Factorial ANOVA

```
/* potato.sas */
options linesize=79 noovp formdlim=' ';
title 'Rotten potatoes';
title2 'Two-factor ANOVA several different ways';
proc format;
     value tfmt 1 = 'Cool' 2 = 'Warm';
data spud;
     infile 'potato2.data' firstobs=2; /* Skip the first line that R uses */
     input id bact temp rot;
     /* Cell means coding for all 6 treatment combinations */
     if temp=1 and bact=1 then mull=1; else mull=0;
     if temp=1 and bact=2 then mu12=1; else mu12=0;
     if temp=1 and bact=3 then mu13=1; else mu13=0;
     if temp=2 and bact=1 then mu21=1; else mu21=0;
     if temp=2 and bact=2 then mu22=1; else mu22=0;
     if temp=2 and bact=3 then mu23=1; else mu23=0;
     combo = 10*temp+bact;
     format temp tfmt.;
proc means;
     class bact temp;
     var rot;
/* Better looking output from proc tabulate */
proc tabulate;
     class bact temp;
     var rot;
     table (temp all),(bact all) * (mean*rot);
proc glm;
     title3 'Standard 2-way ANOVA with proc glm';
     class bact temp;
     model rot=temp bact; /* Could have said bact temp bact*temp */
     means temp|bact;
/* Need to plot it; SAS is not the tool. */
```

/* Now generate the tests for main effects and interaction using cell means coding.

		BACTERIA	TYPE
TEMP	1	2	3
Cool	mu11	mu12	mu13
Warm	mu21	mu22	mu23

/* The test statement of proc reg uses variable names to stand for the corresponding regression coefficients. By naming the effect cell mean coding dummy variables the same as the population cell means, I can just state the null hypothesis. Isn't this a cute SAS trick? */

```
Bact_by_Temp2 checks parallel line segments. They are equivalent. */
proc glm;
    title3 'Proc glm: Using contrasts on the combination variable';
    class combo;    /* 11 12 13 21 22 23 */
    model rot=combo;
```

```
contrast 'Main Effect for Temperature'
  combo 1 1 1 -1 -1 -1;
contrast 'Main Effect for Bacteria'
  combo 1 -1 0 1 -1 0,
  combo 0 1 -1 0 1 -1;
contrast 'Temperature by Bacteria Interaction'
  combo 1 -1 0 -1 1 0,
  combo 0 1 -1 0 -1 1;
```

/* Illustrate effect coding */

```
data mashed;
set spud;
/* Effect coding, with interactions */
if bact = 1 then b1 = 1;
else if bact = 2 then b1 = 0;
else if bact = 3 then b1 = -1;
if bact = 1 then b2 = 0;
else if bact = 2 then b2 = 1;
else if bact = 3 then b2 = -1;
if temp = 1 then t = 1;
else if temp = 2 then t = -1;
/* Interaction terms */
tb1 = t*b1; tb2 = t*b2;
```

```
proc reg;
     title3 'Effect coding';
     model rot = b1 b2 t tb1 tb2;
                   test t=0;
     Temperature:
     Bacteria:
                    test b1=b2=0;
     Bact by Temp: test tb1=tb2=0;
/* Do some exploration to follow up the interaction. The regression
   with cell means coding is easiest. The final product of several runs
   is shown below. For reference, here is the table of population means again.
               BACTERIA TYPE
                             3
TEMP
          1
                    2
Cool
       mu11
                  mu12
                            mu13
                  mu22
                            mu23
                                                      */
Warm
       mu21
proc req;
     title3 'Further exploration using cell means coding';
     model rot = mull--mu23 / noint;
     /* Pairwise comparisons of marginal means for Bacteria Type */
     Bact1vs2: test mu11+mu21=mu12+mu22;
     Bact1vs3: test mu11+mu21=mu13+mu23;
     Bact2vs3: test mu12+mu22=mu13+mu23;
     /* Effect of temperature for each bacteria type */
     Temp for Bac1: test mull=mu21;
     Temp_for_Bac2: test mu12=mu22;
     Temp_for_Bac3: test mu13=mu23;
     /* Effect of bacteria type for each temperature */
     Bact_for_CoolTemp: test mull=mul2=mul3;
     Bact for WarmTemp: test mu21=mu22=mu23;
     /* Pairwise comparisons of bacteria types at warm temperature */
     Bact1vs2 for WarmTemp: test mu21=mu22;
     Bact1vs3 for WarmTemp: test mu21=mu23;
     Bact2vs3_for_WarmTemp: test mu22=mu23;
/* We have done a lot of tests. Concerned about buildup of Type I
error? We can make ALL the tests into Scheffe follow-ups of the
initial test for equality of the 6 cell means. The Scheffe family
includes all COLLECTIONS of contrasts, not just all contrasts. */
proc iml;
     title3 'Table of critical values for all possible Scheffe tests';
     numdf = 5; /* Numerator degrees of freedom for initial test */
     dendf =48;
                 /* Denominator degrees of freedom for initial test */
     alpha = 0.05;
     critval = finv(1-alpha,numdf,dendf);
     zero = {0 0}; S_table = repeat(zero,numdf,1); /* Make empty matrix */
     /* Label the columns */
     namz = {"Number of Contrasts in followup test"
             "
                  Scheffe Critical Value"; mattrib S table colname=namz;
     do i = 1 to numdf;
        s table(|i,1|) = i;
        s table(|i,2|) = numdf/i * critval;
     end:
     reset noname; /* Makes output look nicer in this case */
     print "Initial test has" numdf " and " dendf "degrees of freedom."
           "Using significance level alpha = " alpha;
     print s_table;
```

