
Chapter 4

More Than One Independent
Variable at a Time

The standard elementary tests typically involve one independent variable and one depen-
dent variable. Now we will see why this can make them very misleading. The lesson you
should take away from this discussion is that when important variables are ignored in a
statistical analysis — particularly in an observational study — the result can be that we
draw incorrect conclusions from the data. Potential confounding variables really need to
be included in the analysis.

4.1 The chi-squared test of independence

In order to make sure the central example in this chapter is clear, it may be helpful to give
a bit more background on the common Pearson chi-square test of independence. As stated
earlier, the chi-square test of independence is for judging whether two categorical variables
are related or not. It is based upon a cross-tabulation, or joint frequency distribution of
the two variables. For example, suppose that in the statclass data, we are interested in the
relationship between sex and apparent ethnic background. If the ratio of females to males
depended upon ethnic background, this could reflect an interesting cultural difference in
sex roles with respect to men and women going to university (or at least, taking Statistics
classes). In statmarks1.sas, we did this test and obtained a chisquare statistic of 2.92
(df=2, p = 0.2321), which is not statistically significant. Now we’ll do it just a bit
differently to illustrate the details. First, here is the program ethsex.sas.

/* ethsex.sas */

%include ’statread.sas’;

title2 ’Sex by Ethnic’;

proc freq;

tables sex*ethnic / chisq norow nocol nopercent expected;

And here is the output.
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_______________________________________________________________________________

Grades from STA3000 at Roosevelt University: Fall, 1957 1

Sex by Ethnic 19:55 Tuesday, August 30, 3005

The FREQ Procedure

Table of sex by ethnic

sex ethnic(Apparent ethnic background (ancestry))

Frequency|

Expected |Chinese |European|Other | Total

---------+--------+--------+--------+

Male | 27 | 7 | 5 | 39

| 25.79 | 9.4355 | 3.7742 |

---------+--------+--------+--------+

Female | 14 | 8 | 1 | 23

| 15.21 | 5.5645 | 2.2258 |

---------+--------+--------+--------+

Total 41 15 6 62

Statistics for Table of sex by ethnic

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 2 2.9208 0.2321

Likelihood Ratio Chi-Square 2 2.9956 0.2236

Mantel-Haenszel Chi-Square 1 0.0000 0.9949

Phi Coefficient 0.2170

Contingency Coefficient 0.2121

Cramer’s V 0.2170

WARNING: 33% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Sample Size = 62

In each cell of the table, we have an observed frequency and an expected frequency. The
expected frequency is the frequency one would expect by chance if the two variables were
completely unrelated.1 If the observed frequencies are different enough from the expected

1The formula for the expected frequency in a given cell is (row total) × (column total)/(sample size).
This follows from the definition of independent events given in introductory probability: the events A
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frequencies, one would tend to disbelieve the null hypothesis that the two variables are
unrelated. But how should one measure the difference, and what is the meaning of
different “enough?”

The Pearson chi-square statistic (named after Karl Pearson, a famous racist, uh, I
mean statistician) is defined by

χ2 =
∑
cells

(fo − fe)
2

fe

, (4.1)

where fo refers to the observed frequence, fe refers to expected frequency, and as indicated,
the sum is over all the cells in the table.

If the two variables are really independent, then as the total sample size increases, the
probability distribution of this statistic approaches a chisquare with degrees of freedom
equal to (Number of rows - 1)×(Number of columns - 1). Again, this is an approximate,
large-sample result, one that obtains exactly only in the limit as the sample size approaches
infinity. A traditional “rule of thumb” is that the approximation is okay if no expected
frequency is less than five. This is why SAS gave us a warning.

More recent research suggests that to avoid inflated Type I error (false significance
at a rate greater than 0.05), all you need is for no expected frequency to be less than
one. You can see from formula (4.1) why an expected frequency less than one would be
a problem. Division by a number close to zero can yield a very large quantity even when
the observer and expected frequencies are fairly close, and the so-called chisquare value
will be seriously inflated.

Anyway, The p-value for the chisquare test is the upper tail area, the area under the
chi-square curve beyond the observed value of the test statistic. In the example from the
statclass data, the test was not significant and we conclude nothing.

