0.0046
                 SEX               1    54        0.53  0.4716
                 AGE*SEX           2    54        0.41  0.6635
                 NOISE             4   216       18.07  0.0001
                 AGE*NOISE         8   216        1.34  0.2260
                 SEX*NOISE         4   216        0.99  0.4146
                 AGE*SEX*NOISE     8   216        1.30  0.2455     

From the multivariate approach we had F = 5.35, p < .001 for age & approx F =
15.36 for noise.

                      Least Squares Means

         Level           LSMEAN     Std Error   DDF       T  Pr > |T|

         AGE 1      38.66100000    1.21376060    54   31.85    0.0001
         AGE 2      35.24200000    1.21376060    54   29.04    0.0001
         AGE 3      32.76700000    1.21376060    54   27.00    0.0001
         NOISE 1    39.82166667    0.94938474   216   41.94    0.0001
         NOISE 2    36.83000000    1.07693727   216   34.20    0.0001
         NOISE 3    35.30166667    0.95201351   216   37.08    0.0001
         NOISE 4    34.38500000    0.99427793   216   34.58    0.0001
         NOISE 5    31.44500000    0.96513744   216   32.58    0.0001  

Now for the second mixed run we get the same kind of beginning, and then for
compound symmetry structure,

                           Tests of Fixed Effects

                 Source          NDF   DDF  Type III F  Pr > F

                 AGE               2    54        5.95  0.0046
                 SEX               1    54        0.53  0.4716
                 AGE*SEX           2    54        0.41  0.6635
                 NOISE             4   216       15.69  0.0001
                 AGE*NOISE         8   216        1.15  0.3338
                 SEX*NOISE         4   216        0.98  0.4215
                 AGE*SEX*NOISE     8   216        1.18  0.3096

From the univariate approach we had  F = 14.12 for noise.
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Now proc glm will allow easy examination of residuals no matter which approach
you take to repeated measures, provided the data are read in a univariate manner.

/**************** noise96d.sas ***********************/
options linesize=79 pagesize=60;
title 'Repeated measures on Noise data: Residuals etc.';
proc format;      value sexfmt    0 = 'Male'  1 = 'Female' ;

data loud;
     infile 'noise.dat';  /* Univariate data read */
     input ident  interest  sex  age  noise  time  discrim ;
     format sex sexfmt.;
     label interest = 'Interest in topic (politics)'
           time     = 'Order of presenting noise level';

proc glm;
     class age sex noise;
     model discrim = age|sex|noise;
     output out=resdata predicted=predis  residual=resdis;

/* Look at some residuals */
proc sort; by time;
proc univariate plot;
    var resdis; by time;
proc plot;
     plot resdis * (ident interest);

/* Include time */
proc mixed method = ml;
     class age sex noise time;
     model discrim = time age|sex|noise;
     repeated / type = un subject = ident r;
     lsmeans time age noise;

(Then I generated residuals from this new model using glm, and plotted again.
Nothing. )

                                           Variable=RESDIS
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             |
          25 +
             |
             |
             |
          20 +                        0
             |                                                |
             |                                                |
             |                                                |
          15 +                                                |
             |                                    |           |
             |                                    |           |
             |                        |           |           |
          10 +                        |           |           |
             |            |           |           |        +-----+
             |            |           |           |        |     |
             |            |           |        +-----+     *-----*
           5 +            |           |        |     |     |     |
             |            |        +-----+     |     |     |  +  |
             |            |        |     |     |     |     |     |
             |            |        |     |     *-----*     |     |
           0 +            |        |     |     |  +  |     |     |
             |         +-----+     *--+--*     |     |     +-----+
             |         |     |     |     |     |     |        |
             |         |     |     |     |     +-----+        |
          -5 +         |  +  |     +-----+        |           |
             |         *-----*        |           |           |
             |         |     |        |           |           |
             |         |     |        |           |           |
         -10 +         +-----+        |           |           |
             |            |           |           |           |
             |            |           |           |           |
             |            |           |           |           |
         -15 +            |           |           |           |
             |            |           |           |
             |            |           0           |
             |            |
         -20 +            |           0
             |            |
             |            |
             |            |
         -25 +
              ------------+-----------+-----------+-----------+-----------
     TIME                 1           2           3           4

Unfortunately time = 5 wound up on a separate page.  .
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When time is included the results get stronger but conclusions don't change.

                        Tests of Fixed Effects

                 Source          NDF   DDF  Type III F  Pr > F

                 TIME              4   266       17.67  0.0001
                 AGE               2   266       18.45  0.0001
                 SEX               1   266        1.63  0.2027
                 AGE*SEX           2   266        1.28  0.2789
                 NOISE             4   266       10.95  0.0001
                 AGE*NOISE         8   266        0.51  0.8488
                 SEX*NOISE         4   266        0.44  0.7784
                 AGE*SEX*NOISE     8   266        0.74  0.6573

                            Least Squares Means

         Level           LSMEAN     Std Error   DDF       T  Pr > |T|

         TIME 1     29.54468242    0.91811749   266   32.18    0.0001
         TIME 2     34.61557451    0.91794760   266   37.71    0.0001
         TIME 3     36.18863723    0.92819179   266   38.99    0.0001
         TIME 4     39.72344496    0.91838886   266   43.25    0.0001
         TIME 5     37.71099421    0.93376736   266   40.39    0.0001
         AGE 1      38.66100000    0.68895774   266   56.12    0.0001
         AGE 2      35.24200000    0.68895774   266   51.15    0.0001
         AGE 3      32.76700000    0.68895774   266   47.56    0.0001
         NOISE 1    39.69226830    0.89132757   266   44.53    0.0001
         NOISE 2    36.80608879    0.89274775   266   41.23    0.0001
         NOISE 3    35.35302821    0.89130480   266   39.66    0.0001
         NOISE 4    34.12899017    0.89502919   266   38.13    0.0001
         NOISE 5    31.80295787    0.89180628   266   35.66    0.0001
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Some good covariance structures are available in proc mixed.

Variance Components:  type = vc Σ = 

  σ1
2 0 0 0

0 σ2
2 0 0

0 0 σ3
2 0

0 0 0 σ4
2 +

Compound Symmetry:  type = cs Σ = 

  
σ2 + σ1 σ1 σ1 σ1

σ1 σ2 + σ1 σ1 σ1

σ1 σ1 σ2 + σ1 σ1

σ1 σ1 σ1 σ2 + σ1

Unknown:  type = un Σ = 

  σ1
2 σ1,2 σ1,3 σ1,4

σ1,2 σ2
2 σ2,3 σ2,4

σ1,3 σ2,3 σ3
2 σ3,4

σ1,4 σ2,4 σ3,4 σ4
2

Banded:  type = Σ = 

  σ1
2 σ5 0 0

σ5 σ2
2 σ6 0

0 σ6 σ3
2 σ7

0 0 σ7 σ4
2

First order autoregressive: type = ar(1) Σ =ß2 

  1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ
ρ3 ρ4 ρ 1

There are more, including Toeplitz, banded Toeplitz & spatial (covariance is a
function of Euclidian distance).
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Chapter 6

Introduction to S

6.1 History and Terminology

Most major statistical packages are computer programs that have their own
control language. The syntax goes with one computer program and just one.
The SAS language controls the SAS software, and that’s it. Minitab syntax
controls Minitab, and that’s it. S is a little different. Originally, S was both a
program and a language; they were developed together at the former AT&T
Bell Labs starting in the late 1970’s. Like the unix operating system (also
developed around the same time at Bell Labs, among other places), S was
open-source and in the public domain. “Open-source” means that the actual
program code (initially in Fortran, later in C) was public. It was free to
anyone with the expertise to compile and install it.

Later, S was spun off into a private company that is now called Insightful
Corporation. They incorporated both the S syntax and the core of the S
software into a commercial product called S-Plus. S-Plus is not open-source.
The “Plus” part of S-Plus is definitely proprietary. S-Plus uses the S lan-
guage, but the S language is not owned by Insightful Corporation. It’s in the
public domain.

R also uses the S language. This is a unix joke. You know, like how the
unix less command is an improved version of more. Get it? R is produced
by a team of volunteer programmers and statisticians, under the auspices of
the Free Software Foundation. It is an official GNU project. What is GNU?
GNU stands for “GNU’s Not Unix.” The recursive nature of this answer is a
unix joke. Get it?
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The GNU project was started by a group of programmers (led by the
great Richard Stallman, author of emacs) who believed that software should
be open-source and free for anyone to use, copy or modify. They were irritated
by the fact that corporations could take unix, enhance it in a few minor (or
major) ways, and copyright the result. Solaris, the version of unix used on
many Sun workstations, is an example. An even more extreme example is
Macintosh OS X, which is just a very elaborate graphical shell running on
top of Berkeley Standard Distribution unix.

The GNU operating system was to look and act like unix, but to be
rewritten from the ground up, and legally protected in such a way that it
could not be incorporated into any piece of software that was proprietary.
Anybody would be able to modify it and even sell the modified version –
or the original. But any modified version, like the original, would have to
be open-source, with no restrictions on copying or use of the software. The
main GNU project has been successful; the result is called linux.

R is another successful GNU project. The R development team rewrote
the S software from scratch without using any of the original code. It runs
under the unix, linux, MS Windows and Macintosh operating systems. It
is free, and easy to install. Go to http://www.R-project.org to obtain a
copy of the software or more information. There are also links on the course
home page.

While they were redoing S, the R development team quietly fixed an ex-
tremely serious problem. While the S language provides a beautiful environ-
ment for simulation and customized computer-intensive statistical methods,
the S software did the job in a terribly inefficient way. The result was that big
simulations ran very slowly, and long-running jobs often aborted or crashed
the system unless special and very unpleasant measures were taken. S-Plus,
because it is based on the original S code, inherits these problems. R is
immune to them.

Anyway, S is a language, and R is a piece of software that is controlled
by the S language. The discussion that follows will usually refer to S, but
all the examples will use the R implementation of S — specifically, R version
1.4.0 running under unix on credit or tuzo (credit and tuzo are supposed to
be 100% identical). Mostly, what we do here will also work in S-Plus. Why
would you ever want to use S-Plus? Well, it does have some capabilities
that R does not have (yet), particularly in the areas of survival analysis and
spatial statistics.
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6.2 S as a Calculator

To start R, type “R” and return at the unix prompt. Like this:

/res/jbrunner/442/S > R

R : Copyright 2001, The R Development Core Team

Version 1.4.0 (2001-12-19)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type ‘license()’ or ‘licence()’ for distribution details.

R is a collaborative project with many contributors.

Type ‘contributors()’ for more information.

Type ‘demo()’ for some demos, ‘help()’ for on-line help, or

‘help.start()’ for a HTML browser interface to help.

Type ‘q()’ to quit R.

>

S is built around functions. As you can see above, even asking for help
and quitting are functions (with no arguments).

The primary mode of operation of S is line oriented and interactive. It
is quite unix-like, with all the good and evil that implies. S gives you a
prompt that looks like a ”greater than” sign. You type a command, press
Return (Enter), and the program does what you say. Its default behaviour
is to return the value of what you type, often a numerical value. In the first
example, we receive the “>” prompt, type “1+1” and then press the Enter
key. S tells us that the answer is 2. Then we obtain 23 = 8.

> 1+1

[1] 2

> 2^3 # Two to the power 3

[1] 8

What is this [1] business? It’s clarified when we ask for the numbers
from 1 to 30.
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> 1:30

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

[26] 26 27 28 29 30

S will give you an array of numbers in compact form, using a number in
brackets to indicate the ordinal position of the first item on each line. When
it answered “1+1” with [1] 2, it was telling us that the first item in this
array (of one item) was 2.

S has an amazing variety of mathematical and statistical functions. For
example, the gamma function is defined by Γ(a) =

∫∞
0 e−tta−1 dt, and with

enough effort you can prove that Γ(1
2
) =
√
π. Note that everything to the

left of a # is a comment.

> gamma(.5)^2 # Gamma(1/2) = Sqrt(Pi)

[1] 3.141593

Assignment of values is carried out by a “less than” sign followed im-
mediately by a minus sign; it looks like an arrow pointing to the left. The
command x <- 1 would be read “x gets 1.”

> x <- 1 # Assigns the value 1 to x

> y <- 2

> x+y

[1] 3

> z <- x+y

> z

[1] 3

> x <- c(1,2,3,4,5,6) # Collect these numbers; x is now a vector

Originally, x was a single number. Now it’s a vector (array) of 6 numbers.
S operates naturally on vectors.

> y <- 1 + 2*x

> cbind(x,y)

x y

[1,] 1 3

[2,] 2 5

[3,] 3 7

[4,] 4 9

[5,] 5 11

[6,] 6 13
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The cbind command binds the vectors x and y into columns. The result
is a matrix whose value is returned (displayed on the screen), since it is not
assigned to anything.

The bracket (subscript) notation for selecting elements of an array is very
powerful. The following is just a simple example.

> z <- y[x>4] # z gets y such that x > 4

> z

[1] 11 13

If you put an array of integers inside the brackets, you get those elements,
in the order indicated.

> y[c(6,5,4,3,2,1)] # y in opposite order

[1] 13 11 9 7 5 3

> y[c(2,2,2,3,4)] # Repeats are okay

[1] 5 5 5 7 9

> y[7] # There is no seventh element. NA is the missing value code

[1] NA

Most operations on arrays are performed element by element. If you take
a function of an array, S applies the function to each element of the array
and returns an array of function values.