Rotten potatoes Two-factor ANOVA several different ways

The MEANS Procedure

Analysis Variable : rot

bact	temp	N Obs	N	Mean	Std Dev	Minimum
1	Cool	9	9	3.5555556	4.2752518	0
	Warm	9	9	7.0000000	3.5355339	0
2	Cool	9	9	4.777778	3.1135903	0
	Warm	9	9	13.5555556	6.3267510	3.0000000
3	Cool	9	9	8.000000	4.5552168	2.0000000
	Warm	9	9	19.5555556	5.5251948	8.0000000

Analysis Variable : rot

bact	temp	N Obs	Maximum
1	Cool	9	9.000000
	Warm	9	10.0000000
2	Cool	9	10.0000000
	Warm	9	23.0000000
3	Cool	9	15.0000000
	Warm	9	26.0000000

Rotten potatoes Two-factor ANOVA several different ways

	1	2	3	All
	Mean	Mean	Mean	Mean
	rot	rot	rot	rot
 temp				
Cool	3.56	4.78	8.00	5.44
 Warm	7.00	13.56	19.56	13.37
All	5.28	9.17	13.78	9.41

Rotten potatoes Two-factor ANOVA several different ways Standard 2-way ANOVA with proc glm

The GLM Procedure

Class Level Information

Class	Levels	Values
bact	3	1 2 3
temp	2	Cool Warm

Number	of	Observations	Read	54
Number	of	Observations	Used	54

2

Rotten potatoes Two-factor ANOVA several different ways Standard 2-way ANOVA with proc glm

The GLM Procedure

Dependent Variable: rot

			Sum	of				
Source		DF	Squa	res	Mean S	Square	F Value	Pr > F
Model		5	1652.814	815	330.5	562963	15.05	<.0001
Error		48	1054.222	222	21.9	962963		
Corrected Tot	al	53	2707.037	037				
	R-Square	Coeff	Var	Root	MSE	rot	Mean	
	0.610562	40.0	1676	4.686	ACC	0 40)7407	
	0.010302	49.0	10/0	4.000	400	9.40)/40/	
Source		DF	Туре І	SS	Mean S	Square	F Value	Pr > F
temp		1	848.0740	741	848.0	740741	38.61	<.0001
bact		2	651.8148	148	325.90	074074	14.84	<.0001
bact*temp		2	152.9259	259	76.40	629630	3.48	0.0387
Source		DF	Type III	SS	Mean S	Square	F Value	Pr > F
temp		1	848.0740	741	848.07	740741	38.61	<.0001
bact		2	651.8148	148	325.90	074074	14.84	<.0001
bact*temp		2	152.9259	259	76.40	629630	3.48	0.0387

Rotten potatoes Two-factor ANOVA several different ways Standard 2-way ANOVA with proc glm

			The	e GLM	1 Procedure		
	Level temp	of	N		Mean	Std Dev	
	Cool Warm		27 27			4.31752541 7.27031979	
	Level bact	of	N		Mean	Std Dev	
	1 2 3		18 18 18		9.1666667	4.19811660 6.61771242 7.71214135	
Level bact		Level temp	of	N	Mean		td Dev
1 1 2 2 3 3		Cool Warm Cool Warm Cool Warm		9 9 9 9 9	3.5555556 7.0000000 4.7777778 13.5555556 8.0000000 19.5555556	3.53 3.11 6.32 4.55	525178 553391 359028 675097 521679 519482

Rotten potatoes Two-factor ANOVA several different ways Using the proc reg test statement and cell means coding

> The REG Procedure Model: MODEL1 Dependent Variable: rot

Number of Observations Read54Number of Observations Used54

NOTE: No intercept in model. R-Square is redefined.

