
Chapter 3

More Than One Independent
Variable at a time

The standard elementary tests typically involve one independent variable and one depen-
dent variable. Now we will see why this can make them very misleading. The lesson you
should take away from this discussion is that when important variables are ignored in a
statistical analysis — particularly in an observational study — the result can be that we
draw incorrect conclusions from the data. Potential confounding variables really need to
be included in the analysis.

3.1 The chi-squared test of independence

In order to make sure the central example in this chapter is clear, it may be helpful to give
a bit more background on the common Pearson chi-square test of independence. As stated
earlier, the chi-square test of independence is for judging whether two categorical variables
are related or not. It is based upon a cross-tabulation, or joint frequency distribution of
the two variables. For example, suppose that in the statclass data, we are interested in the
relationship between sex and apparent ethnic background. If the ratio of females to males
depended upon ethnic background, this could reflect an interesting cultural difference in
sex roles with respect to men and women going to university (or at least, taking Statistics
classes). In statmarks1.sas, we did this test and obtained a chisquare statistic of 2.92
(df=2, p = 0.2321), which is not statistically significant. Now we’ll do it just a bit
differently to illustrate the details. First, here is the program ethsex.sas.

/* ethsex.sas */

%include ’statread.sas’;

title2 ’Sex by Ethnic’;

proc freq;

tables sex*ethnic / chisq norow nocol nopercent expected;

And here is the output.
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_______________________________________________________________________________

Grades from STA3000 at Roosevelt University: Fall, 1957 1

Sex by Ethnic 19:55 Tuesday, August 30, 2005

The FREQ Procedure

Table of sex by ethnic

sex ethnic(Apparent ethnic background (ancestry))

Frequency|

Expected |Chinese |European|Other | Total

---------+--------+--------+--------+

Male | 27 | 7 | 5 | 39

| 25.79 | 9.4355 | 3.7742 |

---------+--------+--------+--------+

Female | 14 | 8 | 1 | 23

| 15.21 | 5.5645 | 2.2258 |

---------+--------+--------+--------+

Total 41 15 6 62

Statistics for Table of sex by ethnic

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 2 2.9208 0.2321

Likelihood Ratio Chi-Square 2 2.9956 0.2236

Mantel-Haenszel Chi-Square 1 0.0000 0.9949

Phi Coefficient 0.2170

Contingency Coefficient 0.2121

Cramer’s V 0.2170

WARNING: 33% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Sample Size = 62

In each cell of the table, we have an observed frequency and an expected frequency. The
expected frequency is the frequency one would expect by chance if the two variables were
completely unrelated.1 If the observed frequencies are different enough from the expected
frequencies, one would tend to disbelieve the null hypothesis that the two variables are
unrelated. But how should one measure the difference, and what is the meaning of

1The formula for the expected frequency in a given cell is (row total) × (column total)/(sample size).
This follows from the definition of independent events given in introductory probability: the events A
and B are independent if P (A∩B) = P (A)P (B). But this is too much detail, and we’re not going there.
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different “enough?”
The Pearson chi-square statistic (named after Karl Pearson, a famous racist, uh, I

mean statistician) is defined by

χ2 =
∑
cells

(fo − fe)2
fe

, (3.1)

where fo refers to the observed frequence, fe refers to expected frequency, and as indicated,
the sum is over all the cells in the table.

If the two variables are really independent, then as the total sample size increases, the
probability distribution of this statistic approaches a chisquare with degrees of freedom
equal to (Number of rows - 1)×(Number of columns - 1). Again, this is an approximate,
large-sample result, one that obtains exactly only in the limit as the sample size approaches
infinity. A traditional “rule of thumb” is that the approximation is okay if no expected
frequency is less than five. This is why SAS gave us a warning.

More recent research suggests that to avoid inflated Type I error (false significance
at a rate greater than 0.05), all you need is for no expected frequency to be less than
one. You can see from formula (3.1) why an expected frequency less than one would be
a problem. Division by a number close to zero can yield a very large quantity even when
the observer and expected frequencies are fairly close, and the so-called chisquare value
will be seriously inflated.

Anyway, The p-value for the chisquare test is the upper tail area, the area under the
chi-square curve beyond the observed value of the test statistic. In the example from the
statclass data, the test was not significant and we conclude nothing.

3.2 The Berkeley Graduate Admissions data

Now we’re going to look at another example, one that should surprise you. In the 1970’s
the University of California at Berkeley was accused of discriminating against women in
graduate admissions. Data from a large number of applicants are available. The three
variables we will consider are sex of the person applying for graduate study, department
to which the person applied, and whether or not the person was admitted. First, we will
look at the table of sex by admission.