> z <- x/y # Most operations are performed element by element

> cbind(x,y,z)

x y z

[1,] 1 3 0.3333333

[2,] 2 5 0.4000000

[3,] 3 7 0.4285714

[4,] 4 9 0.4444444

[5,] 5 11 0.4545455

[6,] 6 13 0.4615385

> x <- seq(from=0,to=3,by=.1) # A sequence of numbers

> y <- sqrt(x)

S is a great environment for producing high-quality graphics, though we
won’t use it much for that. Here’s just one example. We activate the pdf

graphics device, so that all subsequent graphics in the session are written to
a file that can be viewed with Adobe’s Acrobat Reader. We then make a line
plot of the function y =

√
x, and quit.
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> pdf("testor.pdf")

> plot(x,y,type=’l’) # That’s a lower case L

> q()

Actually, graphics are a good reason to download and install R on your
desktop or laptop computer. By default, you’ll see nice graphics output on
your screen. Under unix, it’s a bit of a pain unless you’re in an X-window
environment (and we’re assuming that you are not). You have to transfer
that pdf file somewhere and view it with Acrobat or Acrobat Reader.

Continuing the session, a couple of interesting things happen when we
quit. First, we are asked if we want to save the “workspace image.” The
responses are Yes, No and Cancel (don’t quit yet). If you say Yes, R will
write a file containing all the objects (x, y and z in the present case) that
have been created in the session. Next time you start R, your work will be
“restored” to where it was when you quit.

Save workspace image? [y/n/c]: y

credit.erin > ls

testor.pdf

Notice that when we type ls, to list the files, we see only testor.pdf, the
pdf file containing the plot of y =

√
x. Where is the workspace image? It’s

an invisible file; type ls -a to see all the files.

credit.erin > ls -a

./ ../ .RData testor.pdf

There it is: .RData. Files beginning with a period don’t show up in output
to the ls command unless you use the -a option. R puts .RData in the
(sub)directory from which R was invoked. This means that if if you have
a separate subdirectory for each project or assignment (not a bad way to
organize your work), R will save the workspace from each job in a separate
place, so that you can have variables with names like x in more than one
place, containing different numbers. When we return to R,

credit.erin > R

R : Copyright 2001, The R Development Core Team

Version 1.4.0 (2001-12-19)
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R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type ‘license()’ or ‘licence()’ for distribution details.

R is a collaborative project with many contributors.

Type ‘contributors()’ for more information.

Type ‘demo()’ for some demos, ‘help()’ for on-line help, or

‘help.start()’ for a HTML browser interface to help.

Type ‘q()’ to quit R.

[Previously saved workspace restored]

> ls()

[1] "x" "y" "z"

> max(x)

[1] 3

All the examples so far (and many of the examples to follow) are interac-
tive, but for serious work, it’s better to work with a command file. Put your
commands in a file and execute them all at once. Suppose your commands
are in a file called commands.R. At the S prompt, you’d execute them with
source("commands.R"). From the unix prompt, you’d do it like this. The
--vanilla option invokes a “plain vanilla” mode of operation suitable for
this situation.

credit.erin > R --vanilla < commands.R > homework.out

For really big simulations, you may want to run the job in the background
at a lower priority. The & suffix means run it in the background. nohupmeans
don’t hang up on me when I log out. nice means be nice to other users, and
run it at a lower priority.

credit.erin > nohup nice R --vanilla < bvnorm.R > bvnorm.out &
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6.3 S as a Stats Package

Here, we illustrate traditional multiple regression with S, testing the par-
allel slopes assumption for the metric cars data. Compare mcars.sas and
mcars.lst. There are lots of comment statements that help explain what is
going on. More detail will be given in lecture. In addition, the course home
page has a link to a nice 100-page manual. If you plan to use R seriously,
you should download this manual and read it. But if you come to lecture,
you probably don’t need to look at it for the purposes of this class.

Here is the “program” named lesson2.R.

####################################################################

# lesson2.R: execute with R --vanilla < lesson2.R > lesson2.out #

####################################################################

datalist <- scan("mcars.dat",list(id=0,country=0,kpl=0,weight=0,length=0))

# datalist is a linked list.

datalist

# There are other ways to read raw data. See help(read.table).

weight <- datalist$weight ; length <- datalist$length ; kpl <- datalist$kpl

country <- datalist$country

cor(cbind(weight,length,kpl))

# The table command gives a bare-bones frequency distribution

table(country)

# That was a matrix. The numbers 1 2 3 are labels.

# You can save it, and you can get at its contents

countrytable <- table(country)

countrytable[2]

# There is an "if" function that you could use to make dummy variables,

# but it’s easier to use factor.

countryfac <- factor(country,levels=c(1,2,3),

label=c("US","Japanese","European"))

# This makes a FACTOR corresponding to country, like declaring it

# to be categorical. How are dummy variables being set up?

contrasts(countryfac)

# The first level specified is the reference category. You can get a

# different reference category by specifying the levels in a different order.

cntryfac <- factor(country,levels=c(2,1,3),

label=c("Japanese","US","European"))

contrasts(cntryfac)

# Test interaction. For comparison, with SAS we got F = 11.5127, p < .0001

# First fit (and save!) the reduced model. lm stands for linear model.

redmod <- lm(kpl ~ weight+cntryfac)

# The object redmod is a linked list, including lots of stuff like all the

# residuals. You don’t want to look at the whole thing, at least not now.

summary(redmod)

# Full model is same stuff plus interaction. You COULD specify the whole thing.

fullmod <- update(redmod,. ~ . + weight*cntryfac)

anova(redmod,fullmod)

# The ANOVA summary table is a matrix. You can get at its (i,j)th element.

aovtab <- anova(redmod,fullmod)

aovtab[2,5] # The F statistic
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aovtab[2,6] < .05 # p < .05 -- True or false?

1>6 # Another example of an expression taking the logical value true or false.

Here is the output file lesson2.out. Note that it shows the commands.
This would not happen if you used source("lesson2.R") from within R. I
have added some blank lines to the output file to make it more readable.

> ####################################################################

> # lesson2.R: execute with R --vanilla < lesson2.R > lesson2.out #

> ####################################################################

>

> datalist <- scan("mcars.dat",list(id=0,country=0,kpl=0,weight=0,length=0))

Read 100 records

> # datalist is a linked list.

> datalist

$id

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

[19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

[37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

[55] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

[73] 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

[91] 91 92 93 94 95 96 97 98 99 100

$country

[1] 1 2 1 1 1 1 3 1 3 1 2 1 1 3 2 1 1 1 3 2 1 1 1 3 2 1 1 1 1 1 2 1 2 1 1 1 3

[38] 3 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 3 1 1 1 2 1 1 1 1 2 2 1 1 1 2 1 1

[75] 1 2 2 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 3 3 3 1 1 1

$kpl

[1] 5.04 10.08 9.24 7.98 7.98 7.98 9.66 7.56 5.88 10.92 12.60 8.40

[13] 8.82 10.92 7.56 12.18 5.04 5.88 7.14 13.02 5.88 10.92 6.72 10.50

[25] 8.82 5.88 6.72 11.76 9.24 7.56 7.56 11.76 10.50 5.88 9.24 7.98

[37] 7.14 17.22 6.72 7.98 7.14 6.30 5.88 8.82 9.24 9.24 5.88 8.40

[49] 10.50 9.24 7.56 7.56 12.60 12.60 7.98 7.56 8.40 9.66 7.56 6.30

[61] 5.88 7.56 10.08 5.04 8.82 11.76 14.70 10.08 9.24 10.92 10.50 7.56

[73] 8.82 7.56 7.14 7.56 10.08 8.82 5.88 8.82 8.82 10.08 17.22 6.72

[85] 9.24 5.88 7.56 11.76 7.98 8.82 5.88 5.88 7.14 5.04 17.22 17.22

[97] 7.14 10.50 6.72 7.56

$weight

[1] 2178.0 1026.0 1188.0 1444.5 1485.0 1485.0 972.0 1665.0 1539.0 1003.5

[11] 891.0 1273.5 1930.5 823.5 1084.5 949.5 2178.0 1755.0 1426.5 990.0

[21] 1827.0 1134.0 1813.5 1192.5 1237.5 1858.5 1813.5 1062.0 1431.0 1651.5

[31] 1201.5 1062.0 1008.0 1858.5 1318.5 1440.0 1273.5 918.0 1813.5 1530.0

[41] 1683.0 1836.0 1723.5 1827.0 1449.0 1318.5 1858.5 1273.5 868.5 1318.5

[51] 1665.0 1620.0 954.0 954.0 1516.5 1665.0 1462.5 972.0 1665.0 1674.0

[61] 1755.0 1201.5 1237.5 2178.0 1930.5 1062.0 922.5 1026.0 1449.0 1134.0

[71] 990.0 1084.5 1930.5 1516.5 1507.5 1084.5 1026.0 958.5 1858.5 1930.5

[81] 1192.5 1237.5 918.0 1813.5 1449.0 1755.0 1561.5 1062.0 1489.5 1192.5

[91] 1827.0 1755.0 1683.0 2178.0 918.0 918.0 1426.5 990.0 1660.5 1498.5

$length

[1] 591.82 431.80 426.72 510.54 502.92 502.92 436.88 543.56 487.68 431.80

[11] 391.16 495.30 518.16 360.68 441.96 414.02 591.82 518.16 490.22 419.10

[21] 561.34 462.28 523.24 449.58 467.36 551.18 523.24 431.80 490.22 553.72
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[31] 444.50 431.80 436.88 551.18 472.44 505.46 480.06 393.70 523.24 508.00

[41] 558.80 563.88 510.54 558.80 508.00 472.44 551.18 495.30 393.70 472.44

[51] 543.56 523.24 414.02 414.02 508.00 543.56 497.84 436.88 543.56 538.48

[61] 518.16 444.50 454.66 591.82 518.16 431.80 416.56 431.80 508.00 462.28

[71] 419.10 441.96 518.16 502.92 439.42 441.96 431.80 408.94 551.18 518.16

[81] 454.66 454.66 393.70 523.24 508.00 518.16 502.92 431.80 502.92 454.66

[91] 561.34 518.16 558.80 591.82 393.70 393.70 490.22 419.10 538.48 510.54

> # There are other ways to read raw data. See help(read.table).

> weight <- datalist$weight ; length <- datalist$length ; kpl <- datalist$kpl

> country <- datalist$country

> cor(cbind(weight,length,kpl))

weight length kpl

weight 1.0000000 0.9462018 -0.7704194

length 0.9462018 1.0000000 -0.7899859

kpl -0.7704194 -0.7899859 1.0000000

> # The table command gives a bare-bones frequency distribution

> table(country)

country

1 2 3

73 13 14

> # That was a matrix. The numbers 1 2 3 are labels.

> # You can save it, and you can get at its contents

> countrytable <- table(country)

> countrytable[2]

2

13

> # There is an "if" function that you could use to make dummy variables,

> # but it’s easier to use factor.

> countryfac <- factor(country,levels=c(1,2,3),

+ label=c("US","Japanese","European"))

> # This makes a FACTOR corresponding to country, like declaring it

> # to be categorical. How are dummy variables being set up?

> contrasts(countryfac)

Japanese European

US 0 0

Japanese 1 0

European 0 1

> # The first level specified is the reference category. You can get a

> # different reference category by specifying the levels in a different order.

> cntryfac <- factor(country,levels=c(2,1,3),

+ label=c("Japanese","US","European"))

> contrasts(cntryfac)

US European

Japanese 0 0

US 1 0

European 0 1
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> # Test interaction. For comparison, with SAS we got F = 11.5127, p < .0001

> # First fit (and save!) the reduced model. lm stands for linear model.

> redmod <- lm(kpl ~ weight+cntryfac)

> # The object redmod is a linked list, including lots of stuff like all the

> # residuals. You don’t want to look at the whole thing, at least not now.

> summary(redmod)

Call:

lm(formula = kpl ~ weight + cntryfac)

Residuals:

Min 1Q Median 3Q Max

-3.0759 -0.9810 -0.1919 0.4725 5.0795

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 16.2263357 0.7631228 21.263 <2e-16 ***

weight -0.0060407 0.0005708 -10.583 <2e-16 ***

cntryfacUS 1.2361472 0.5741299 2.153 0.0338 *

cntryfacEuropean 1.4595914 0.6456563 2.261 0.0260 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.676 on 96 degrees of freedom

Multiple R-Squared: 0.618, Adjusted R-squared: 0.606

F-statistic: 51.76 on 3 and 96 DF, p-value: 0

>

> # Full model is same stuff plus interaction. You COULD specify the whole thing.

> fullmod <- update(redmod,. ~ . + weight*cntryfac)

> anova(redmod,fullmod)

Analysis of Variance Table

Model 1: kpl ~ weight + cntryfac

Model 2: kpl ~ weight + cntryfac + weight:cntryfac

Res.Df RSS Df Sum of Sq F Pr(>F)

1 96 269.678

2 94 216.617 2 53.061 11.513 3.372e-05 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> # The ANOVA summary table is a matrix. You can get at its (i,j)th element.

> aovtab <- anova(redmod,fullmod)

> aovtab[2,5] # The F statistic

[1] 11.51273

> aovtab[2,6] < .05 # p < .05 -- True or false?

[1] TRUE

> 1>6 # Another example of an expression taking the logical value true or false.

[1] FALSE
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6.4 Random Numbers and Simulation

S is a superb environment for simulation and customized computer-intensive
statistical methods. That’s really why it is being discussed. Simulation is
an extremely general and powerful method for calculating probabilities that
are difficult to figure out by other means. Well, technically it’s a way of
estimating those probabilities, based a sample of random numbers. Before
proceeding, we need a couple of definitions.