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	6	6431.77778	1071.96296	48.81	<.0001
Error	48	1054.22222	21.96296		
Uncorrected Total	54	7486.00000			

Root MSE	4.68647	R-Square	0.8592
Dependent Mean	9.40741	Adj R-Sq	0.8416
Coeff Var	49.81676		

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
mu11	1	3.55556	1.56216	2.28	0.0273
mu12	1	4.77778	1.56216	3.06	0.0036
mu13	1	8.00000	1.56216	5.12	<.0001
mu21	1	7.00000	1.56216	4.48	<.0001
mu22	1	13.55556	1.56216	8.68	<.0001
mu23	1	19.55556	1.56216	12.52	<.0001

Rotten potatoes Two-factor ANOVA several different ways Using the proc reg test statement and cell means coding

The REG Procedure Model: MODEL1

Test Overall Results for Dependent Variable rot

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	5 48	330.56296 21.96296	15.05	<.0001

Test Temperature Results for Dependent Variable rot

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	1 48	848.07407 21.96296	38.61	<.0001

Test Bacteria Results for Dependent Variable rot

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	2 48	325.90741 21.96296	14.84	<.0001

Test Bact_by_Temp1 Results for Dependent Variable rot

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	2 48	76.46296 21.96296	3.48	0.0387

Test Bact_by_Temp2 Results for Dependent Variable rot

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	2 48	76.46296 21.96296	3.48	0.0387

Rotten potatoes Two-factor ANOVA several different ways Proc glm: Using contrasts on the combination variable

The GLM Procedure

Class Level Information

Class	Levels	Values
combo	6	11 12 13 21 22 23

Number	of	Observations	Read	54
Number	of	Observations	Used	54

Dependent Variable: rot

Source		DF	Sum Squa		Mean So	quare	F	Value	Pr > F
Model Error Corrected To	otal	5 48 53	1652.814 1054.222 2707.037	222	330.50 21.90	62963 62963		15.05	<.0001
	R-Square	Coeff	Var	Root	MSE	rot 1	Mear	1	
	0.610562	49.8	1676	4.686	466	9.40	7407	7	
Source		DF	Type I	SS	Mean So	quare	F	Value	Pr > F
combo		5	1652.814	815	330.50	62963		15.05	<.0001
Source		DF	Type III	SS	Mean So	quare	F	Value	Pr > F
combo		5	1652.814	815	330.50	62963		15.05	<.0001
Contrast				DF	Cont	trast	SS	Mean	Square
Main Effect	t for Temperatu	ire		1	848	.07407	41	848.	0740741
	t for Bacteria			2	651	.81481	48	325.	9074074
Temperature	e by Bacteria I	nterac	tion	2	152	.92592	59	76.	4629630
(Contrast				F Val	lue	Pr	> F	
1	Main Effect for	Tempe	rature		38	.61	<.(0001	
	Main Effect for	-			14	.84	<.(0001	
5	Cemperature by	Bacter	ia Intera	ction	3	.48	0.0)387	

Rotten potatoes Two-factor ANOVA several different ways Effect coding

The REG Procedure Dependent Variable: rot

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error	5 48	1652.81481 1054.22222	330.56296 21.96296	15.05	<.0001
Corrected Total	53	2707.03704	21.90290		

Root MSE	4.68647	R-Square	0.6106
Dependent Mean	9.40741	Adj R - Sq	0.5700

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	9.40741	0.63775	14.75	<.0001
b1	1	-4.12963	0.90191	-4.58	<.0001
b2	1	-0.24074	0.90191	-0.27	0.7907
t	1	-3.96296	0.63775	-6.21	<.0001
tb1	1	2.24074	0.90191	2.48	0.0165
tb2	1	-0.42593	0.90191	-0.47	0.6389

Test Temperature Results for Dependent Variable rot

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	1 48	848.07407 21.96296	38.61	<.0001

Test Bacteria Results for Dependent Variable rot

Source	DF	Mean	F Value	Pr > F
Source	DF	Square	r value	PI > F
Numerator	2	325.90741	14.84	<.0001
Denominator	48	21.96296		

Test Bact_by_Temp Results for Dependent Variable rot

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	2 48	76.46296 21.96296	3.48	0.0387

Rotten potatoes Two-factor ANOVA several different ways Further exploration using cell means coding

Showing only the output from the test statements ...