Table of sex by admit

sex admit

Frequency|

Row Pct |No |Yes | Total

---------+--------+--------+

Male | 1493 | 1198 | 2691

| 55.48 | 44.52 |

---------+--------+--------+

Female | 1278 | 557 | 1835

| 69.65 | 30.35 |

---------+--------+--------+

Total 2771 1755 4526
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The FREQ Procedure

Statistics for Table of sex by admit

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 92.2053 <.0001

It certainly looks suspicious. Roughly forty-five percent of the male applicants were
admitted, compared to thirty percent of the female applicants. This difference in per-
centages (equivalent to the relationship between variables here) is highly significant; with
n = 4526, the p-value is very close to zero.

3.3 Controlling for a variable by subdivision

However, things look different when we take into account the department to which the
person applied. Think of a three-dimensional table in which the rows are sex, the columns
are admission, and the third dimension (call it layers) is department. Such tables are easy
to generate with SAS and other statistical packages.

The three-dimensional table is displayed by printing each layer on a separate page,
along with test statistics (if requested) for each sub-table. This is equivalent to dividing
the cases into sub-samples, and doing the chisquare test separately for each sub-sample.
A useful way to talk about this is to say that that we are controlling for the third variable;
that is, we are looking at the relationship between the other two variables with the third
variable held constant. We will have more to say about controlling for collections of
independent variables when we get to regression.

Here are the six sub-tables of sex by admit, one for each department, with a brief
comment after each table. The SAS output is edited a bit to save paper.

Table 1 of sex by admit

Controlling for dept=A

sex admit

Frequency|

Row Pct |No |Yes | Total

---------+--------+--------+

Male | 313 | 512 | 825

| 37.94 | 62.06 |

---------+--------+--------+

Female | 19 | 89 | 108

| 17.59 | 82.41 |

---------+--------+--------+

Total 332 601 933
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Statistics for Table 1 of sex by admit

Controlling for dept=A

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 17.2480 <.0001

For department A, 62% of the male applicants were admitted, while 82% of the female
applicants were admitted. That is, women were more likely to get in than men. This is a
reversal of the relationship that is observed when the data for all departments are pooled!

Table 2 of sex by admit

Controlling for dept=B

sex admit

Frequency|

Row Pct |No |Yes | Total

---------+--------+--------+

Male | 207 | 353 | 560

| 36.96 | 63.04 |

---------+--------+--------+

Female | 8 | 17 | 25

| 32.00 | 68.00 |

---------+--------+--------+

Total 215 370 585

Statistics for Table 2 of sex by admit

Controlling for dept=B

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 0.2537 0.6145

For department B, women were somewhat more likely to be admitted (another reversal),
but it’s not statistically significant.
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Table 3 of sex by admit

Controlling for dept=C

sex admit

Frequency|

Row Pct |No |Yes | Total

---------+--------+--------+

Male | 205 | 120 | 325

| 63.08 | 36.92 |

---------+--------+--------+

Female | 391 | 202 | 593

| 65.94 | 34.06 |

---------+--------+--------+

Total 596 322 918

Statistics for Table 3 of sex by admit

Controlling for dept=C

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 0.7535 0.3854

For department C , men were slightly more likely to be admitted, but the 3% difference
is much smaller than for the pooled data. Again, it’s not statistically significant.

Table 4 of sex by admit

Controlling for dept=D

sex admit

Frequency|

Row Pct |No |Yes | Total

---------+--------+--------+

Male | 279 | 138 | 417

| 66.91 | 33.09 |

---------+--------+--------+

Female | 244 | 131 | 375

| 65.07 | 34.93 |

---------+--------+--------+

Total 523 269 792

Statistics for Table 4 of sex by admit

Controlling for dept=D

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 0.2980 0.5852
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For department D, women were a bit more likely to be admitted (a reversal), but it’s
far from statistically significant. Now department E:

Table 5 of sex by admit

Controlling for dept=E

sex admit

Frequency|

Row Pct |No |Yes | Total

---------+--------+--------+

Male | 138 | 53 | 191

| 72.25 | 27.75 |

---------+--------+--------+

Female | 299 | 94 | 393

| 76.08 | 23.92 |

---------+--------+--------+

Total 437 147 584

Statistics for Table 5 of sex by admit

Controlling for dept=E

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 1.0011 0.3171

This time it’s a non-significant tendency for men to get in more. Finally, department F :

Table 6 of sex by admit

Controlling for dept=F

sex admit

Frequency|

Row Pct |No |Yes | Total

---------+--------+--------+

Male | 351 | 22 | 373

| 94.10 | 5.90 |

---------+--------+--------+

Female | 317 | 24 | 341

| 92.96 | 7.04 |

---------+--------+--------+

Total 668 46 714

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 0.3841 0.5354
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For department F , women were slightly more likely to get in, but once again it’s not
significant.