We will use the term statistical experiment to refer to any procedure
whose outcome is not known in advance with certainty. The most standard,
and the most boring example of a statistical experiment is to toss a coin and
observe whether it comes up heads or tails. We model statistical experiments
by pretending that they obey the laws of probability.

When we carry out a statistical experiment, the things that can happen
(the things we pay attention to) are called outcomes. Sets of outcomes are
called events. For example, if you roll a die, the outcomes are the numbers
1 through 6, and “even” is an event consisting of the outcomes {2, 4, 6}.

The main principle we will use is called the Law of Large Numbers.
There are quite a few versions of this law. Here’s a verbal statement of the
one we will use. If a statistical experiment is carried out independently a very
large number of times (trials) under identical conditions, the proportion of
times an event occurs approaches the probability of the event, as the number of
trials increases. In elementary texts, this is sometimes used as the definition
of probability. But in more sophisticated treatments, it’s a theorem.

For example, suppose you are planning to test differences between means
for an experimental versus a control group, and you have strong reason to
believe that your data will have a chi-square distribution within groups. You
are going to log-transform the data to take care of the positive skewness of
the chi-square, and then use a common t-test.

Suppose data in the experimental group is chi-square with one degree of
freedom (so the population mean is one and the variance is two), and the
data in the control group is chi-square with two degree of freedom (so the
population mean is two and the variance is four). What is the power of the
t-test on the transformed data with n = 20 in each group?
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Nobody can figure this out mathematically, but it’s pretty easy with sim-
ulation. Here’s how to do it.

1. Using the random number generator in some software package, generate
20 independent chi-square values with one degree of freedom, and 20
independent chi-square values with two degrees of freedom.

2. Log transform all the values.

3. Compute the t-test.

4. Check to see if p < 0.05.

Do this a large number of times. The proportion of times p < 0.05 is the
power — or more precisely, a Monte Carlo estimate of the power.

The number of times a statistical experiment is repeated is called the
Monte Carlo sample size. How big should the Monte Carlo sample size
be? It depends on how much precision you need. We will produce confidence
intervals for all our Monte Carlo estimates, to get a handle on the probable
margin of error of the statements we make. Sometimes, Monte Carlo sample
size can be chosen by a power analysis. More details will be given later.

The example below shows several simulations of taking a random sample
of size 20 from a standard normal population (µ = 0, σ2 = 1). Now actually,
computer-generated random numbers are not really random; they are com-
pletely determined by the execution of the computer program that generates
them. The most common (and best) random number generators actually
produce a stream of pseudo-random numbers that will eventually repeat. In
the good ones (and R uses a good one), “eventually” means after the end
of the universe. So the pseudo-random numbers that R produces really act
random, even though they are not. It’s safe to say that they come closer to
satisfying the assumptions of significance tests than any real data.

If you don’t instruct it otherwise, R will use the system clock to decide
on where in the random number stream it should begin. But sometimes
you want to be able to reproduce the results of a simulation exactly, say
if you’re debugging your program, or you have already spent a lot of time
making a graph based on it. In this case you can control the starting place
in the random number stream, by setting the “seed” of the random number
generator. The seed is a big integer; I used 12345 just as an example.
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> rnorm(20) # 20 standard normals

[1] 0.24570675 -0.38857202 0.47642336 0.75657595 0.71355871 -0.74630629

[7] -0.02485569 1.93346357 0.15663167 1.16734485 0.57486449 1.32309413

[13] 0.63712982 2.00473940 0.04221730 0.70896768 0.42128470 -0.12115292

[19] 1.42043470 -1.04957255

> set.seed(12345) # Be able to reproduce the stream of pseudo-random numbers.

> rnorm(20)

[1] 0.77795979 -0.89072813 0.05552657 0.67813726 0.80453336 -0.35613672

[7] -1.24182991 -1.05995791 -2.67914037 -0.01247257 -1.22422266 0.88672878

[13] -1.32824804 -2.73543539 0.40487757 0.41793236 -1.47520817 1.15351981

[19] -1.24888614 1.11605686

> rnorm(20)

[1] 0.866507371 2.369884323 0.393094088 -0.970983967 -0.292948278

[6] 0.867358962 0.495983546 0.331635970 0.702292771 2.514734599

[11] 0.522917841 -0.194668990 -0.089222053 -0.491125596 -0.452112445

[16] -0.515548826 -0.244409517 -0.008373764 -1.459415684 -1.433710170

> set.seed(12345)

> rnorm(20)

[1] 0.77795979 -0.89072813 0.05552657 0.67813726 0.80453336 -0.35613672

[7] -1.24182991 -1.05995791 -2.67914037 -0.01247257 -1.22422266 0.88672878

[13] -1.32824804 -2.73543539 0.40487757 0.41793236 -1.47520817 1.15351981

[19] -1.24888614 1.11605686

The rnorm function is probably the most important random number gen-
erator, because it is used so often to investigate the properties of statistical
tests that assume a normal distribution. Here is some more detail about
rnorm.

> help(rnorm)

Normal package:base R Documentation

The Normal Distribution

Description:

Density, distribution function, quantile function and random

generation for the normal distribution with mean equal to ‘mean’

and standard deviation equal to ‘sd’.

Usage:

dnorm(x, mean=0, sd=1, log = FALSE)

pnorm(q, mean=0, sd=1, lower.tail = TRUE, log.p = FALSE)

qnorm(p, mean=0, sd=1, lower.tail = TRUE, log.p = FALSE)

rnorm(n, mean=0, sd=1)
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Arguments:

x,q: vector of quantiles.

p: vector of probabilities.

n: number of observations. If ‘length(n) > 1’, the length is

taken to be the number required.

mean: vector of means.

sd: vector of standard deviations.

log, log.p: logical; if TRUE, probabilities p are given as log(p).

lower.tail: logical; if TRUE (default), probabilities are P[X <= x],

otherwise, P[X > x].

Details:

If ‘mean’ or ‘sd’ are not specified they assume the default values

of ‘0’ and ‘1’, respectively.

The normal distribution has density

f(x) = 1/(sqrt(2 pi) sigma) e^-((x - mu)^2/(2 sigma^2))

where mu is the mean of the distribution and sigma the standard

deviation.

‘qnorm’ is based on Wichura’s algorithm AS 241 which provides

precise results up to about 16 digits.

Value:

‘dnorm’ gives the density, ‘pnorm’ gives the distribution

function, ‘qnorm’ gives the quantile function, and ‘rnorm’

generates random deviates.

References:

Wichura, M. J. (1988) Algorithm AS 241: The Percentage Points of

the Normal Distribution. Applied Statistics, 37, 477-484.

See Also:

‘runif’ and ‘.Random.seed’ about random number generation, and

‘dlnorm’ for the Lognormal distribution.

Examples:

dnorm(0) == 1/ sqrt(2*pi)

dnorm(1) == exp(-1/2)/ sqrt(2*pi)

dnorm(1) == 1/ sqrt(2*pi*exp(1))

## Using "log = TRUE" for an extended range :

par(mfrow=c(2,1))
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plot(function(x)dnorm(x, log=TRUE), -60, 50, main = "log { Normal density }")

curve(log(dnorm(x)), add=TRUE, col="red",lwd=2)

mtext("dnorm(x, log=TRUE)", adj=0); mtext("log(dnorm(x))", col="red", adj=1)

plot(function(x)pnorm(x, log=TRUE), -50, 10, main = "log { Normal Cumulative }")

curve(log(pnorm(x)), add=TRUE, col="red",lwd=2)

mtext("pnorm(x, log=TRUE)", adj=0); mtext("log(pnorm(x))", col="red", adj=1)

After generating normal random numbers, the next most likely thing you
might want to do is randomly scramble some existing data values. The
sample function will select the elements of some array, either with replace-
ment or without replacement. If you select all the numbers in a set without
replacement, you’ve rearranged them in a random order. This is the basis of
randomization tests. Sampling with replacement is the basis of the bootstrap.

> help(sample)

sample package:base R Documentation

Random Samples and Permutations

Description:

‘sample’ takes a sample of the specified size from the elements of

‘x’ using either with or without replacement.

Usage:

sample(x, size, replace = FALSE, prob = NULL)

Arguments:

x: Either a (numeric, complex, character or logical) vector of

more than one element from which to choose, or a positive

integer.

size: A positive integer giving the number of items to choose.

replace: Should sampling be with replacement?

prob: A vector of probability weights for obtaining the elements of

the vector being sampled.

Details:

If ‘x’ has length 1, sampling takes place from ‘1:x’.

By default ‘size’ is equal to ‘length(x)’ so that ‘sample(x)’

generates a random permutation of the elements of ‘x’ (or ‘1:x’).

The optional ‘prob’ argument can be used to give a vector of

weights for obtaining the elements of the vector being sampled.

They need not sum to one, but they should be nonnegative and not

all zero. If ‘replace’ is false, these probabilities are applied
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sequentially, that is the probability of choosing the next item is

proportional to the probabilities amongst the remaining items. The

number of nonzero weights must be at least ‘size’ in this case.

Examples:

x <- 1:12

# a random permutation

sample(x)

# bootstrap sampling

sample(x,replace=TRUE)

# 100 Bernoulli trials

sample(c(0,1), 100, replace = TRUE)

6.4.1 Illustrating the Regression Artifact by Simula-

tion

In the ordinary use of the English language, to “regress” means to go back-
ward. In Psychiatry and Abnormal Psychology, the term “regression” is used
when a person’s behaviour changes to become more typical of an earlier stage
of development— like when an older child starts wetting the bed, or an adult
under extreme stress sucks his thumb. Isn’t this a strange word to use for
the fitting of hyperplanes by least-squares?

The term “regression” (as it is used in Statistics) was coined by Sir Francis
Galton (1822-1911). For reasons that now seem to have a lot to do with class
privilege and White racism, he was very interested in heredity. Galton was
investigating the relationship between the heights of fathers and the heights
of sons. What about the mothers? Apparently they had no height.

Anyway, Galton noticed that very tall fathers tended to have sons that
were a bit shorter than they were, though still taller than average. On the
other hand, very short fathers tended to have sons that were taller than
they were, though still shorter than average. Galton was quite alarmed
by this “regression toward mediocrity” or “regression toward the mean,”
particularly when he found it in a variety of species, for a variety of physical
characteristics. See Galton’s “Regression towards mediocrity in hereditary
stature”, Journal of the Anthropological Institute 15 (1886), 246-263. It even
happens when you give a standardized test twice to the same people. The
people who did the very best the first time tend to do a little worse the
second time, and the people who did the very worst the first time tend to do
a little better the second time.

Galton thought he had discovered a Law of Nature, though in fact the
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whole thing follows from the algebra of least squares. Here’s a verbal alter-
native. Height is influenced by a variety of chance factors, many of which are
not entirely shared by fathers and sons. These include the mother’s height,
environment and diet, and the vagaries of genetic recombination. You could
say that the tallest fathers included some who “got lucky,” if you think it’s
good to be tall (Galton did, of course). The sons of the tall fathers had some
a genetic predisposition to be tall, but on average, they didn’t get as lucky
as their fathers in every respect. A similar argument applies to the short
fathers and their sons.

This is the basis for the so-called regression artifact. Pre-post designs
with extreme groups are doomed to be misleading. Programs for the disad-
vantaged “work” and programs for the gifted “hurt.” This is a very serious
methodological trap that has doomed quite a few evaluations of social pro-
grams, drug treatments – you name it.

Is this convincing? Well, the argument above may be enough for some
people. But perhaps if it’s illustrated by simulation, you’ll be even more
convinced. Let’s find out.

Suppose an IQ test is administered to the same 10,000 students on two
occasions. Call the scores pre and post. After the first test, the 100 in-
dividuals who did worst are selected for a special remedial program, but it
does nothing. And, the 100 individuals who did best on the pre-test get a
special program for the gifted, but it does nothing. We do a matched t-test
on the students who got the remedial program, and a matched t − test on
the students who got the gifted program.

What should happen? If you followed the stuff about regression artifacts,
you’d expect significant improvement from the students who got the remedial
program, and significant deterioration from the students who got the gifted
program – even though in fact, both programs are completely ineffective (and
harmless). How will we simulate this?

According to classical psychometric theory, a test score is the sum of two
independent pieces, the True Score and measurement error. If you measure
an individual twice, she has the same True Score, but the measurement error
component is different.

True Score and measurement error have population variances. Because
they are independent, the variance of the observed score is the sum of the
true score variance and the error variance. The proportion of the observed
score variance that is True Score variance is called the test’s reliability. Most
“intelligence” tests have a mean of 100, a standard deviation of 15, and a
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reliability around 0.80.
So here’s what we do. Making everything normally distributed and se-

lecting parameter values so the means, standard deviations and reliability
come out right, we

• Simulate 10,000 true scores.

• Simulate 10,000 measurement errors for the pre-test and an indepen-
dent 10,000 measurement errors for the post-test.

• Calculate 10,000 pre-test scores by pre = True + error1.

• Calculate 10,000 post-test scores by pre = True + error2.

• Do matched t-tests on the individuals with the 100 worst and the 100
best pre-test scores.

This procedure is carried out once by the program regart.R. In addition,
regart.R carries out a matched t-test on the entire set of 10,000 pairs, just
to verify that there is no systematic change in “IQ” scores.