4.2 The Berkeley Graduate Admissions data

Now we’re going to look at another example, one that should surprise you. In the 1970’s
the University of California at Berkeley was accused of discriminating against women in
graduate admissions. Data from a large number of applicants are available. The three
variables we will consider are sex of the person applying for graduate study, department
to which the person applied, and whether or not the person was admitted. First, we will
look at the table of sex by admission.

and B are independent if P (A∩B) = P (A)P (B). But this is too much detail, and we’re not going there.
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Table of sex by admit

sex admit

Frequency|

Row Pct |No |Yes | Total

---------+--------+--------+

Male | 1493 | 1198 | 2691

| 55.48 | 44.52 |

---------+--------+--------+

Female | 1278 | 557 | 1835

| 69.65 | 30.35 |

---------+--------+--------+

Total 2771 1755 4526

The FREQ Procedure

Statistics for Table of sex by admit

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 92.2053 <.0001

It certainly looks suspicious. Roughly forty-five percent of the male applicants were
admitted, compared to thirty percent of the female applicants. This difference in per-
centages (equivalent to the relationship between variables here) is highly significant; with
n = 4526, the p-value is very close to zero.

4.3 Controlling for a variable by subdivision

However, things look different when we take into account the department to which the
person applied. Think of a three-dimensional table in which the rows are sex, the columns
are admission, and the third dimension (call it layers) is department. Such tables are easy
to generate with SAS and other statistical packages.

The three-dimensional table is displayed by printing each layer on a separate page,
along with test statistics (if requested) for each sub-table. This is equivalent to dividing
the cases into sub-samples, and doing the chisquare test separately for each sub-sample.
A useful way to talk about this is to say that that we are controlling for the third variable;
that is, we are looking at the relationship between the other two variables with the third
variable held constant. We will have more to say about controlling for collections of
independent variables when we get to regression.
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Here are the six sub-tables of sex by admit, one for each department, with a brief
comment after each table. The SAS output is edited a bit to save paper.

Table 1 of sex by admit

Controlling for dept=A

sex admit

Frequency|

Row Pct |No |Yes | Total

---------+--------+--------+

Male | 313 | 512 | 825

| 37.94 | 62.06 |

---------+--------+--------+

Female | 19 | 89 | 108

| 17.59 | 82.41 |

---------+--------+--------+

Total 332 601 933

Statistics for Table 1 of sex by admit

Controlling for dept=A

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 17.2480 <.0001

For department A, 62% of the male applicants were admitted, while 82% of the female
applicants were admitted. That is, women were more likely to get in than men. This is a
reversal of the relationship that is observed when the data for all departments are pooled!
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Table 2 of sex by admit

Controlling for dept=B

sex admit

Frequency|

Row Pct |No |Yes | Total

---------+--------+--------+

Male | 207 | 353 | 560

| 36.96 | 63.04 |

---------+--------+--------+

Female | 8 | 17 | 25

| 32.00 | 68.00 |

---------+--------+--------+

Total 215 370 585

Statistics for Table 2 of sex by admit

Controlling for dept=B

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 0.2537 0.6145

For department B, women were somewhat more likely to be admitted (another reversal),
but it’s not statistically significant.
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Table 3 of sex by admit

Controlling for dept=C

sex admit

Frequency|

Row Pct |No |Yes | Total

---------+--------+--------+

Male | 205 | 120 | 325

| 63.08 | 36.92 |

---------+--------+--------+

Female | 391 | 202 | 593

| 65.94 | 34.06 |

---------+--------+--------+

Total 596 322 918

Statistics for Table 3 of sex by admit

Controlling for dept=C

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 0.7535 0.3854

For department C, men were slightly more likely to be admitted, but the 3% difference is
much smaller than we observed for the pooled data. Again, it’s not statistically significant.
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Table 4 of sex by admit

Controlling for dept=D

sex admit

Frequency|

Row Pct |No |Yes | Total

---------+--------+--------+

Male | 279 | 138 | 417

| 66.91 | 33.09 |

---------+--------+--------+

Female | 244 | 131 | 375

| 65.07 | 34.93 |

---------+--------+--------+

Total 523 269 792

Statistics for Table 4 of sex by admit

Controlling for dept=D

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 0.2980 0.5852

For department D, women were a bit more likely to be admitted (a reversal), but it’s
far from statistically significant. Now department E:
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Table 5 of sex by admit

Controlling for dept=E

sex admit

Frequency|

Row Pct |No |Yes | Total

---------+--------+--------+

Male | 138 | 53 | 191

| 72.25 | 27.75 |

---------+--------+--------+

Female | 299 | 94 | 393

| 76.08 | 23.92 |

---------+--------+--------+

Total 437 147 584

Statistics for Table 5 of sex by admit

Controlling for dept=E

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 1.0011 0.3171

This time it’s a non-significant tendency for men to get in more. Finally, department F :

Table 6 of sex by admit

Controlling for dept=F

sex admit

Frequency|

Row Pct |No |Yes | Total

---------+--------+--------+

Male | 351 | 22 | 373

| 94.10 | 5.90 |

---------+--------+--------+

Female | 317 | 24 | 341

| 92.96 | 7.04 |

---------+--------+--------+

Total 668 46 714

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 0.3841 0.5354
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For department F , women were slightly more likely to get in, but once again it’s not
significant.