So in summary, the pooled data show that men were more likely to be admitted
to graduate study. But when take into account the department to which the student
is applying, there is a significant relationship between sex and admission for only one
department, and in that department, women are more likely to be accepted.

How could this happen? I generated two-way tables of sex by department and depart-
ment by admit; both relationships were highly significant. Instead of displaying the SAS
output, I have assembled some numbers from these two tables. The same thing could be
accomplished with SAS proc tabulate, but it’s too much trouble, so I did it by hand.

Table 3.1: Percentage of female applicants and overall percentage of applicants accepted
for six departments

Department Percent applicants female Percentage applicants accepted
A 11.58% 64.42%
B 4.27 63.25
C 64.60 35.08
D 47.35 33.96
E 67.29 25.17
F 47.76 6.44

Now it is clear. The two departments with the lowest percentages of female applicants
(A and B) also had the highest overall percentage of applicants accepted, while the
department with the highest percentage of female applicants (E) also had the second-
lowest overall percentage of applicants accepted. That is, the departments most popular
with men were easiest to get into, and those most popular with women were more difficult.
Clearly, this produced the overall tendency for men to be admitted more than women.

By the way, does this mean that the University of California at Berkeley was not
discriminating against women? By no means. Why does a department admit very few
applicants relative to the number who apply? Because they do not have enough professors
and other resources to offer more classes. This implies that the departments popular with
men were getting more resources, relative to the level of interest measured by number of
applicants. Why? Maybe because men were running the show. The “show,” by the way
definitely includes the U. S. military, which funds a lot of engineering and similar stuff at
big American universities.

The Berkeley data, a classic example of Simpson’s paradox, illustrate the following
uncomfortable fact about observational studies. When you include a new variable in an
analysis, the results you have could get weaker, they could get stronger, or they could
reverse direction — all depending upon the inter-relations of the independent variables.
Basically, if an observational study does not include every potential confounding variable
you can think of, there is going to be trouble.

Now, the distinguishing feature of the “elementary” tests is that they all involve one
independent variable and one dependent variable. Consequently, they can be extremely
misleading when applied to the data from observational studies, and are best used as tools
for preliminary exploration.
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Pooling the chi-square tests When using sub-tables to control for a categorical in-
dependent variable, it is helpful to have a single test that allows you to answer a question
like this: If you control for variable A, is B related to C? For the chi-square test of
independence, it’s quite easy. Under the null hypothesis that B is unrelated to C for
each value of A, the test statistics for the sub-tables are independent chisquare random
variables. Therefore, there sum is also chisquare, with degrees of freedom equal to the
sum of degrees of freedom for the sub-tables.

In the Berkeley example, we have a pooled chisquare value of

17.2480 + 0.2537 + 0.7535 + 0.2980 + 1.0011 + 0.3841 = 19.9384

with 6 degrees of freedom. Using any statistics text (except this one), we can look up the
critical value at the 0.05 significance level. It’s 12.59; since 19.9 ¿ 12.59, the pooled test
is significant at the 0.05 level. To get a p-value for our pooled chisquare test, we can use
SAS. See the program in the next section.

In summary, we need to use statistical methods that incorporate more than one inde-
pendent variable at the same time; multiple regression is the central example. But even
with advanced statistical tools, the most important thing in any study is to collect the
right data in the first place. Looking at it the right way is critical too, but no statistical
analysis can compensate for having the wrong data.

For more detail on the Berkeley data, see the article in Science by Bickel Hammel and
O’Connell [1]. For the principle of adding chisquare values and adding degrees of freedom
from sub-tables, a good reference is Feinberg’s The analysis of cross-classified categorical
data [3].

3.4 The SAS program

Here is the program berkeley.sas. It has several features that you have not seen yet, so
a discussion follows the listing of the program.

