Independent t-test: Compare two means

Screen	Productivity Rating
CRT	6.2
CRT	2.7
Flat	5.9
CRT	7.4
Flat	1.5

Two-tailed tests and p-values only!

Model (Assumptions) for the independent t-test

- Random sampling, independently from two normal populations
- Possibly different population means
- Same population variance
- Null hypothesis: Population means equal

Robustness of the twosample t-test

- Normality does not matter much if both samples are large
- Equal variance does not matter much if both samples are large and nearly equal in size
- Independent observations: Important

Matched (paired) t-test

Taste1	Taste2	Difference
10	8	2
7	7	Ο
3	4	-1
7	8	-]
6	5	1

Model assumptions for matched t-test

- Random sampling of pairs
- Differences are normally distributed (satisfied if both measurements are normal)

Within versus between cases

- Between: A case contributes exactly one IV and one DV value
- Within: A case contributes several pairs (IV,DV) usually one pair for each value of the Independent variable

Matched t-test

- Null Hypothesis: Mean difference equals zero
- Just a one-sample t-test applied to differences
- Can have more power than an inappropriate independent t-test

Robustness of matched t-test

- For large samples, normality does not matter
- Independent observations matter a lot

One-way analysis of variance

- Could call it "one-factor"
- · Could call it "ANOVA"
- Extension of independent t-test: More than two values of the IV

• There are several within-cases versions - not elementary

Simple regression and correlation		regression and prrelation	
 Simple means one IV 	High School GPA	University GPA	
 DV quantitative 	88	86	
 IV usually quantitative too 	78	73	
	87	89	
	86	81	
	77	67	

Scatterplot

Correlation coefficient r

- -1 ≤ r ≤ 1
- r = +1 indicates a perfect positive linear relationship. All the points are exactly on a line with a positive slope.
- r = -1 indicates a perfect negative linear relationship. All the points are exactly on a line with a negative slope.
- r = 0 means no *linear* relationship (curve possible). Slope of least squares line = 0
- r² = proportion of variation explained

r = 0.004

r = 0.112

Correlation of C4 and C6 = 0.112

r = 0.368

Correlation of C3 and C7 = 0.368

Correlation of C4 and C7 = 0.547

r = 0.733

Correlation of CS and C7 = 0.733

Correlation of C5 and C9 = -0.822

r = - 0.811

Zero correlation = Horizontal least-squares line

$$\widehat{Y} = b_0 + b_1 X$$

$$b_1 = r \frac{s_y}{s_x}$$
 and $b_0 = \overline{Y} - b_1$

Page 6 of 10

Model assumptions for simple regression

- Random sampling of (X,Y) pairs
- Conditional distribution of DV is normal for each IV value
- Maybe different mean, related to IV by equation of a straight line
- Variances all equal

Testing simple regression

- Null hypothesis: population slope = 0
- (This would make all the conditional distributions identical)
- Same as testing the significance of b_1
- Same as testing the significance of *r*

Robustness of simple regression test

- Normality does not matter much for large samples if the most influential observations are not too influential.
- Equal variance does not matter much if the number of observations at EACH value of *X* is large.
- Independent observations: Matters a lot

Chi-square test of independence: Both variables categorical

Music Type	Stay on Hold?	
А	Yes	
А	No	
С	Yes	
В	Yes	
А	No	

"Joint frequency distribution" or "contingency table" or "crosstabulation" or "crosstab"

	Music Type				
	Α	В	С	D	
Yes	41	15	38	45	
No	9	35	12	5	

Formula for the chi-square test

$$\chi^2 = \sum_{\text{cells}} \frac{(f_o - f_e)^2}{f_e}$$

- Even one very small expected frequency can make chisquare huge
- Smallest expected frequency no more than one (not 5) controls Type I error

Model assumptions for the chisquared test of independence

- The variable consisting of combinations of IV, DV has a multinomial distribution
- "Large" random sample
- Rule of thumb: Lowest expected frequency no more than 5
- Independent observations: Important and often violated in practice.

Why predict DV from IV?

- There may be a practical reason for prediction (buy, make a claim, price of wheat).
- It may be "science."

Young smokers who buy contraband cigarettes tend to smoke more.

• What is IV, DV?

Correlation is not the same as causation

Confounding variable: A

variable that contributes to both IV and DV, causing a misleading relationship between them.

Mozart Effect

- Babies who listen to classical music tend to do better in school later on.
- Does this mean parents should play classical music for their babies?
- Please comment. (What is one possible confounding variable?)

Hypothetical study

- Subjects are babies in an orphanage (maybe in Haiti) awaiting adoption in Canada. All are assigned, but waiting for the paperwork to clear.
- They all wear headphones 5 hours a day. Randomly assigned to classical, rock, hip-hop or nature sounds. Same volume.
- Assess academic progress in JK, SJ, Grade 4.
- Suppose there is a significant difference? What are some potential confounding variables?

Experimental vs. Observational studies

- **Observational**: IV, DV just observed and recorded
- Experimental: Cases randomly assigned to values of IV
- Only a true experimental study can establish a causal connection between IV and DV
- Maybe we should talk about observational vs experimental <u>variables.</u>
- Watch it: Confounding variables can creep back in.