# regart.R Demonstrate Regression Artifact

###################### Setup #######################

N <- 10000 ; n <- 100

truevar <- 180 ; errvar <- 45

truesd <- sqrt(truevar) ; errsd <- sqrt(errvar)

# set.seed(44444)

# Now define the function ttest, which does a matched t-test

ttest <- function(d) # Matched t-test. It operates on differences.

{

ttest <- numeric(4)

names(ttest) <- c("Mean Difference"," t "," df "," p-value ")

ave <- mean(d) ; nn <- length(d) ; sd <- sqrt(var(d)) ; df <- nn-1

tstat <- ave*sqrt(nn)/sd

pval <- 2*(1-pt(abs(tstat),df))

ttest[1] <- ave ; ttest[2] <- tstat; ttest[3] <- df; ttest[4] <- pval

ttest # Return the value of the function

}
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#####################################################

error1 <- rnorm(N,0,errsd) ; error2 <- rnorm(N,0,errsd)

truescor <- rnorm(N,100,truesd)

pre <- truescor+error1 ; rankpre <- rank(pre)

# Based on their rank on the pre-test, we take the n worst students and

# place them in a special remedial program, but it does NOTHING.

# Based on their rank on the pre-test, we take the n best students and

# place them in a special program for the gifted, but it does NOTHING.

post <- truescor+error2

diff <- post-pre # Diff represents "improvement."

# But of course diff = error2-error1 = noise

cat("\n") # Skip a line

cat("------------------------------------ \n")

dtest <- ttest(diff)

cat("Test on diff (all scores) \n") ; print(dtest) ; cat("\n")

remedial <- diff[rankpre<=n] ; rtest <- ttest(remedial)

cat("Test on Remedial \n") ; print(rtest) ; cat("\n")

gifted <- diff[rankpre>=(N-n+1)] ; gtest <- ttest(gifted)

cat("Test on Gifted \n") ; print(gtest) ; cat("\n")

cat("------------------------------------ \n")

The ttest function is a little unusual because it takes a whole vector
of numbers (length unspecified) as input, and returns an array of 4 values.
Often, functions take one or more numbers as input, and return a single
value. We will see some more examples shortly. At the R prompt,
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> source("regart.R")

------------------------------------

Test on diff (all scores)

Mean Difference t df p-value

1.872566e-02 1.974640e-01 9.999000e+03 8.434685e-01

Test on Remedial

Mean Difference t df p-value

7.192531e+00 8.102121e+00 9.900000e+01 1.449729e-12

Test on Gifted

Mean Difference t df p-value

-8.311569e+00 -9.259885e+00 9.900000e+01 4.440892e-15

------------------------------------

> source("regart.R")

------------------------------------

Test on diff (all scores)

Mean Difference t df p-value

2.523976e-02 2.659898e-01 9.999000e+03 7.902525e-01

Test on Remedial

Mean Difference t df p-value

5.510484e+00 5.891802e+00 9.900000e+01 5.280147e-08

Test on Gifted

Mean Difference t df p-value

-8.972938 -10.783356 99.000000 0.000000

------------------------------------

> source("regart.R")

------------------------------------

Test on diff (all scores)

Mean Difference t df p-value
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0.0669827 0.7057641 9999.0000000 0.4803513

Test on Remedial

Mean Difference t df p-value

8.434609e+00 9.036847e+00 9.900000e+01 1.376677e-14

Test on Gifted

Mean Difference t df p-value

-8.371483 -10.215295 99.000000 0.000000

------------------------------------

The preceding simulation was unusual in that the phenomenon it illustrates
happens virtually every time. In the next example, we need to use the Law
of Large Numbers.

6.4.2 An Example of Power Analysis by Simulation

Suppose we want to test the effect of some experimental treatment on mean
response, comparing an experimental group to a control. We are willing to
assume normality, but not equal variances. We’re ready to use an unequal-
variances t-test, and we want to do a power analysis.

Unfortunately it’s safe to say that nobody knows the exact non-central
distribution of this monster. In fact, even the central distribution isn’t exact;
it’s just a very good approximation. So, we have to resort to first principles.
There are four parameters: θ = (µ1, µ2, σ

2
1, σ

2
2). For a given set of parameter

values, we will simulate samples of size n1 and n2 from normal distributions,
do the significance test, and see if it’s significant. We’ll do it over and over.
By the Law of Large Numbers, the proportion of times the test is significant
will approach the power as the Monte Carlo sample size (the number of data
sets we simulate) increases.

The number we get, of course, will just be an estimate of the power. How
accurate is the estimate? As promised earlier, we’ll accompany every Monte
Carlo estimate of a probability with a confidence interval. Here’s the formula.
For the record, it’s based on the normal approximation to the binomial, not
bothering with a continuity correction.

P̂ ± z1−α
2

√
P̂ (1− P̂ )

m
(6.1)
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This formula will be implemented in the S function merror for “margin of
error.”

merror <- function(phat,m,alpha) # (1-alpha)*100% merror for a proportion

{

z <- qnorm(1-alpha/2)

merror <- z * sqrt(phat*(1-phat)/m) # m is (Monte Carlo) sample size

merror

}

The Monte Carlo estimate of the probability is denoted by P̂ , the quantity
m is the Monte Carlo sample size, and z1−α/2 is the value with area 1 − α

2

to the left of it, under the standard normal curve. Typically, we will choose
α = 0.01 to get a 99% confidence interval, so z1−α/2 = 2.575829.

How should we choose m? In other words, how many data sets should we
simulate? It depends on how much accuracy we want.Since our policy is to
accompany Monte Carlo estimates with confidence intervals, we will choose
the Monte Carlo sample size to control the width of the confidence interval.

According to Equation (6.1), the confidence interval is an estimated prob-

ability, plus or minus a margin of error. The margin of error is z1−α
2

√
P̂ (1−P̂ )

m
,

which may be viewed as an estimate of z1−α
2

√
P (1−P )

m
. So, for any given prob-

ability we are trying to estimate, we can set the desired margin of error to
some small value, and solve for m. Denoting the criterion margin of error
by c, the general solution is

m =
z2

1−α
2

c2
P (1− P ), (6.2)

which is implemented in the S function mmargin.

mmargin <- function(p,cc,alpha)

# Choose m to get (1-alpha)*100% margin of error equal to cc

{

mmargin <- p*(1-p)*qnorm(1-alpha/2)^2/cc^2

mmargin <- trunc(mmargin+1) # Round up to next integer

mmargin

} # End definition of function mmargin

Suppose we want a 99% confidence interval around a power of 0.80 to be
accurate to plus or minus 0.01.
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> mmargin(.8,.01,.01)

[1] 10616

The table below shows Monte Carlo sample sizes for estimating power
with a 99% confidence interval.

Table 6.1: Monte Carlo Sample Size Required to Estimate Power with a
Specified 99% Margin of Error

Power Being Estimated
Margin of Error 0.70 0.75 0.80 0.85 0.90 0.99

0.10 140 125 107 85 60 7
0.05 558 498 425 339 239 27
0.01 13,934 12,441 10,616 8,460 5,972 657
0.005 55,734 49,762 42,464 33,838 23,886 2,628
0.001 1,393,329 1,244,044 1,061,584 845,950 59,7141 65,686

It’s somewhat informative to see how the rows of the table were obtained.

> wpow <- c(.7,.75,.8,.85,.9,.99)

> mmargin(wpow,.1,.01)

[1] 140 125 107 85 60 7

> mmargin(wpow,.05,.01)

[1] 558 498 425 339 239 27

> mmargin(wpow,.01,.01)

[1] 13934 12441 10616 8460 5972 657

> mmargin(wpow,.005,.01)

[1] 55734 49762 42464 33838 23886 2628

> mmargin(wpow,.001,.01)

[1] 1393329 1244044 1061584 845950 597141 65686

Equations (6.1) and (6.2) are general; they apply to the Monte Carlo
estimation of any probability, and Table 6.1 applies to any Monte Carlo
estimation of power. Let’s return to the specific example at hand. Suppose
we the population standard deviation of the Control Group is 2 and the
standard deviation of the Experimental Group is 6. We’ll let the population
means be µ1 = 1 and µ2 = 3, so that the difference between population
means is half the average within-group population standard deviation.

To select a good starting value of n, let’s pretend that the standard
deviations are equal to the average value, and we are planning an ordinary
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two-sample t-test. Referring to formula (4.4) for the non-centrality parameter
of the non-central F -distribution, we’ll let q = 1

2
; this is optimal when the

variances are equal. Since δ = 1
2
, we have φ = n q(1−q) δ2 = n

16
. Here’s some

S. It’s short — and sweet. Well, maybe it’s an acquired taste. It’s also true
that I know this problem pretty well, so I knew a good range of n values to
try.

> n <- 125:135

> pow <- 1-pf(qf(.95,1,(n-2)),1,(n-2),(n/16))

> cbind(n,pow)

n pow

[1,] 125 0.7919594

[2,] 126 0.7951683

[3,] 127 0.7983349

[4,] 128 0.8014596

[5,] 129 0.8045426

[6,] 130 0.8075844

[7,] 131 0.8105855

[8,] 132 0.8135460

[9,] 133 0.8164666

[10,] 134 0.8193475

[11,] 135 0.8221892

We will start the unequal variance search at n = 128. And, though we
are interested in more accuracy, it makes sense to start with a target margin
of error of 0.05. The idea is to start out with rough estimation, and get more
accurate only once we think we are close to the right n.

> n1 <- 64 ; mu1 <- 1 ; sd1 <- 2 # Control Group

> n2 <- 64 ; mu2 <- 3 ; sd2 <- 6 # Experimental Group

>

> con <- rnorm(n1,mu1,sd1) ; exp <- rnorm(n2,mu2,sd2)

> help(t.test)

The output of help is omitted, but we learn that the default is a test assuming
unequal variances – just what we want.
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> t.test(con,exp)

Welch Two Sample t-test

data: con and exp

t = -2.4462, df = 78.609, p-value = 0.01667

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-3.4632952 -0.3556207

sample estimates:

mean of x mean of y

1.117435 3.026893

> t.test(con,exp)[1]

$statistic

t

-2.446186

> t.test(con,exp)[3]

$p.value

[1] 0.01667109

>

> m <- 500 # Monte Carlo sample size (Number of simulations)

> numsig <- 0 # Initializing

> for(i in 1:m)

+ {

+ con <- rnorm(n1,mu1,sd1) ; exp <- rnorm(n2,mu2,sd2)

+ numsig <- numsig+(t.test(con,exp)[3]<.05)

+ }

> pow <- numsig/m

> cat ("Monte Carlo Power = ",pow,"\n") ; cat ("\n")

Monte Carlo Power = 0.708

> m <- 500 # Monte Carlo sample size (Number of simulations)

> numsig <- 0 # Initializing

> for(i in 1:m)

+ {

+ con <- rnorm(n1,mu1,sd1) ; exp <- rnorm(n2,mu2,sd2)

26



+ numsig <- numsig+(t.test(con,exp)[3]<.05)

+ }

> pow <- numsig/m

> cat ("Monte Carlo Power = ",pow,"\n") ; cat ("\n")

Monte Carlo Power = 0.698

Try it again.

>

> m <- 500 # Monte Carlo sample size (Number of simulations)

> numsig <- 0 # Initializing

> for(i in 1:m)

+ {

+ con <- rnorm(n1,mu1,sd1) ; exp <- rnorm(n2,mu2,sd2)

+ numsig <- numsig+(t.test(con,exp)[3]<.05)

+ }

> pow <- numsig/m

> cat ("Monte Carlo Power = ",pow,"\n") ; cat ("\n")

Monte Carlo Power = 0.702

Try a larger sample size.

> n1 <- 80 ; mu1 <- 1 ; sd1 <- 2 # Control Group

> n2 <- 80 ; mu2 <- 3 ; sd2 <- 6 # Experimental Group

> m <- 500 # Monte Carlo sample size (Number of simulations)

> numsig <- 0 # Initializing

> for(i in 1:m)

+ {

+ con <- rnorm(n1,mu1,sd1) ; exp <- rnorm(n2,mu2,sd2)

+ numsig <- numsig+(t.test(con,exp)[3]<.05)

+ }

> pow <- numsig/m

> cat ("Monte Carlo Power = ",pow,"\n") ; cat ("\n")

Monte Carlo Power = 0.812

Try it again.

> n1 <- 80 ; mu1 <- 1 ; sd1 <- 2 # Control Group

> n2 <- 80 ; mu2 <- 3 ; sd2 <- 6 # Experimental Group
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> m <- 500 # Monte Carlo sample size (Number of simulations)

> numsig <- 0 # Initializing

> for(i in 1:m)

+ {

+ con <- rnorm(n1,mu1,sd1) ; exp <- rnorm(n2,mu2,sd2)

+ numsig <- numsig+(t.test(con,exp)[3]<.05)

+ }

> pow <- numsig/m

> cat ("Monte Carlo Power = ",pow,"\n") ; cat ("\n")

Monte Carlo Power = 0.792

It seems that was a remarkably lucky guess. Now seek margin of error around
0.01.