/*************************** berkeley.sas *********************************/

options linesize=79 pagesize=35 noovp formdlim=’_’;

title ’Berkeley Graduate Admissions Data: ’;

proc format;

value sexfmt 1 = ’Female’ 0 = ’Male’;

value ynfmt 1 = ’Yes’ 0 = ’No’;

data berkley;

input line sex dept $ admit count; %$

format sex sexfmt.; format admit ynfmt.;

datalines;

1 0 A 1 512

2 0 B 1 353

3 0 C 1 120

4 0 D 1 138

5 0 E 1 53

6 0 F 1 22
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7 1 A 1 89

8 1 B 1 17

9 1 C 1 202

10 1 D 1 131

11 1 E 1 94

12 1 F 1 24

13 0 A 0 313

14 0 B 0 207

15 0 C 0 205

16 0 D 0 279

17 0 E 0 138

18 0 F 0 351

19 1 A 0 19

20 1 B 0 8

21 1 C 0 391

22 1 D 0 244

23 1 E 0 299

24 1 F 0 317

;

proc freq;

tables sex*admit / nopercent nocol chisq;

tables dept*sex / nopercent nocol chisq;

tables dept*admit / nopercent nocol chisq;

tables dept*sex*admit / nopercent nocol chisq;

weight count;

/* Get p-value */

proc iml;

x = 19.9384;

pval = 1-probchi(x,6);

print "Chisquare = " x "df=6, p = " pval;

The first unusual feature of berkeley.sas is in spite of recommendations to the
contrary, the data are in the program itself rather than in a separate file. The data are
in the data step, following the datalines command and ending with a semicolon. You
can always do this, but usually it’s a bad idea. Here, it’s a good idea. This is why.

I did not have access to a raw data file, just a 2 by 6 by 2 table of sex by department
by admission. So I just created a data set with 24 lines, even though there are 4526 cases.
Each line of the data set has values for the three variables, and also a variable called
count, which is just the observed cell frequency for that combination of sex, department
and admission. Then, using the weight statement in proc freq, I just “weighted” each
of the 24 cases in the data file by count, essentially multiplying the sample size by count
for each case.

The advantages are several. First, such a data set is easy to create from published
tables, and is much less trouble than a raw data file with thousands of cases. Second, the
data file is so short that it makes sense to put it in the data set for portability and ease of
reference. Finally, this is the way you can get the data from published tables (which may
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not include any significance tests at all) into SAS, where you can compute any statistics
you want, including sophisticated log-linear modelling analyses.

The last tables statement in the proc freq gives us the three-dimensional table.
For a two-dimensional table, the first variable you mention will correspond to rows and
the second will correspond to columns. For higher-dimensional tables, the second-to-last
variable mentioned is rows, the last is columns, and combinations of the variables listed
first are the control variables for which sub-tables are produced.

Finally, the iml in proc iml stands for “Interactive Matrix Language,” and you can
use it to perform useful calculations in a syntax that is very similar to standard matrix
algebra notation; this can be very convenient when formulas you want to compute are
in that notation. Here, we’re just using it to calculate the area under the curve of the
chisquare density with 6 degrees of freedom, beyond the observed test statistic of 19.9384.
The probchi function is the cumulative distribution function of the chisquare distribution;
the second argument (6 in this case) is the degrees of freedom. probchi(x,6) gives the
area under the curve between zero and x, and 1-probchi(x,6) gives the tail area above
x – that is, the p-value.

Summary The example of the Berkeley graduate admissions data teaches us that po-
tential confounding variables need to be explicitly included in a statistical analysis. Oth-
erwise, the results can be very misleading. In the Berkeley example, first we ignored
department and there was a relationship between sex and admission that was statistically
significant in one direction. Then, when we controlled for department — that is, when we
took it into account — the relationship was either significant in the opposite direction, or
it was not significant (depending on which department).

We also saw how to pool chi-square values and degrees of freedom by adding over
sub-tables, obtaining a useful test of whether two categorical variables are related, while
controlling for one or more other categorical variables. This is something SAS will not do
for you, but it’s easy to do with proc freq output and a calculator.
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Chapter 4

Multiple Regression: Part One

4.1 Three Meanings of Control

In this class, we will use the word control to refer to procedures designed to reduce
the influence of extraneous variables on our results. The definition of extraneous is “not
properly part of a thing,” and we will use it to refer to variables we’re not really inter-
ested in, and which might get in the way of understanding the relationship between the
independent variable and the dependent variable.

There are two ways an extraneous variable might get in the way. First, it could
be a confounding variable – related to both the independent variable and the dependent
variable, and hence capable of creating masking or even reversing relationships that would
otherwise be evident. Second, it could be unrelated to the independent variable and
hence not a confounding variable, but it could still have a substantial relationship to the
dependent variable. If it is ignored, the variation that it could explain will be part of the
”background noise,” making it harder to see the relationship between IV and DV, or at
least causing it to appear relatively weak, and possibly to be non-significant.