Test	Bact1vs2	Results	for Dependent	Variable	rot
Source		DF	Mean Square	F Value	Pr > F
Numeraton Denominat	-	1 48	136.11111 21.96296	6.20	0.0163

Test Bact1vs3 Results for Dependent Variable rot

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	1 48	650.25000 21.96296	29.61	<.0001

Test Bact2vs3 Results for Dependent Variable rot

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	1 48	191.36111 21.96296	8.71	0.0049

Test Temp_for_Bac1 Results for Dependent Variable rot

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	1 48	53.38889 21.96296	2.43	0.1255

Test Temp_for_Bac2 Results for Dependent Variable rot

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	1 48	346.72222 21.96296	15.79	0.0002

Test Temp_for_Bac3 Results for Dependent Variable rot

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	1 48	600.88889 21.96296	27.36	<.0001

Test Bact_for_CoolTemp Results for Dependent Variable rot

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	2 48	47.44444 21.96296	2.16	0.1264

Test Bact_for_WarmTemp Results for Dependent Variable rot

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	2 48	354.92593 21.96296	16.16	<.0001

Test Bact1vs2_for_WarmTemp Results for Dependent Variable rot

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	1 48	193.38889 21.96296	8.81	0.0047

Test Bact1vs3_for_WarmTemp Results for Dependent Variable rot

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	1 48	709.38889 21.96296	32.30	<.0001

Test Bact2vs3_for_WarmTemp Results for Dependent Variable rot

		Mean		
Source	DF	Square	F Value	Pr > F
Numerator	1	162.00000	7.38	0.0092
Denominator	48	21.96296		

Rotten potatoes Two-factor ANOVA several different ways Table of critical values for all possible Scheffe tests Initial test has 5 48 degrees of freedom. and Using significance level alpha = 0.05 Scheffe Critical Value Number of Contrasts in followup test 1 12.042571 2 6.0212853 3 4.0141902 4 3.0106426 5 2.4085141

First, note that the interaction is not significant as a Scheffé test. For the custom tests, the ones that are significant as Scheffé follow-ups are in boldface. Go back and check.

/* Comments:

Conclusions without Scheffe correction

Version One

"Bacteria types 2 and 3 caused more rot at the warmer temperature than at the cooler temperature. At the warmer temperature, bacteria type 3 caused more rot than type 2, and type 2 caused more rot than type 1."

Version Two

"Bacteria types 2 and 3 caused more rot at the warmer temperature than at the cooler temperature, but clear evidence of a temperature effect was not present for bacteria type 1. At the warmer temperature, bacteria type 3 caused more rot than type 2, and type 2 caused more rot than type 1. But at the cool temperature, there was no convincing evidence of a bacteria effect."

I like version one more. From now on we won't mention what's NOT significant.

Conclusions with Scheffe correction

Averaging across bacteria types, there was more rot at the warmer temperature. In particular, bacteria types 2 and 3 caused more rot at the warmer temperature than at the cooler temperature. Averaging across temperatures, bacteria type 3 caused more rot than bacteria type 1; this arose from a substantial difference between bacteria types 1 and 3 at the warmer temperature. Notice that with the Scheffe correction, the interaction was not significant, so I discussed the main effects. SOMETIMES, it still makes sense to discuss main effects in the presence of an interaction. For example, if the temperature effect had been significant for bacteria type 1, one might say something like "In general, there was more rot at the warmer temperature."

Two more comments (in case I forgot to say this):

1. For any factorial ANOVA, saying that all main effects and interactions are zero is the same as saying that all cell means are equal. A simultaneous test of all main effects and interactions is the same as a simple one-way ANOVA on a combination variable whose values are all combinations of the factors. The two tests yield the same value of F the same p-value, everything.

2. As in this data set, it is often helpful to explore an interaction between IV1 and IV2 by testing for the effect of IV1 separately for each value of IV2 (or the other way around). Now, IN THE POPULATION, if an effect of IV1 is present for one value of IV2 and absent for another value of IV2, there is definitely an interaction. However, an effect for IV1 might be present for all values of IV2, and it might even be of the same general form, but larger for one of the IV2 values. In this case there is still an interaction.

Furthermore, there is not necessarily any consistency between tests for interaction and tests for one of the independent variables separately for the values of another. For example, suppose that IV1 and IV2 each have 2 levels, so it is a 2-by-2 design. The difference in the mean of Y between IV1=1 and IV1=2 might be just barely significant when IV2=1, and just barely non-significant (but in the same direction) when IV2=2. In this situation the interaction could easily be non-significant. On the other hand, the differences between means might be just barely non-significant for both IV2=1 and IV2=2, but in opposite directions. In this case, the interaction could well be significant.