>

> m <- 10000 # Monte Carlo sample size (Number of simulations)

> numsig <- 0 # Initializing

> for(i in 1:m)

+ {

+ con <- rnorm(n1,mu1,sd1) ; exp <- rnorm(n2,mu2,sd2)

+ numsig <- numsig+(t.test(con,exp)[3]<.05)

+ }

> pow <- numsig/m

> cat ("Monte Carlo Power = ",pow,"\n") ; cat ("\n")

Monte Carlo Power = 0.8001

> merror <- function(phat,m,alpha) # (1-alpha)*100% merror for a proportion

+ {

+ z <- qnorm(1-alpha/2)

+ merror <- z * sqrt(phat*(1-phat)/m) # m is (Monte Carlo) sample size

+ merror

+ }

> margin <- merror(.8001,10000,.01) ; margin

[1] 0.01030138

> cat("99% CI from ",(pow-margin)," to ",(pow+margin),"\n")

99% CI from 0.7897986 to 0.810

This is very nice, except that I can’t believe equal sample sizes are optimal
when the variances are unequal. Let’s try sample sizes proportional to the
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standard deviations, so n1 = 40 and n2 = 120. The idea is that perhaps the
two population means should be estimated with roughly the same precision,
and we need a bigger sample size in the experimental condition to compensate
for the larger variance. Well, actually I chose the relative sample sizes to
minimize the standard deviation of the sampling distribution of the difference
between means — the quantity that is estimated by the denominator of the
t statistic.

> n1 <- 40 ; mu1 <- 1 ; sd1 <- 2 # Control Group

> n2 <- 120 ; mu2 <- 3 ; sd2 <- 6 # Experimental Group

> m <- 500 # Monte Carlo sample size (Number of simulations)

> numsig <- 0 # Initializing

> for(i in 1:m)

+ {

+ con <- rnorm(n1,mu1,sd1) ; exp <- rnorm(n2,mu2,sd2)

+ numsig <- numsig+(t.test(con,exp)[3]<.05)

+ }

> pow <- numsig/m

> cat ("Monte Carlo Power = ",pow,"\n") ; cat ("\n")

Monte Carlo Power = 0.89

> margin <- merror(pow,m,.01)

> cat("99% CI from ",(pow-margin)," to ",(pow+margin),"\n")

99% CI from 0.8539568 to 0.9260432

>

> # This is promising. Get some precision.

>

> n1 <- 40 ; mu1 <- 1 ; sd1 <- 2 # Control Group

> n2 <- 120 ; mu2 <- 3 ; sd2 <- 6 # Experimental Group

> m <- 10000 # Monte Carlo sample size (Number of simulations)

> numsig <- 0 # Initializing

> for(i in 1:m)

+ {

+ con <- rnorm(n1,mu1,sd1) ; exp <- rnorm(n2,mu2,sd2)

+ numsig <- numsig+(t.test(con,exp)[3]<.05)

+ }

> pow <- numsig/m

> cat ("Monte Carlo Power = ",pow,"\n") ; cat ("\n")
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Monte Carlo Power = 0.8803

> margin <- merror(pow,m,.01)

> cat("99% CI from ",(pow-margin)," to ",(pow+margin),"\n")

99% CI from 0.8719386 to 0.8886614

So again we see that power depends on design as well as on effect size and
sample size. It will be left as an exercise to find out how much sample size
we could save (over the n1 = n2 = 80 solution) by taking this into account
in the present case.

Finally, it should be clear that R has a t-test function, and the custom
function ttest was unnecessary. What other classical tests are available?

> library(help=ctest)

ctest Classical Tests

Description:

Package: ctest

Version: 1.4.0

Priority: base

Title: Classical Tests

Author: Kurt Hornik <Kurt.Hornik@ci.tuwien.ac.at>, with major

contributions by Peter Dalgaard <p.dalgaard@kubism.ku.dk> and

Torsten Hothorn <Torsten.Hothorn@rzmail.uni-erlangen.de>.

Maintainer: R Core Team <R-core@r-project.org>

Description: A collection of classical tests, including the

Ansari-Bradley, Bartlett, chi-squared, Fisher, Kruskal-Wallis,

Kolmogorov-Smirnov, t, and Wilcoxon tests.

License: GPL

Index:

ansari.test Ansari-Bradley Test

bartlett.test Bartlett Test for Homogeneity of Variances

binom.test Exact Binomial Test

chisq.test Pearson’s Chi-squared Test for Count Data
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cor.test Test for Zero Correlation

fisher.test Fisher’s Exact Test for Count Data

fligner.test Fligner-Killeen Test for Homogeneity of

Variances

friedman.test Friedman Rank Sum Test

kruskal.test Kruskal-Wallis Rank Sum Test

ks.test Kolmogorov-Smirnov Tests

mantelhaen.test Cochran-Mantel-Haenszel Chi-Squared Test for

Count Data

mcnemar.test McNemar’s Chi-squared Test for Count Data

mood.test Mood Two-Sample Test of Scale

oneway.test Test for Equal Means in a One-Way Layout

pairwise.prop.test Pairwise comparisons of proportions

pairwise.t.test Pairwise t tests

pairwise.table Tabulate p values for pairwise comparisons

pairwise.wilcox.test Pairwise Wilcoxon rank sum tests

power.prop.test Power calculations two sample test for of

proportions

power.t.test Power calculations for one and two sample t

tests

print.pairwise.htest Print method for pairwise tests

print.power.htest Print method for power calculation object

prop.test Test for Equal or Given Proportions

prop.trend.test Test for trend in proportions

quade.test Quade Test

shapiro.test Shapiro-Wilk Normality Test

t.test Student’s t-Test

var.test F Test to Compare Two Variances

wilcox.test Wilcoxon Rank Sum and Signed Rank Tests
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Chapter 7

Computer-intensive Tests

This chapter covers two methods of statistical inference in which computing
power and random number generation largely substitute for statistical theory:
randomization tests and tests based on the bootstrap. These methods allow
the creation of customized non-parametric tests without having to produce
a new statistical theory each time.

7.1 Permutation Tests and Randomization Tests

7.1.1 Permutation Tests

Randomization tests use the Law of Large Numbers to approximate permu-
tation tests, so we will begin with permutation tests. A permutation is an
arrangement of a set of objects in some order; so for example, we say there
are 5! = 5× 4× 3× 2× 1 permutations of 5 objects. That is, 5 objects may
be arranged in 120 different orders.
Permutation tests are most natural in the setting of a true experimental

study with random assignment of subjects to treatments, so that all possible
assignments are equally likely. The reasoning goes like this. If the treatment
is completely ineffective, then the data are what they are, and the only reason
that some test statistic might differ between treatments is by chance, because
of the random assignment. This is the null hypothesis.
The set of all possible permutations of the data yields the set of all possible

assignments to experimental conditions. Under the null hypothesis, these
are equally likely. This does not mean that all values of the test statistic
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are equally likely; not at all! Depending on the particular values of the data,
there might be quite a few ties, and the distribution of the test statistic might
have an arbitrarily peculiar shape. However, if we had enough time, we could
calculate exactly what it is, as follows.
Generate all possible permutations of the data. For each permutation,

compute the value of the test statistic. The histogram of the test statistic’s
values (to be precise, the relative frequency histogram of those values) is
called the permutation distribution of the test statistic.
If the null hypothesis holds, the test statistic has the permutation distri-

bution. If not, it has some other distribution. Suppose the observed value
of the test statistic (that is, the one that we computed from the unscram-
bled data) is far out on the tail of the permutation distribution. Then the
data may be deemed unlikely given the hull hypothesis — possibly unlikely
enough so that the null hypothesis may be rejected, and we may conclude
that the treatment has some effect.
In particular, the proportion of the permutation distribution at or beyond

the observed test statistic will be called the permutation p-value. As
usual,if p < 0.05, we’ll claim statistical significance.
Don’t you think this is more reasonable than doing an experiment with

random assignment, and then proceeding to assume a normal distribution
in some hypothetical “population” of subjects who might have received the
various experimental treatments? Fisher (who came up with permutation
tests as well as the F -test) thought so. In his classic Statistical Methods for
Research Workers (1936) he wrote, after describing how to do a permutation
test,

Actually, the statistician does not carry out this very tedious
process but his conclusions have no justification beyond the fact
they could have been arrived at by this very elementary method.

To summarize, a permutation test is conducted by following these three
steps.

1. Compute some test statistic using the set of original observations

2. Re-arrange the observations in all possible orders, computing the test
statistic each time.

3. Calculate the permutation test p-value, which is the proportion of test
statistic values from the re-arranged data that equal or exceed the value
of the test statistic from the original data.
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Several comments about permutation tests are in order.

• Please notice that no distribution at all is being assumed for the data.
They are what they are, period. In fact, for observational data as well
as experimental data, permutation tests are distribution-free under the
null hypothesis. In this sense, permutation tests are non-parametric.

• For observational studies too, the null hypothesis is that the indepen-
dent variable(s) and dependent variable(s) are independent.

• It’s even better than that. Bell and Doksum (1967) proved that any
valid distribution test of independence must be a permutation test
(maybe a permutation test in disguise).

• Some non-parametric methods depend on large sample sizes for their
validity. Permutation tests do not. Even for tiny samples, the chance
of false significance cannot exceed 0.05.

• It doesn’t matter if data are categorical or quantitative. By scrambling
the data, any possible relationship between IV and DV is destroyed.

• If either IV or DV is multivariate, scramble vectors of data.

• The explanation of permutation tests referred to “the” test statistic,
without indicating what that test statistic might be. In fact, the test
statistic is up to you. No matter what you choose, the chance of false
significance is limited to 0.05.

What choice is best? It depends on the exact way in which the in-
dependent and dependent variables are related. A test statistic that
captures the nature of the dependence will yield a more powerful, and
hence a better test. So one option is to use your intuition, and make
something up. Another option is to look in a book like Good’s Permu-
tation Tests. There, you’ll find good suggestions for a lot of common
hypothesis-testing problems. These suggestions are not just based on
hunches. They are based on research, in which the statistical researcher
has tried to derive a test statistic with maximum power for some class
of alternative hypotheses. If you think the null hypothesis might be
false in the specified way, such a test statistic will likely perform better
than anything you happen to come up with.
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Many scientists who use permutation tests just compute something
traditional like an F statistic, but compare it to a permutation distri-
bution rather than the F distribution. You usually can’t go too far
wrong with this approach. It’s optimal when the traditional assump-
tions hold, quite good when they almost hold, and the resulting tests
tend to become very powerful for a broad range of alternative hypothe-
ses as the sample size increases.

Another advantage of using traditional test statistics is that everyone
has heard of them, and they do not arouse suspicion. If you make up
something strange, people may think that you tried more traditional
quantities first, and then eventually found a statistic that made the
test significant. There’s no doubt about it; you can fraudulently obtain
significance with a permutation test by fishing for a test statistic until
you find one that exploits a chance pattern in the data.

• Even with some combinatoric simplification (you can often get away
without listing all the permutations) and a lot of computing power,
permutation tests are not easy to do in practice. Fisher himself consid-
ered permutation tests to be entirely hypothetical, but that was before
computers.

• One way around the computational problem is to convert the data to
ranks, and then do it. Then, permutation distributions can be figured
out in advance, by a combination of cleverness and brute force. All the
common non-parametric rank tests are permutation tests carried out
on ranks. Fisher’s exact test is a permutation test for categorical data.

Often, you’ll see Z or chi-square statistics for the rank tests. Since the
normal and chi-square distributions are continuous, while permutation
distributions are always discrete, you know these have to be large-
sample approximations based somehow on the Central Limit Theorem.
But aren’t permutation tests valid for small samples? Yes! The way it
works is that good nonparametric books have tables that give exact crit-
ical values for small samples; the Z and chi-square approximations are
used once the sample size becomes big enough for the approximations
to be valid – and big enough so that the exact permutation distribution
(even of the ranks) is hard to compute. But statistical software often
gives you p-values based on the large-sample approximation, regardless
of what the sample size is. This throws away the small-sample virtues
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of the tests. If you use rank tests with small samples, it’s up to you to
find the appropriate table and learn how to use it.

• The modern way around the computational problem is to approximate
(that is, estimate) the p-value of a permutation test using the Law of
Large Numbers. That’s called a randomization test, and it’s the topic
of the next section.

7.1.2 Randomization Tests

The permutation test p-value is the area under the curve (relative frequency
histogram) of the permutation distribution, at or beyond the observed value
of the test statistic. When we approximate the p-value of a permutation test
by simulation, it’s called a randomization test. Here’s how to do it.

• Place the values of the dependent variable in a random order.

• Compute the test statistic for the randomly shuffled data.

In this way, we have randomly sampled a value of the test statistic from its
permutation distribution. Carry out this procedure a large number of times.
By the Law of Large Numbers, the the permutation p-value is approximated
by the proportion of randomly generated values that exceed or equal the
observed value of the test statistic. This proportion is the p-value of the
randomization test.
The approximation gets better as the Monte Carlo sample size increases.

We’ll denote the Monte Carlo sample size by m, the permutation test p-value
by p, and the randomization test p-value by p̂.
How big should the Monte Carlo sample size be? Here’s one approach.

As usual, it’s based on a normal approximation to the binomial distribution.