So in summary, the pooled data show that men were more likely to be admitted
to graduate study. But when take into account the department to which the student
is applying, there is a significant relationship between sex and admission for only one
department, and in that department, women are more likely to be accepted.

How could this happen? I generated two-way tables of sex by department and depart-
ment by admit; both relationships were highly significant. Instead of displaying the SAS
output, I have assembled some numbers from these two tables. The same thing could be
accomplished with SAS proc tabulate, but it’s too much trouble, so I did it by hand.

Table 4.1: Percentage of female applicants and overall percentage of applicants accepted
for six departments

Department Percent applicants female Percentage applicants accepted
A 11.58% 64.42%
B 4.27 63.25
C 64.60 35.08
D 47.35 33.96
E 67.29 25.17
F 47.76 6.44

Now it is clear. The two departments with the lowest percentages of female applicants
(A and B) also had the highest overall percentage of applicants accepted, while the
department with the highest percentage of female applicants (E) also had the second-
lowest overall percentage of applicants accepted. That is, the departments most popular
with men were easiest to get into, and those most popular with women were more difficult.
Clearly, this produced the overall tendency for men to be admitted more than women.

By the way, does this mean that the University of California at Berkeley was not
discriminating against women? By no means. Why does a department admit very few
applicants relative to the number who apply? Because they do not have enough professors
and other resources to offer more classes. This implies that the departments popular with
men were getting more resources, relative to the level of interest measured by number of
applicants. Why? Maybe because men were running the show. The “show,” by the way
definitely includes the U. S. military, which funds a lot of engineering and similar stuff at
big American universities.

The Berkeley data, a classic example of Simpson’s paradox, illustrate the following
uncomfortable fact about observational studies. When you include a new variable in an
analysis, the results you have could get weaker, they could get stronger, or they could
reverse direction — all depending upon the inter-relations of the independent variables.
Basically, if an observational study does not include every potential confounding variable
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you can think of, there is going to be trouble.2

Now, the distinguishing feature of the “elementary” tests is that they all involve one
independent variable and one dependent variable. Consequently, they can be extremely
misleading when applied to the data from observational studies, and are best used as tools
for preliminary exploration.

Pooling the chi-square tests When using sub-tables to control for a categorical in-
dependent variable, it is helpful to have a single test that allows you to answer a question
like this: If you control for variable A, is B related to C? For the chi-square test of
independence, it’s quite easy. Under the null hypothesis that B is unrelated to C for
each value of A, the test statistics for the sub-tables are independent chisquare random
variables. Therefore, there sum is also chisquare, with degrees of freedom equal to the
sum of degrees of freedom for the sub-tables.

In the Berkeley example, we have a pooled chisquare value of

17.2480 + 0.2537 + 0.7535 + 0.2980 + 1.0011 + 0.3841 = 19.9384

with 6 degrees of freedom. Using any statistics text (except this one), we can look up the
critical value at the 0.05 significance level. It’s 12.59; since 19.9 ¿ 12.59, the pooled test
is significant at the 0.05 level. To get a p-value for our pooled chisquare test, we can use
SAS. See the program in the next section.

In summary, we need to use statistical methods that incorporate more than one inde-
pendent variable at the same time; multiple regression is the central example. But even
with advanced statistical tools, the most important thing in any study is to collect the
right data in the first place. Looking at it the right way is critical too, but no statistical
analysis can compensate for having the wrong data.

For more detail on the Berkeley data, see the 1975 article in Science by Bickel Hammel
and O’Connell [1]. For the principle of adding chisquare values and adding degrees of
freedom from sub-tables, a good reference is Feinberg’s (1977) The analysis of cross-
classified categorical data [6].

4.4 The SAS program

Here is the program berkeley.sas. It has several features that you have not seen yet, so
a discussion follows the listing of the program.