The main way to control potential extraneous variables is by holding them constant. In
experimental control, extraneous variables are literally held constant by the procedure
of data collection or sampling of cases. For example, in a study of problem solving
conducted at a high school, background noise might be controlled by doing the experiment
at the same time of day for each subject ( and not when classes are changing). In learning
experiments with rats, males are often employed because their behavior is less variable
than that of females.

An alternative to experimental control is statistical control, which takes two main
forms. One version, subdivision, is to subdivide the sample into groups with identical or
nearly identical values of the extraneous variable(s), and then to examine the relationship
between independent and dependent variable separately in each subgroup – possibly pool-
ing the subgroup analyses in some way. The analysis of the Berkeley graduate admissions
data in Chapter 3 is our prime example. As another example where the relationship of
interest is between quantitative rather than categorical variables, the correlation of educa-
tion with income might be studied separately for men and women. The drawback of this
subdivision approach is that if extraneous variables have many values or combinations of
values, you need a very large sample.

The second form of statistical control,model-based control, is to exploit details of the

66



statistical model to accomplish the same thing as the subdivision approach, but without
needing a huge sample size. The primary example is multiple linear regression, which is
the topic of this chapter.

4.2 Population Parameters

Recall we said two variables are “related” if the distribution of the dependent variable
depends on the value of the independent variable. Classical regression and analysis of
variance are concerned with a particular way in which the independent and dependent
variables might be related, one in which the population mean of Y depends on the value
of X.

Think of a population histogram manufactured out of a thin sheet of metal. The
point (along the horizontal axis) where the histogram balances is called the expected
value or population mean; it is usually denoted by E[Y ] or µ (the Greek letter mu). The
conditional population mean of Y given X = x is just the balance point of the conditional
distribution. It will be denoted by E[Y |X = x]. The vertical bar — should be read as
”given.”

Again, for every value of X, there is a separate distribution of Y , and the expected
value (population mean) of that distribution depends on the value ofX. Furthermore, that
dependence takes a very specific and simple form. When there is only one independent
variable, the population mean of Y is

E[Y |X = x] = β0 + β1x. (4.1)

This is the equation of a straight line. The slope (rise over run) is β1 and the intercept
is β0. If you want to know the population mean of Y for any given x value, all you need
are the two numbers β0 and β1.

But in practice, we never know β0 and β1. To estimate them, we use the slope and
intercept of the least-squares line:

Ŷ = b0 + b1x. (4.2)

If you want to estimate the population mean of Y for any given x value, all you need are
the two numbers b0 and b1, which are calculated from the sample data.

This has a remarkable implication, one that carries over into multiple regression. Ordi-
narily, if you want to estimate a population mean, you need a reasonable amount of data.
You calculate the sample mean of those data, and that’s your estimate of the population
mean. If you want to estimate a conditional population mean, that is, the population
mean of the conditional distribution of Y given a particular X = x, you need a healthy
amount of data with that value of x. For example, if you want to estimate the average
weight of 50 year old women, you need a sample of 50 year old women — unless you are
willing to make some assumptions.

What kind of assumptions? Well, the simple structure of (4.1) means that you can use
formula (4.2) to estimate the population mean of Y for a given value of X = x without
having any data at that x value. This is not “cheating,” or at any rate, it need not be. If

• the x value in question is comfortably within the range of the data in your sample,
and if
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• the straight-line model is a reasonable approximation of reality within that range,

then the estimate can be quite good.
The ability to estimate a conditional population mean without a lot of data at any

given x value means that we will be able to control for extraneous variables, and remove
their influence from a given analysis without having the massive amounts of data required
by the subdivision approach to statistical control.

We are getting away with this because we have adopted a model for the data that
makes reasonably strong assumptions about the way in which the population mean of Y
depends on X. If those assumptions are close to the truth, then the conclusions we draw
will be reasonable. If the assumptions are badly wrong, we are just playing silly games.
There is a general principle here, one that extends far beyond multiple regression.

Data Analysis Hint 4 There is a direct tradeoff between amount of data and the strength
(restrictiveness) of model assumptions. If you have a lot of data, you do not need to as-
sume as much. If you have a small sample size, you will probably have to adopt fairly
restrictive assumptions in order to conclude anything from your data.

Multiple Regression Now consider the more realistic case where there is more than
one independent variable. With two independent variables, the model for the population
mean of Y is

E[Y |X = x] = β0 + β1x1 + β2x2,

which is the equation of a plane in 3 dimensions (x1, x2, y). The general case is

E[Y |X = x] = β0 + β1x1 + . . .+ βp−1xp−1,

which is the equation of a hyperplane in p dimensions.