##########################################################

# Choose Monte Carlo sample size for a randomization #

# test. Estimate p (p-value of permutation test) with #

# p-hat. For a given true p (default = 0.04) and #

# a given alpha (default = 0.05), returns the MC sample #

# size needed to get p-hat < alpha with probability cc #

# (default = .99). #

##########################################################
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randm <- function(p=.04,alpha=0.05,cc=.99)

{

randm <- qnorm(cc)^2 * p*(1-p) / (alpha-p)^2

randm <- trunc(randm+1) # Round up to next integer

randm

} # End of function randm

> probs <- c(.01,.02,.03,.04,.045,.049)

> cbind(probs,randm(p=probs)) # Use default values of alpha and cc

[,1] [,2]

[1,] 0.010 34

[2,] 0.020 118

[3,] 0.030 394

[4,] 0.040 2079

[5,] 0.045 9304

[6,] 0.049 252189

Student’s Sleep Data

This example is simple as well as classical, but its simplicity allows the ex-
amination of basic issues. The data are from a paper by William Gossett,
who published anonymously under the name “Student,” and after whom the
Student’s t distribution is named. The data show the effect of two soporific
drugs (increase in hours of sleep) on groups consisting of 10 patients each.
The independent variable is group, and the dependent variable is extra (for
extra hours of sleep). The source is Student (1908) The probable error of the
mean. Biometrika, 6, 20.

credit.erin > cat sleep.dat

extra group

1 0.7 1

2 -1.6 1

3 -0.2 1

4 -1.2 1

5 -0.1 1

6 3.4 1

7 3.7 1

8 0.8 1
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9 0.0 1

10 2.0 1

11 1.9 2

12 0.8 2

13 1.1 2

14 0.1 2

15 -0.1 2

16 4.4 2

17 5.5 2

18 1.6 2

19 4.6 2

20 3.4 2

credit.erin > R --vanilla < randex1.R > randex1.out

credit.erin > cat randex1.out

R : Copyright 2001, The R Development Core Team

Version 1.4.0 (2001-12-19)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type ‘license()’ or ‘licence()’ for distribution details.

R is a collaborative project with many contributors.

Type ‘contributors()’ for more information.

Type ‘demo()’ for some demos, ‘help()’ for on-line help, or

‘help.start()’ for a HTML browser interface to help.

Type ‘q()’ to quit R.

> # randex1.R : First randomization test example, with Student’s Sleep Data

> # Monte Carlo sample size m may be set interactively

> set.seed(4444) # Set seed for random number generation

>

> # Define margin of error functions

> merror <- function(phat,M,alpha) # (1-alpha)*100% merror for a proportion

+ {

+ z <- qnorm(1-alpha/2)
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+ merror <- z * sqrt(phat*(1-phat)/M) # M is (Monte Carlo) sample size

+ merror

+ }

> mmargin <- function(p,cc,alpha)

+ # Choose m to get (1-alpha)*100% margin of error equal to cc

+ {

+ mmargin <- p*(1-p)*qnorm(1-alpha/2)^2/cc^2

+ mmargin <- trunc(mmargin+1) # Round up to next integer

+ mmargin

+ } # End definition of function mmargin

> ##############

> sleepy <- read.table("sleep.dat")

> t.test(extra ~ group, var.equal=TRUE, data = sleepy)

Two Sample t-test

data: extra by group

t = -1.8608, df = 18, p-value = 0.07919

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-3.3638740 0.2038740

sample estimates:

mean in group 1 mean in group 2

0.75 2.33

> t.test(extra ~ group, var.equal=TRUE, data = sleepy)[1]

$statistic

t

-1.860813

> # It’s a list element, not a number

> ObsT <- t.test(extra ~ group, var.equal=TRUE, data = sleepy)[[1]]

> ObsT

t

-1.860813

>

> # If M is not assigned, it’s 1210

> if(length(objects(pattern="M"))==0) M <- 1210

8



> cat("Monte Carlo Sample size M = ",M,"\n")

Monte Carlo Sample size M = 1210

> dv <- sleepy$extra ; iv <- sleepy$group

> trand <- numeric(M)

> for(i in 1:M)

+ { trand[i] <- t.test(sample(dv) ~ iv, var.equal=TRUE)[[1]] }

> randp <- length(trand[abs(trand)>=abs(ObsT)])/M

> margin <- merror(randp,M,.01)

>

> cat ("\n")

> cat ("Randomization p-value = ",randp,"\n")

Randomization p-value = 0.08429752

> cat("99% CI from ",(randp-margin)," to ",(randp+margin),"\n")

99% CI from 0.06372398 to 0.1048711

> cat ("\n")

>

> # Now try difference between medians

> cat("\n")

> cat("Median extra sleep for Group = 1: ",median(dv[iv==1]),"\n")

Median extra sleep for Group = 1: 0.35

> cat("Median extra sleep for Group = 2: ",median(dv[iv==2]),"\n")

Median extra sleep for Group = 2: 1.75

> ObsMedDif <- abs(median(dv[iv==1])-median(dv[iv==2]))

> cat("Absolute difference is ",ObsMedDif,"\n")

Absolute difference is 1.4

> cat("\n")

> trand2 <- numeric(M)

> for(i in 1:M)

+ {

+ rdv <- sample(dv)

+ trand2[i] <- abs(median(rdv[iv==1])-median(rdv[iv==2]))

+ }

> randp2 <- length(trand2[abs(trand2)>=abs(ObsMedDif)])/M

> margin <- merror(randp2,M,.01)
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>

> cat ("\n")

> cat ("Randomization p-value for diff bet medians = ",randp2,"\n")

Randomization p-value for diff bet medians = 0.2090909

> cat("99% CI from ",(randp2-margin)," to ",(randp2+margin),"\n")

99% CI from 0.1789778 to 0.239204

> cat ("\n")

$

The main conclusion here is that the difference between group means is
not significant. The traditional t-test (in fact, the first published t-test!)
and the randomization test both have p-values around 0.08. This is not too
surprising. We randomized the t statistic, and the traditional t-test is going
to be appropriate for these data.
Then we try another test statistic — the difference between medians.

This time we get a p-value near 0.21. This probably reflects lower power
of the randomization test when we test medians rather than means on data
that are actually normal.
Another thing to notice is that the 99% confidence interval for p does not

include 0.05. This means that p̂ is not just less than 0.05, it’s significantly
less than 0.05 (at the 0.01 level). This is good. In fact, maybe it should be
obligatory.
If it’s really obligatory, then we need some kind of power analysis for

choosing m. Letting p denote the true p-value from the permutation test,
and letting α denote the significance level (for us, α = 0.05 unless we’re
applying a Bonferroni correction), the traditional statistic for testing whether
p is different from α would be

Z∗ =
P̂ − α√
α(1−α)
m

,

which has a standard normal distribution under the null hypothesis. Some
medium-grade calculations show that the probability that P̂ will be signifi-
cantly different from α at level L (i.e., the power) with a true p-value of p is
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approximately

1−Pr

√
m(α− p)√
p(1− p)

− z1−L/2

√√√√α(1− α)
p(1− p) < Z <

√
m(α− p)√
p(1− p)

+ z1−L/2

√√√√α(1− α)
p(1− p)


where Z has a standard normal distribution, and the approximation is ex-
cellent for m larger than a few hundred.
The preceding formula is just for the record, and to provide another op-

portunity to illustrate how a formula can be transcribed more or less directly
into an S function.

# Power for detecting p-hat significantly different from alpha at

# significance level L, given true p and MC sample size M.

randmpow <- function(M,alpha=0.05,p=0.04,L=0.01)

{

z <- qnorm(1-L/2)

left <- sqrt(M)*(alpha-p)/sqrt(p*(1-p))

right <- sqrt( alpha/p * (1-alpha)/(1-p) )

randmpow <- 1 - pnorm(left+z*right) + pnorm(left-z*right)

randmpow

} # End function randmpow

The function findm uses randmpow to search for the Monte Carlo sample size
needed for a specified power. Again, the power we’re talking about here is
the power of a test for whether the randomization test p-value P̂ is different
from 0.05.

findm <- function(wantpow=.8,mstart=1,aa=0.05,pp=0.04,LL=0.01)

{

pow <- 0

mm <- mstart

while(pow < wantpow)

{

mm <- mm+1

pow <- randmpow(mm,aa,pp,LL)

} # End while

findm <- mm

findm

} # End function findm
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Table 7.1.2 shows the result of applying the function findm to a selected
set of true p values and desired power values.

Table 7.1: Monte Carlo sample size required to have specified probability
that P̂ will be significantly different from 0.05 at the 0.01 level, when the
true p-value is P

Probability of Significance
P 0.70 0.75 0.80 0.85 0.90

0.0001 129 130 131 132 133
0.0010 140 142 144 148 151
0.0050 177 184 191 199 210
0.0100 236 247 261 276 297
0.0200 448 478 513 555 610
0.0300 1,059 1,144 1,243 1,363 1,522
0.0400 4,411 4,811 5,276 5,845 6,602
0.0450 17,962 19,669 21,660 24,103 27,362
0.0550 18,548 20,459 22,697 25,452 29,143
0.0600 4,705 5,207 5,796 6,522 7,496
0.0700 1,209 1,345 1,506 1,705 1,974
0.0800 551 616 693 789 919
0.0900 317 356 403 461 539
0.1000 207 234 265 305 358
0.3000 11 13 15 18 22
0.5000 4 4 5 6 8
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The Greenhouse Data Again

With permutation and randomization tests, it’s a tricky business to carry
out a test a set of independent variables while controlling for another set.
It’s easy to preserve the relationships among multiple independent variables
or multiple dependent variables by keeping them together, but it’s hard to
preserve the relationship of the dependent variable to one set of independent
variables while destroying its relationship to another set by randomization.
There’s one very important case where this is not a problem. In factorial

designs with equal or proportional sample sizes, the independent variables are
completely unrelated to each other, so we can just randomize the dependent
variable (or collection of dependent variables). Here’s an example from the
greenhouse data.

credit.erin > head green.dat

PLANT MCG MEANLNG

1 1 7 50.714

2 1 9 10.793

3 3 8 106.514

4 3 7 102.243

5 3 9 73.214

6 1 3 10.471

7 2 2 13.536

credit.erin > R

> green <- read.table("green.dat")

> plant <- factor(green$PLANT) ; mcg <- factor(green$MCG)

> meanlng <- green$MEANLNG #$

> obs <- anova(lm(meanlng ~ plant*mcg))

> obs

Analysis of Variance Table

Response: meanlng

Df Sum Sq Mean Sq F value Pr(>F)

plant 2 221695 110848 113.9032 < 2.2e-16 ***

mcg 5 58740 11748 12.0719 5.894e-09 ***

plant:mcg 10 47581 4758 4.8893 1.273e-05 ***

13



Residuals 90 87586 973

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> # This agrees with what we got from SAS

> obsF <- obs[1:3,4]

> obsF

1 2 3

113.903170 12.071871 4.889303

>

> set.seed(4444)

> M <- 500 ; simf <- NULL

> for(i in 1:M)

+ {

+ simf <- rbind(simf,anova(lm(sample(meanlng)~plant*mcg))[1:3,4])

+ } # Next i (next simulation)

>

> plantp <- length(simf[,1][simf[,1]>=obsF[1]])/M ; plantp

[1] 0

> max(simf[,1])

[1] 7.460185

> min(simf[,1])

[1] 0.0003066219

> mcgp <- length(simf[,2][simf[,2]>=obsF[2]])/M ; mcgp

[1] 0

> intp <- length(simf[,3][simf[,3]>=obsF[3]])/M ; intp

[1] 0

> max(simf[,2])

[1] 4.54209

> max(simf[,3])

[1] 3.209669

The randomization p-value is approximately zero. We can’t compute a
meaningful confidence interval (why not?) but we can conclude that the
permutation p-value is less than 0.05, because

> .05*sqrt(500)/sqrt(.05*.95)

[1] 5.129892
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The Twins Data

Sherlock Holmes and the hat.
Long ago, there was more space in journals, and a journal called Human

Biology used to publish raw data. The twin data contains educational test
scores and physical measurements for a sample of high school age identical
and fraternal twin pairs. Members of each twin pair were of the same sex.
Except for a few cases where the parents were not sure, Twin One was born
first and Twin Two was born second. The variables are:

1. SEX: 0=Male, 1=Female

2. IDENT: 0=Fraternal 1=Identical

3. PROGMAT1: Progressive matrices (puzzle) score for twin 1

4. REASON1: Reasoning score for twin 1

5. VERBAL1: Verbal (reading and vocabulary) score for twin 1

6. PROGMAT2: Progressive matrices (puzzle) score for twin 2

7. REASON2: Reasoning score for twin 2

8. VERBAL2: Verbal (reading and vocabulary) score for twin 2

9. HEADLNG1: Head Length of Twin 1

10. HEADBRD1: Head Breadth of Twin 1

11. HEADCIR1: Head Circumference of Twin 1

12. HEADLNG2: Head Length of Twin 2

13. HEADBRD2: Head Breadth of Twin 2

14. HEADCIR2: Head Circumference of Twin 2

This is a subset of the original data. Some variables like height and
weight are not included. The reference is Clark, P. J., Vandenberg, S. G., and
Proctor, C. H. (1961), ”On the relationship of scores on certain psychological
tests with a number of anthropometric characters and birth order in twins,”
Human Biology, 33, 163-180.
We want to see if performance on the educational tests is related to head

size.
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/res/jbrunner/www/442/S > head smalltwin.dat

sex ident progmat1 reason1 verbal1 progmat2 reason2 verbal2 headlng1 headbrd1

headcir1 headlng2 headbrd2 headcir2

1 1 1 48 53 66 35 42 61 183 140 522 188 138 535

2 1 1 47 69 88 53 74 84 189 137 542 186 140 543

3 1 1 35 68 92 42 61 86 185 145 549 186 140 550

4 1 1 34 42 73 26 38 68 183 151 544 185 147 545

5 1 1 49 71 95 38 72 97 174 145 534 186 143 543

6 1 1 50 90 122 46 82 101 191 143 551 191 141 552

7 1 1 25 30 42 28 37 43 184 143 511 186 143 535

8 1 1 25 74 64 41 78 65 180 146 532 179 144 527

9 1 1 23 19 52 23 36 59 193 146 560 191 145 551

/res/jbrunner/www/442/S > R

> twinframe <- read.table("smalltwin.dat")