2And even if you do include all the potential confounding variables, there is trouble if those confounding
variables are measured with error. More on this in a moment.
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/*************************** berkeley.sas *********************************/

options linesize=79 pagesize=35 noovp formdlim=’_’;

title ’Berkeley Graduate Admissions Data: ’;

proc format;

value sexfmt 1 = ’Female’ 0 = ’Male’;

value ynfmt 1 = ’Yes’ 0 = ’No’;

data berkley;

input line sex dept $ admit count; %$

format sex sexfmt.; format admit ynfmt.;

datalines;

1 0 A 1 512

2 0 B 1 353

3 0 C 1 120

4 0 D 1 138

5 0 E 1 53

6 0 F 1 22

7 1 A 1 89

8 1 B 1 17

9 1 C 1 202

10 1 D 1 131

11 1 E 1 94

12 1 F 1 24

13 0 A 0 313

14 0 B 0 207

15 0 C 0 205

16 0 D 0 279

17 0 E 0 138

18 0 F 0 351

19 1 A 0 19

20 1 B 0 8

21 1 C 0 391

22 1 D 0 244

23 1 E 0 299

24 1 F 0 317

;

proc freq;

tables sex*admit / nopercent nocol chisq;

tables dept*sex / nopercent nocol chisq;

tables dept*admit / nopercent nocol chisq;

tables dept*sex*admit / nopercent nocol chisq;

weight count;
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/* Get p-value */

proc iml;

x = 19.9384;

pval = 1-probchi(x,6);

print "Chisquare = " x "df=6, p = " pval;

The first unusual feature of berkeley.sas is in spite of recommendations to the
contrary in Chapter 2, the data are in the program itself rather than in a separate file.
The data are in the data step, following the datalines command and ending with a
semicolon. You can always do this, but usually it’s a bad idea; here, it’s a good idea.
This is why.

I did not have access to a raw data file, just a 2 by 6 by 2 table of sex by department
by admission. So I just created a data set with 24 lines, even though there are 4526 cases.
Each line of the data set has values for the three variables, and also a variable called
count, which is just the observed cell frequency for that combination of sex, department
and admission. Then, using the weight statement in proc freq, I just “weighted” each
of the 24 cases in the data file by count, essentially multiplying the sample size by count
for each case.

The advantages are several. First, such a data set is easy to create from published
tables, and is much less trouble than a raw data file with thousands of cases. Second, the
data file is so short that it makes sense to put it in the data set for portability and ease of
reference. Finally, this is the way you can get the data from published tables (which may
not include any significance tests at all) into SAS, where you can compute any statistics
you want, including sophisticated analyses based on log-linear models.

The last tables statement in the proc freq gives us the three-dimensional table.
For a two-dimensional table, the first variable you mention will correspond to rows and
the second will correspond to columns. For higher-dimensional tables, the second-to-last
variable mentioned is rows, the last is columns, and combinations of the variables listed
first are the control variables for which sub-tables are produced.

Finally, the iml in proc iml stands for “Interactive Matrix Language,” and you can
use it to perform useful calculations in a syntax that is very similar to standard matrix
algebra notation; this can be very convenient when formulas you want to compute are
in that notation. Here, we’re just using it to calculate the area under the curve of the
chisquare density with 6 degrees of freedom, beyond the observed test statistic of 19.9384.
The probchi function is the cumulative distribution function of the chisquare distribution;
the second argument (6 in this case) is the degrees of freedom. probchi(x,6) gives the
area under the curve between zero and x, and 1-probchi(x,6) gives the tail area above
x – that is, the p-value.

Summary The example of the Berkeley graduate admissions data teaches us that po-
tential confounding variables need to be explicitly included in a statistical analysis. Oth-
erwise, the results can be very misleading. In the Berkeley example, first we ignored
department and there was a relationship between sex and admission that was statistically
significant in one direction. Then, when we controlled for department — that is, when we
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took it into account — the relationship was either significant in the opposite direction, or
it was not significant (depending on which department).

We also saw how to pool chi-square values and degrees of freedom by adding over
sub-tables, obtaining a useful test of whether two categorical variables are related, while
controlling for one or more other categorical variables. This is something SAS will not do
for you, but it’s easy to do with proc freq output and a calculator.

Measurement Error In this example, the confounding variable Department was mea-
sured without error; there was no uncertainty about the department to which the student
applied. But sometimes, categorical independent variables are subject to classification
error. That is. the actual category to which a case belongs may not correspond to what’s
in your data file. For example, if you want to “control” for whether people have ever been
to prison and you determine this by asking them, what you see is not necessarily what
you get.

The rule, which applies to all sorts of measurement error and to all sorts of statistical
analysis, is simple, and very unpleasant. If you want to test independent variable A
controlling for B, and

• B is related to the dependent variable,

• A and B are related to each other, and

• B is measured with error,

then the results you get from standard methods do not quite work. In particular, when
there is really no relationship between A and the dependent variable for any value of B
(the null hypothesis is true), can will still reject the null hypothesis more than 5% of
the time. In fact, the chance of false significance may approach 1.00 (not 0.05) for large
samples. Full details are given in a 2009 article by Brunner and Austin [2]. We will return
to this ugly truth in connection with multiple regression.
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