Comments

• Since there is more than one independent variable, there is a conditional distribu-
tion of Y for every combination of independent variable values. Matrix notation
(boldface) is being used to denote a collection of independent variables.

• There are p − 1 independent variables. This may seem a little strange, but we’re
doing this to keep the notation consistent with that of standard regression texts
such as [5]. If you want to think of an independent variable X0 = 1, then there are
p independent variables.

• What is β0? It’s the height of the population hyperplane when all the independent
variables are zero, so it’s the intercept.

• Most regression models have an intercept term, but some do not (X0 = 0); it
depends on what you want to accomplish.

• β0 is the intercept. We will now see that the other β values are slopes.

68



Consider
E[Y |X = x] = β0 + β1x1 + β2x2 + β3x3 + β4x4

What is β3? If you speak calculus,
∂
∂x3
E[Y ] = β3, so β3 is the rate at which the population

mean is increasing as a function of x3, when other independent variables are held constant
(this is the meaning of a partial derivative).

If you speak high school algebra, β3 is the change in the population mean of Y when
x3 is increased by one unit and all other independent variables are held constant. Look at

β0 + β1x1 + β2x2 +β3(x3 + 1) +β4x4

− (β0 + β1x1 + β2x2 +β3x3 +β4x4)

= β0 + β1x1 + β2x2 + β3x3 +β3 +β4x4

− β0 − β1x1 − β2x2 − β3x3 −β4x4

= β3

The mathematical device of holding other variables constant is very important. This
is what is meant by statements like “Controlling for parents’ education, parents’ in-
come and number of siblings, quality of day care is still positively related to academic
performance in Grade 1.” We have just seen the prime example of model-based statistical
control — the third type of control in the “Three meanings of control” section that began
this chapter.

We will describe the relationship between Xk and Y as positive (controlling for the
other independent variables) if βk > 0 and negative if βk < 0.

Here is a useful definition. A quantity (say w) is a linear combination of quantities
z1, z2 and z3 if w = a1z1+a2z2+a3z3, where a1, a2 and a3 are constants. Common multiple
regression is linear regression because the population mean of Y is a linear combination
of the β values. It does not refer to the shape of the curve relating x to E[Y |X = x]. For
example,

E[Y |X = x] = β0 + β1x Simple linear regression
E[Y |X = x] = β0 + β1x

2 Also simple linear regression
E[Y |X = x] = β0 + β1x+ β2x

2 + β3x
3 Polynomial regression – still linear

E[Y |X = x] = β0 + β1x+ β2 cos(1/x) Still linear in the β values
E[Y |X = x] = β0 + β1 cos(β2x) Truly non-linear

When the relationship between the independent and dependent variables is best rep-
resented by a curve, we’ll call it curvilinear, whether the regression model is linear or
not. All the examples just above are curvilinear, except the first one.

Notice that in the polynomial regression example, there is really only one independent
variable, x. But in the regression model, x, x2 and x3 are considered to be three separate
independent variables in a multiple regression. Here, fitting a curve to a cloud of points in
two dimensions is accomplished by fitting a hyperplane in four dimensions. The origins of
this remarkable trick are lost in the mists of time, but whoever thought of it was having
a good day.

69



4.3 Estimation by least squares

In the last section, the conditional population mean of the dependent variable was mod-
elled as a (population) hyperplane. It is natural to estimate a population hyperplane
with a sample hyperplane. This is easiest to imagine in three dimensions. Think of a
three-dimensional scatterplot, in a room. The independent variables are X1 and X2. The
(x1, x2) plane is the floor, and the value of Y is height above the floor. Each subject
(case) in the sample contributes three coordinates (x1, x2, y), which can be represented
by a soap bubble floating in the air.

In simple regression, we have a two-dimensional scatterplot, and we seek the best-
fitting straight line. In multiple regression, we have a three (or higher) dimensional
scatterplot, and we seek the best fitting plane (or hyperplane). Think of lifting and
tilting a piece of plywood until it fits the cloud of bubbles as well as possible.

What is the “best-fitting” plane? We’ll use the least-squares plane, the one that
minimizes the sum of squared vertical distances of the bubbles from the piece of plywood.
These vertical distances can be viewed as errors of prediction.