> sex <- twinframe$sex ; ident <- twinframe$ident

> sexfac <- factor(twinframe$sex,levels=c(0,1),label=c("Male","Female"))

> identfac <- factor(twinframe$ident,levels=c(0,1),

+ label=c("Fraternal","Identical"))

> table(sexfac,identfac)

identfac

sexfac Fraternal Identical

Male 13 21

Female 20 20

> mental <- twinframe[,3:8] # All rows, cols 3 to 8

> phys <- twinframe[,9:14] # All rows, cols 9 to 14

> cor(mental,phys)

headlng1 headbrd1 headcir1 headlng2 headbrd2 headcir2

progmat1 0.1945786 0.02669260 0.2046808 0.2070390 0.09577333 0.2204541

reason1 0.1232977 0.03186775 0.2052615 0.0978289 0.04733736 0.1955942

verbal1 0.2259473 0.05372263 0.2452086 0.2132409 0.07487114 0.2333709

progmat2 0.2863199 0.19917360 0.3128950 0.3446627 0.22308623 0.3739253

reason2 0.2127977 0.06950846 0.2767257 0.1226885 0.11543427 0.2521013

verbal2 0.2933130 0.16693928 0.3242051 0.2537764 0.22801336 0.3350497

>

> # But that’s IGNORING sex and ident-frat. Want to CONTROL for them.
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> n <- length(sex)

> mf <- (1:n)[sex==0&ident==0] # mf are indices of male fraternal pairs

> mi <- (1:n)[sex==0&ident==1] # mi are indices of male identical pairs

> ff <- (1:n)[sex==1&ident==0] # ff are indices of female fraternal pairs

> fi <- (1:n)[sex==1&ident==1] # fi are indices of female identical pairs

> mf

[1] 62 63 64 65 66 67 68 69 70 71 72 73 74

> # Sub-sample sizes

> nmf <- length(mf) ; nmi <- length(mi)

> nff <- length(ff) ; nfi <- length(fi)

> nmf ; nmi ; nff ; nfi

[1] 13

[1] 21

[1] 20

[1] 20

> table(sexfac,identfac)

identfac

sexfac Fraternal Identical

Male 13 21

Female 20 20

> # mentalmf are mental scores of male fraternal pairs, etc.

> mentalmf <- mental[mf,] ; physmf <- phys[mf,]

> mentalmi <- mental[mi,] ; physmi <- phys[mi,]

> mentalff <- mental[ff,] ; physff <- phys[ff,]

> mentalfi <- mental[fi,] ; physfi <- phys[fi,]

> mentalmf

progmat1 reason1 verbal1 progmat2 reason2 verbal2

62 58 91 128 54 73 129

63 44 46 79 42 34 42

64 44 43 70 43 36 58

65 36 40 63 42 39 63

66 34 21 53 45 31 70

67 50 70 93 45 67 109

68 50 81 101 41 47 96
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69 31 76 122 43 70 75

70 23 29 62 26 29 42

71 52 66 114 42 69 120

72 48 51 62 30 35 49

73 23 48 78 38 62 87

74 28 38 62 55 70 105

> # First three rows

> mentalmf[1:3,]

progmat1 reason1 verbal1 progmat2 reason2 verbal2

62 58 91 128 54 73 129

63 44 46 79 42 34 42

64 44 43 70 43 36 58

> # Last 3 columns

> mentalmf[,4:6]

progmat2 reason2 verbal2

62 54 73 129

63 42 34 42

64 43 36 58

65 42 39 63

66 45 31 70

67 45 67 109

68 41 47 96

69 43 70 75

70 26 29 42

71 42 69 120

72 30 35 49

73 38 62 87

74 55 70 105

> # Rows in random order

> mentalmf[sample(1:13),]

progmat1 reason1 verbal1 progmat2 reason2 verbal2

71 52 66 114 42 69 120

73 23 48 78 38 62 87

66 34 21 53 45 31 70

69 31 76 122 43 70 75

65 36 40 63 42 39 63

68 50 81 101 41 47 96
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64 44 43 70 43 36 58

70 23 29 62 26 29 42

62 58 91 128 54 73 129

63 44 46 79 42 34 42

74 28 38 62 55 70 105

67 50 70 93 45 67 109

72 48 51 62 30 35 49

>

That’s how we’ll randomize. Back to CONTROLLING for sex, ident.

> # mentalmf are mental scores of male fraternal pairs, etc.

> mentalmf <- mental[mf,] ; physmf <- phys[mf,]

> mentalmi <- mental[mi,] ; physmi <- phys[mi,]

> mentalff <- mental[ff,] ; physff <- phys[ff,]

> mentalfi <- mental[fi,] ; physfi <- phys[fi,]

>

> cor(mentalmf,physmf)

headlng1 headbrd1 headcir1 headlng2 headbrd2 headcir2

progmat1 0.3534186 -0.53715165 0.05247501 -0.1486551 -0.3335911 -0.2541279

reason1 0.4784903 -0.04435345 0.40868525 0.2009069 -0.1853897 0.1574282

verbal1 0.3333061 0.02578888 0.36744645 0.1507982 -0.1958353 0.1267843

progmat2 0.5712273 -0.16389337 0.37080025 0.5622139 -0.1996214 0.4073323

reason2 0.4886337 0.38731941 0.63957418 0.4271557 0.2587126 0.6682264

verbal2 0.5278153 0.25599312 0.62836834 0.3403694 0.1966882 0.6113976

>

> # Don’t want to correlate mental twin 1 with phys twin 2

>

> cor(mentalmf[,1:3],physmf[,1:3])

headlng1 headbrd1 headcir1

progmat1 0.3534186 -0.53715165 0.05247501

reason1 0.4784903 -0.04435345 0.40868525

verbal1 0.3333061 0.02578888 0.36744645

> max(abs(cor(mentalmf[,1:3],physmf[,1:3])))

[1] 0.5371517

>
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> cor(mentalmf[,4:6],physmf[,4:6])

headlng2 headbrd2 headcir2

progmat2 0.5622139 -0.1996214 0.4073323

reason2 0.4271557 0.2587126 0.6682264

verbal2 0.3403694 0.1966882 0.6113976

> max(abs(cor(mentalmf[,4:6],physmf[,4:6])))

[1] 0.6682264

>

>

> cor(mentalmi[,1:3],physmi[,1:3])

headlng1 headbrd1 headcir1

progmat1 0.2334577 0.26536909 0.3193472

reason1 0.2622690 0.37549903 0.3534622

verbal1 0.4436284 0.06643773 0.3480645

> max(abs(cor(mentalmi[,1:3],physmi[,1:3])))

[1] 0.4436284

> cor(mentalmi[,4:6],physmi[,4:6])

headlng2 headbrd2 headcir2

progmat2 0.3645763 0.2537397 0.3699872

reason2 0.1682737 0.4212712 0.3873012

verbal2 0.1814358 0.1590209 0.2112241

> max(abs(cor(mentalmi[,4:6],physmi[,4:6])))

[1] 0.4212712

>

> cor(mentalff[,1:3],physff[,1:3])

headlng1 headbrd1 headcir1

progmat1 -0.09894825 0.1031112 0.1024857

reason1 0.10353527 0.1974691 0.2299249

verbal1 0.04068947 0.1458637 0.0710240

> max(abs(cor(mentalff[,1:3],physff[,1:3])))

[1] 0.2299249

> cor(mentalff[,4:6],physff[,4:6])

headlng2 headbrd2 headcir2

progmat2 -0.05058245 0.3809976 0.1205803

reason2 0.19569669 0.3570053 0.2617820

verbal2 0.24212501 0.3964967 0.2463883

> max(abs(cor(mentalff[,4:6],physff[,4:6])))

[1] 0.3964967
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>

> cor(mentalfi[,1:3],physfi[,1:3])

headlng1 headbrd1 headcir1

progmat1 -0.01443227 -0.34580801 -0.004887716

reason1 0.15174745 0.04052029 0.304039946

verbal1 0.22504203 -0.01581501 0.341174647

> max(abs(cor(mentalfi[,1:3],physfi[,1:3])))

[1] 0.345808

> cor(mentalfi[,4:6],physfi[,4:6])

headlng2 headbrd2 headcir2

progmat2 0.4030654 -0.02036423 0.4244152

reason2 0.3233766 0.05661767 0.4178053

verbal2 0.2702130 0.15930201 0.4025376

> max(abs(cor(mentalfi[,4:6],physfi[,4:6])))

[1] 0.4244152

>

> # test sta will be absobs = 0.6682264

> obsmax <- max( c(

+ cor(mentalmf[,1:3],physmf[,1:3]),

+ cor(mentalmf[,4:6],physmf[,4:6]),

+ cor(mentalmi[,1:3],physmi[,1:3]),

+ cor(mentalmi[,4:6],physmi[,4:6]),

+ cor(mentalff[,1:3],physff[,1:3]),

+ cor(mentalff[,4:6],physff[,4:6]),

+ cor(mentalfi[,1:3],physfi[,1:3]),

+ cor(mentalfi[,4:6],physfi[,4:6]) ) )

>

> obsmax

[1] 0.6682264

>

> obsmin <- min( c(

+ cor(mentalmf[,1:3],physmf[,1:3]),

+ cor(mentalmf[,4:6],physmf[,4:6]),

+ cor(mentalmi[,1:3],physmi[,1:3]),

+ cor(mentalmi[,4:6],physmi[,4:6]),

+ cor(mentalff[,1:3],physff[,1:3]),

+ cor(mentalff[,4:6],physff[,4:6]),

+ cor(mentalfi[,1:3],physfi[,1:3]),
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+ cor(mentalfi[,4:6],physfi[,4:6]) ) )

> obsmin

[1] -0.5371517

>

> absobs <- max(abs(obsmax),abs(obsmin)) # Test Statistic

> absobs

[1] 0.6682264

>

> ####

> # Here’s how we’ll sample. Recall mentalmf <- mental[mf,]

> ####

> mf

[1] 62 63 64 65 66 67 68 69 70 71 72 73 74

> mentalmf

progmat1 reason1 verbal1 progmat2 reason2 verbal2

62 58 91 128 54 73 129

63 44 46 79 42 34 42

64 44 43 70 43 36 58

65 36 40 63 42 39 63

66 34 21 53 45 31 70

67 50 70 93 45 67 109

68 50 81 101 41 47 96

69 31 76 122 43 70 75

70 23 29 62 26 29 42

71 52 66 114 42 69 120

72 48 51 62 30 35 49

73 23 48 78 38 62 87

74 28 38 62 55 70 105

> mental[sample(mf),]

progmat1 reason1 verbal1 progmat2 reason2 verbal2

72 48 51 62 30 35 49

66 34 21 53 45 31 70

62 58 91 128 54 73 129

69 31 76 122 43 70 75

70 23 29 62 26 29 42

71 52 66 114 42 69 120

67 50 70 93 45 67 109

74 28 38 62 55 70 105
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63 44 46 79 42 34 42

68 50 81 101 41 47 96

73 23 48 78 38 62 87

65 36 40 63 42 39 63

64 44 43 70 43 36 58

>

> rmentalmf <- mental[sample(mf),]

> rmentalmi <- mental[sample(mi),]

> rmentalff <- mental[sample(ff),]

> rmentalfi <- mental[sample(fi),]

>

> rcorrs <- c(

+ cor(rmentalmf[,1:3],physmf[,1:3]),

+ cor(rmentalmf[,4:6],physmf[,4:6]),

+ cor(rmentalmi[,1:3],physmi[,1:3]),

+ cor(rmentalmi[,4:6],physmi[,4:6]),

+ cor(rmentalff[,1:3],physff[,1:3]),

+ cor(rmentalff[,4:6],physff[,4:6]),

+ cor(rmentalfi[,1:3],physff[,1:3]),

+ cor(rmentalfi[,4:6],physff[,4:6]) )

>

> min(rcorrs) ; max(rcorrs)

[1] -0.5673855

[1] 0.5166834

> rmin <- NULL ; rmax <- NULL ; rabs <- NULL

>

> # Now simulate

> M <- 200 ; set.seed(4444)

> for(i in 1:M)

+ {

+ rmentalmf <- mental[sample(mf),]

+ rmentalmi <- mental[sample(mi),]

+ rmentalff <- mental[sample(ff),]

+ rmentalfi <- mental[sample(fi),]

+ rcorrs <- c(

+ cor(rmentalmf[,1:3],physmf[,1:3]),

+ cor(rmentalmf[,4:6],physmf[,4:6]),

+ cor(rmentalmi[,1:3],physmi[,1:3]),
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+ cor(rmentalmi[,4:6],physmi[,4:6]),

+ cor(rmentalff[,1:3],physff[,1:3]),

+ cor(rmentalff[,4:6],physff[,4:6]),

+ cor(rmentalfi[,1:3],physff[,1:3]),

+ cor(rmentalfi[,4:6],physff[,4:6]) )

+ rmin <- c(rmin,min(rcorrs))

+ rmax <- c(rmax,max(rcorrs))

+ rabs <- c(rabs,max(abs(min(rcorrs)),abs(max(rcorrs))))

+ }

> cbind(rmin,rmax,rabs)[1:20,] # First 20 rows

rmin rmax rabs

[1,] -0.6521097 0.6024060 0.6521097

[2,] -0.4410713 0.6091124 0.6091124

[3,] -0.5635999 0.3953340 0.5635999

[4,] -0.6655059 0.6937127 0.6937127

[5,] -0.5110777 0.3692450 0.5110777

[6,] -0.4513148 0.7600707 0.7600707

[7,] -0.3180858 0.5724620 0.5724620

[8,] -0.6258317 0.4013421 0.6258317

[9,] -0.4061387 0.5174977 0.5174977

[10,] -0.5004209 0.4688702 0.5004209

[11,] -0.6437074 0.3458846 0.6437074

[12,] -0.4065318 0.2945435 0.4065318

[13,] -0.6115288 0.5631299 0.6115288

[14,] -0.4709578 0.5452405 0.5452405

[15,] -0.6060098 0.6110585 0.6110585

[16,] -0.4220454 0.3177893 0.4220454

[17,] -0.3407132 0.5021933 0.5021933

[18,] -0.5861414 0.3645763 0.5861414

[19,] -0.6137978 0.4693924 0.6137978

[20,] -0.4509271 0.4157352 0.4509271

>

> length(rabs[rabs>=absobs])/M # Two sided

[1] 0.135

> length(rmin[rmin<=obsmin])/M # Lower tailed

[1] 0.395

> length(rmax[rmax>=obsmax])/M # Upper tailed

[1] 0.07
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Now let’s put the wole thing together. Make a file that just does the
analysis and prints the results. How many simulations should we use? I’d
like to make sure that P̂ is significantly different from 0.07, so I run

> findm

function(wantpow=.8,mstart=1,aa=0.05,pp=0.04,LL=0.01)

{

pow <- 0

mm <- mstart

while(pow < wantpow)

{

mm <- mm+1

pow <- randmpow(mm,aa,pp,LL)

} # End while

findm <- mm

findm

} # End function findm

>

> findm(pp=.07)

[1] 1506

and choose m = 1600. First I’ll show you the output, then a listing of the
program twins.R.

