One-way Analysis of variance

- Categorical IV
- Quantitative DV
- *p* categories (groups)
- H₀: All population means equal
- Normal conditional distributions
- Equal variances

Analysis means to split up

- With no IV, best predictor is the overall mean
- Variation to be explained is SSTO, sum of squared differences from the overall mean
- With an IV, best predictor is the group mean
- Variation still unexplained is SSW, sum of squared differences from the group means

SSTO = SSB + SSW

ANOVA Summary Table

Source	DF	Sum of Squares	Mean Square	F Value	$\Pr > F$
Model	p-1	SSB	MSB = SSB/(k-1)	MSB/MSW	p-value
Error	n-p	SSW	MSW = SSW/(n-k)		
Corrected Total	n-1	SSTO			

$$H_0: \mu_1 = \ldots = \mu_p.$$

R² is the proportion of variation explained by the independent variable

Contrasts

$$\ell = a_1\mu_1 + a_2\mu_2 + \dots + a_p\mu_p$$

$$L = a_1 \overline{Y}_1 + a_2 \overline{Y}_2 + \dots + a_p \overline{Y}_p$$

where $a_1 + a_2 + \dots + a_p = 0$

Overall F-test is a test of p-1 contrasts

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$$

 $\ell = a_1\mu_1 + a_2\mu_2 + \dots + a_p\mu_p$