It’s hard to visualize in higher dimension, but the algebra is straightforward. Any
sample hyperplane may be viewed as an estimate (maybe good, maybe terrible) of the
population hyperplane. Following the statistical convention of putting a hat on a popu-
lation parameter to denote an estimate of it, the equation of a sample hyperplane is

β̂0 + β̂1x1 + . . .+ β̂p−1xp−1,

and the error of prediction (vertical distance) is the difference between y and the quantity
above. So, the least squares plane must minimize

Q =
n∑
i=1

(
yi − β̂0 − β̂1xi,1 − . . .− β̂p−1xi,p−1

)2

over all combinations of β̂0, β̂1, . . . , β̂p−1.
Provided that no independent variable (including the peculiar X0 = 1) is a perfect

linear combination of the others, the β̂ quantities that minimize the sum of squares Q
exist and are unique. We will denote them by b0 (the estimate of β0, b1 (the estimate of
β1), and so on.

Again, a population hyperplane is being estimated by a sample hyperplane.

E[Y |X = x] = β0 + β1x1 + β2x2 + β3x3 + β4x4

Ŷ = b0 + b1x1 + b2x2 + b3x3 + b4x4

• Ŷ means predicted Y . It is the height of the best-fitting (least squares) piece of
plywood above the floor, at the point represented by the combination of x values.
The equation for Ŷ is the equation of the least-squares hyperplane.

• “Fitting the model” means calculating the b values.

4.3.1 Residuals

The residual, or error of prediction, is

e = Y − Ŷ .
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The residuals (there are n) represents errors in prediction. A positive residual means
over-performance (or under-prediction). A negative residual means under-performance.
Examination of residuals can reveal a lot, since we can’t look at 12-dimensional scatter-
plots.

• Single variable plots (histograms, box plots, stem and leaf diagrams etc.) can iden-
tify outliers. (Data errors? Source of new ideas? What might a bimodal distribution
of residuals indicate?)

• Plot (scatterplot) of residuals versus potential independent variables not in the
model might suggest they be included, or not. How would you plot residuals vs a
categorical IV?

• Plot of residuals vs. variables that are in the model may reveal

– Curvilinear trend (may need transformation of x, or polynomial regression, or
even real non-linear regression)

– Non-constant variance over the range of x, so the DV may depend on the IV
not just through the mean. May need transformation of Y , or weighted least
squares, or a different model.

• Plot of residuals vs. Ŷ may also reveal unequal variance.

4.3.2 Categorical Independent Variables

Independent variables need not be continuous – or even quantitative. For example, sup-
pose subjects in a drug study are randomly assigned to either an active drug or a placebo.
Let Y represent response to the drug, and

x =

{
1 if the subject received the active drug, or
0 if the subject received the placebo.

The model is E[Y |X = x] = β0 + β1x. For subjects who receive the active drug (so
x = 1), the population mean is

β0 + β1x = β0 + β1

For subjects who receive the placebo (so x = 0), the population mean is

β0 + β1x = β0.

Therefore, β0 is the population mean response to the placebo, and β1 is the difference
between response to the active drug and response to the placebo. We are very interested
in testing whether β1 is different from zero, and guess what? We get exactly the same
t value as from a two-sample t-test, and exactly the same F value as from a one-way
ANOVA for two groups.
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Exercise Suppose a study has 3 treatment conditions. For example Group 1 gets Drug
1, Group 2 gets Drug 2, and Group 3 gets a placebo, so that the Independent Variable is
Group (taking values 1,2,3) and there is some Dependent Variable Y (maybe response to
drug again).

Sample Question 4.3.1 Why is E[Y |X = x] = β0 + β1x (with x = Group) a silly
model?

Answer to Sample Question 4.3.1 Designation of the Groups as 1, 2 and 3 is com-
pletely arbitrary.

Sample Question 4.3.2 Suppose x1 = 1 if the subject is in Group 1, and zero otherwise,
and x2 = 1 if the subject is in Group 2, and zero otherwise, and E[Y |X = x] = β0 +
β1x1 + β2x2. Fill in the table below.

Group x1 x2 β0 + β1x1 + β2x2

1 µ1 =
2 µ2 =
3 µ3 =

Answer to Sample Question 4.3.2

Group x1 x2 β0 + β1x1 + β2x2

1 1 0 µ1 = β0 + β1

2 0 1 µ2 = β0 + β2

3 0 0 µ3 = β0

Sample Question 4.3.3 What does each β value mean?

Answer to Sample Question 4.3.3 β0 = µ3, the population mean response to the
placebo. β1 is the difference between mean response to Drug 1 and mean response to
the placebo. β2 is the difference between mean response to Drug 21 and mean response to
the placebo.

Sample Question 4.3.4 Why would it be nice to simultaneously test whether β1 and β2

are different from zero?