> source("twins.R")

Male Fraternal

Twin 1

headlng1 headbrd1 headcir1

progmat1 0.3534186 -0.53715165 0.05247501

reason1 0.4784903 -0.04435345 0.40868525

verbal1 0.3333061 0.02578888 0.36744645

Twin 2

headlng2 headbrd2 headcir2

progmat2 0.5622139 -0.1996214 0.4073323

reason2 0.4271557 0.2587126 0.6682264

verbal2 0.3403694 0.1966882 0.6113976
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Male Identical

Twin 1

headlng1 headbrd1 headcir1

progmat1 0.2334577 0.26536909 0.3193472

reason1 0.2622690 0.37549903 0.3534622

verbal1 0.4436284 0.06643773 0.3480645

Twin 2

headlng2 headbrd2 headcir2

progmat2 0.3645763 0.2537397 0.3699872

reason2 0.1682737 0.4212712 0.3873012

verbal2 0.1814358 0.1590209 0.2112241

Female Fraternal

Twin 1

headlng1 headbrd1 headcir1

progmat1 -0.09894825 0.1031112 0.1024857

reason1 0.10353527 0.1974691 0.2299249

verbal1 0.04068947 0.1458637 0.0710240

Twin 2

headlng2 headbrd2 headcir2

progmat2 -0.05058245 0.3809976 0.1205803

reason2 0.19569669 0.3570053 0.2617820

verbal2 0.24212501 0.3964967 0.2463883

Female Identical

Twin 1

headlng1 headbrd1 headcir1

progmat1 -0.01443227 -0.34580801 -0.004887716

reason1 0.15174745 0.04052029 0.304039946

verbal1 0.22504203 -0.01581501 0.341174647

Twin 2

headlng2 headbrd2 headcir2

progmat2 0.4030654 -0.02036423 0.4244152

reason2 0.3233766 0.05661767 0.4178053

verbal2 0.2702130 0.15930201 0.4025376

Correlations Between Mental and Physical
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Minimum Observed Correlation: -0.5371517

Randomization p-value (one-sided): p-hat = 0.416875

Plus or minus 99% Margin of error = 0.03174979

Maximum Observed Correlation: 0.6682264

Randomization p-value (one-sided): p-hat = 0.10625

Plus or minus 99% Margin of error = 0.01984402

Maximum Observed Absolute Correlation: 0.6682264

Randomization p-value (two-sided): p-hat = 0.199375

Plus or minus 99% Margin of error = 0.02572806

And here is a listing of the program.

# twins.R

# Just do the analysis - no examples or explanation with source("twins.R")

twinframe <- read.table("smalltwin.dat")

sex <- twinframe$sex ; ident <- twinframe$ident

mental <- twinframe[,3:8] # All rows, cols 3 to 8

phys <- twinframe[,9:14] # All rows, cols 9 to 14

n <- length(sex)

mf <- (1:n)[sex==0&ident==0] # mf are indices of male fraternal pairs

mi <- (1:n)[sex==0&ident==1] # mi are indices of male identical pairs

ff <- (1:n)[sex==1&ident==0] # ff are indices of female fraternal pairs

fi <- (1:n)[sex==1&ident==1] # fi are indices of female identical pairs

# Sub-sample sizes

nmf <- length(mf) ; nmi <- length(mi)

nff <- length(ff) ; nfi <- length(fi)

# mentalmf are mental scores of male fraternal pairs, etc.

mentalmf <- mental[mf,] ; physmf <- phys[mf,]

mentalmi <- mental[mi,] ; physmi <- phys[mi,]

mentalff <- mental[ff,] ; physff <- phys[ff,]

mentalfi <- mental[fi,] ; physfi <- phys[fi,]

cat("Male Fraternal \n")

cat(" Twin 1 \n")

print(cor(mentalmf[,1:3],physmf[,1:3]))
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cat(" Twin 2 \n")

print(cor(mentalmf[,4:6],physmf[,4:6]))

cat(" \n")

cat("Male Identical \n")

cat(" Twin 1 \n")

print(cor(mentalmi[,1:3],physmi[,1:3]))

cat(" Twin 2 \n")

print(cor(mentalmi[,4:6],physmi[,4:6]))

cat(" \n")

cat("Female Fraternal \n")

cat(" Twin 1 \n")

print(cor(mentalff[,1:3],physff[,1:3]))

cat(" Twin 2 \n")

print(cor(mentalff[,4:6],physff[,4:6]))

cat(" \n")

cat("Female Identical \n")

cat(" Twin 1 \n")

print(cor(mentalfi[,1:3],physfi[,1:3]))

cat(" Twin 2 \n")

print(cor(mentalfi[,4:6],physfi[,4:6]))

cat(" \n")

# test sta will be absobs = 0.6682264

# Keep track of minimum (neg corr: obsmin = -0.5371517) and max too.

obsmax <- max( c(

cor(mentalmf[,1:3],physmf[,1:3]),

cor(mentalmf[,4:6],physmf[,4:6]),

cor(mentalmi[,1:3],physmi[,1:3]),

cor(mentalmi[,4:6],physmi[,4:6]),

cor(mentalff[,1:3],physff[,1:3]),

cor(mentalff[,4:6],physff[,4:6]),

cor(mentalfi[,1:3],physfi[,1:3]),

cor(mentalfi[,4:6],physfi[,4:6]) ) )
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obsmin <- min( c(

cor(mentalmf[,1:3],physmf[,1:3]),

cor(mentalmf[,4:6],physmf[,4:6]),

cor(mentalmi[,1:3],physmi[,1:3]),

cor(mentalmi[,4:6],physmi[,4:6]),

cor(mentalff[,1:3],physff[,1:3]),

cor(mentalff[,4:6],physff[,4:6]),

cor(mentalfi[,1:3],physfi[,1:3]),

cor(mentalfi[,4:6],physfi[,4:6]) ) )

absobs <- max(abs(obsmax),abs(obsmin)) # Test Statistic

rmin <- NULL ; rmax <- NULL ; rabs <- NULL

# Now simulate. Want p-hat sig diff from 0.07. Use findm(pp=.07), get

# 1506, so use m=1600

M <- 1600 ; set.seed(4444)

for(i in 1:M)

{

rmentalmf <- mental[sample(mf),]

rmentalmi <- mental[sample(mi),]

rmentalff <- mental[sample(ff),]

rmentalfi <- mental[sample(fi),]

rcorrs <- c(

cor(rmentalmf[,1:3],physmf[,1:3]),

cor(rmentalmf[,4:6],physmf[,4:6]),

cor(rmentalmi[,1:3],physmi[,1:3]),

cor(rmentalmi[,4:6],physmi[,4:6]),

cor(rmentalff[,1:3],physff[,1:3]),

cor(rmentalff[,4:6],physff[,4:6]),

cor(rmentalfi[,1:3],physff[,1:3]),

cor(rmentalfi[,4:6],physff[,4:6]) )

rmin <- c(rmin,min(rcorrs))

rmax <- c(rmax,max(rcorrs))

rabs <- c(rabs,max(abs(min(rcorrs)),abs(max(rcorrs))))

}

twot <- length(rabs[rabs>=absobs])/M # Two sided
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lowt <- length(rmin[rmin<=obsmin])/M # Lower tailed

upt <- length(rmax[rmax>=obsmax])/M # Upper tailed

merror <- function(phat,M,alpha) # (1-alpha)*100% merror for a proportion

{

z <- qnorm(1-alpha/2)

merror <- z * sqrt(phat*(1-phat)/M) # M is (Monte Carlo) sample size

merror

} # End function merror

cat("Correlations Between Mental and Physical \n")

cat(" \n") ; cat(" \n")

cat(" Minimum Observed Correlation: ",obsmin,"\n")

cat(" Randomization p-value (one-sided): p-hat = ",lowt," \n")

cat(" Plus or minus 99% Margin of error = ",merror(lowt,M,0.01),"\n")

cat(" \n")

cat(" Maximum Observed Correlation: ",obsmax,"\n")

cat(" Randomization p-value (one-sided): p-hat = ",upt," \n")

cat(" Plus or minus 99% Margin of error = ",merror(upt,M,0.01),"\n")

cat(" \n")

cat(" Maximum Observed Absolute Correlation: ",absobs,"\n")

cat(" Randomization p-value (two-sided): p-hat = ",twot," \n")

cat(" Plus or minus 99% Margin of error = ",merror(twot,M,0.01),"\n")

cat(" \n")
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7.2 Bootstrap

To appreciate the bootstrap, recall the idea of a sampling distribution.

If the sample size is large enough, the histogram of the sample data is a
lot like the histogram of the entire population. Thus, sampling from the
sample with replacement is a lot like sampling from the population. Sampling
from the sample is called resampling. One can approximate the sampling
distribution of a statistic as follows.

• Select a random sample of size n from the sample data, with replace-
ment.

• Compute the statistic from the resampled data.

• Do this over and over again, accumulating the values of the statistic.

• A histogram of the values you have accumulated will resemble the sam-
pling distribution of the statistic.

> # boot1.R Working on the bootstrap

> # Run with R --vanilla < boot1.R > boot1.out &

> # grades.dat has 4 columns: ID, Verbal SAT, Math SAT and 1st year GPA

>

> marks <- read.table("grades.dat")

> n <- length(marks$verbal) #$

> n

[1] 200

> marks[1:10,]

verbal math gpa

1 623 509 2.6

2 454 471 2.3

3 643 700 2.4

4 585 719 3.0

5 719 710 3.1

6 693 643 2.9

7 571 665 3.1

8 646 719 3.3

9 613 693 2.3

10 655 701 3.3
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> obscorr <- cor(marks)

> obscorr

verbal math gpa

verbal 1.0000000 0.2746341 0.3224477

math 0.2746341 1.0000000 0.1942431

gpa 0.3224477 0.1942431 1.0000000

> # Question: Is the correlation between Verbal SAT and GPA the same as

> # the correlation between math SAT and GPA?

> # What is the sampling distribution of the difference between correlation

> # coefficients?

> #

> obsdiff <- obscorr[3,1]-obscorr[3,2] # Verbal minus math

> obsdiff

[1] 0.1282046

> # The strategy will be to obtain a 95% bootstrap confidence interval for

> # the difference between verbal correlation and math correlation. This

> # confidence interval will be approximately centered around the observed

> # difference obsdiff = .128. If the confidence interval does not include

> # zero, we will conclude that the observed difference is significantly

> # different from zero.

>

> BOOT <- 1000 ; bsdiff <- NULL ; set.seed(9999)

> # Accumulate bootstrap values in bsdiff

> # For clarity, do operations in several separate steps inside the loop

> for(i in 1:BOOT)

+ {

+ bootmarks <- marks[sample(1:n,replace=TRUE),] # sample rows with

+ # replacement

+ bcorr <- cor(bootmarks) # Correlation matrix of bootstrap sample

+ bdiffer <- bcorr[3,1]-bcorr[3,2] # Differencce between correlation

+ # coefficients

+ bsdiff <- c(bsdiff,bdiffer) # Add bdiffer to the end of bsdiff

+ } # Next bootstrap sample

> bsdiff <- sort(bsdiff)

> # Now get lower and upper limits of 95% CI

> low <- bsdiff[.025*BOOT] ; up <- bsdiff[.975*BOOT + 1]
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> low ; up

[1] -0.03643594

[1] 0.3032818

> (low+up)/2

[1] 0.1334230

> obsdiff

[1] 0.1282046

> write(bsdiff,"bsdiff.dat") # Maybe for later analysis

> pdf("bsdiff.pdf") # Send graphics output to pdf file

> hist(bsdiff)

Bootstrap regression tests Fit the reduced model. Assemble resampled
data sets by sampling withy replacement from the residuals, and forming
Ŷ plus the residual. Test full vs reduced model each time. Proportion of
simulated F statistics at or above observed F is the bootstrap p-value.
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