Answer to Sample Question 4.3.4 This is the same as testing whether all three pop-
ulation means are equal; this is what a one-way ANOVA does. And we get the same F
and p values (not really part of the sample answer).

It is worth noting that all the traditional one-way and higher-way models for analysis
of variance and covariance emerge as special cases of multiple regression, with dummy
variables representing the categorical independent variables.
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More about Dummy Variables The exercise above was based on indicator dummy
variables, which take a value of 1 for observations where a categorical independent vari-
able takes a particular value, and zero otherwise. Notice that x1 and x2 contain the same
information as the three-category variable Group. If you know Group, you know x1 and
x2, and if you know x1 and x2, you know Group. In models with an intercept term, a
categorical independent variable with k categories is always represented by k− 1 dummy
variables. If the dummy variables are indicators, the category that does not get an in-
dicator is actually the most important. The intercept is that category’s mean, and it is
called the reference category, because the remaining regression coefficients represent
differences between the reference category and the other category. To compare several
treatments to a control, make the control group the reference category by not giving it
an indicator.

Sample Question 4.3.5 What would happen if you used k indicator dummy variables
instead of k − 1?

Answer to Sample Question 4.3.5 The dummy variables would add up to the inter-
cept; the independent variables would be linearly dependent, and the least-squares estima-
tors would not exist.

Your software might try to save you by throwing one of the dummy variables out, but
which one would it discard?

4.3.3 Explained Variation

Before considering any independent variables, there is a certain amount of variation in the
dependent variable. The sample mean is the value around which the sum of squared errors
of prediction is at a minimum, so it’s a least squares estimate of the population mean of
Y when there are no independent variables. We will measure the total variation to be
explained by the sum of squared deviations around the mean of the dependent variable.

When we do a regression, variation of the data around the least-squares plane repre-
sents errors of prediction. It is variation that is unexplained by the regression. But it’s
always less than the variation around the sample mean (Why? Because the least-squares
plane could be horizontal). So, the independent variables in the regression have explained
some of the variation in the dependent variable. Variation in the residuals is variation
that is still unexplained.

Variation to explain: Total Sum of Squares

SSTO =
n∑
i=1

(Yi − Y )2

Variation that the regression does not explain: Error Sum of Squares

SSE =
n∑
i=1

(ei − e)2 =
n∑
i=1

e2i =
n∑
i=1

(Yi − Ŷi)2

Variation that is explained: Regression (or Model) Sum of Squares

SSR =
n∑
i=1

(Yi − Y )2 −
n∑
i=1

(Yi − Ŷi)2 =
n∑
i=1

(Ŷi − Y )2
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Regression software (including SAS) displays the sums of squares above in an analysis
of variance summary table. “Analysis” means to “split up,” and that’s what we’re doing
here — splitting up the variation in dependent variable into explained and unexplained
parts.

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F

Model p− 1 SSR MSR = SSR/(p− 1) F = MSR
MSE

p-value
Error n− p SSE MSE = SSE/(n− p)
Total n− 1 SSTO

Variance estimates consist of sums of squares divided by degrees of freedom. “DF”
stands for Degrees of Freedom. Sums of squares and degrees of freedom each add up to
Total. The F -test is for whether β1 = β2 = . . . = βp−1 = 0 – that is, for whether any of
the independent variables makes a difference.

The proportion of variation in the dependent variable that is explained by the inde-
pendent variables (representing strength of relationship) is

R2 =
SSR

SSTO

The R2 from a simple regression is the same as the square of the correlation coefficient:
R2 = r2.

What is a good value of R2? Well, the weakest relationship I can visually perceive
in a scatterplot is around r = .3, so I am unimpressed by R2 values under 0.09. By this
criterion, most published results in the social sciences, and many published results in the
biological sciences are not strong enough to be scientifically interesting. But this is just
my opinion.

4.4 Testing for Statistical Significance in Regression

We are already assuming that there is a separate population defined by each combination
of values of the independent variables (the conditional distributions of Y given X), and
that the conditional population mean is a linear combination of the β values; the weights
of this linear combination are 1 for β0, and the x values for the other β values. The
classical assumptions are that in addition,

• Sample values of Y represent independent observations, conditionally upon the val-
ues of the independent variables.

• Each conditional distribution is normal.

• Each conditional distribution has the same population variance.
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How important are the assumptions? Well, important for what? The main thing we
want to avoid is incorrect p-values, specifically ones that appear smaller than they are –
so that we conclude a relationship is present when really we should not. This ”Type I
error” is very undesirable, because it tends to load the scientific literature with random
garbage.

For large samples, the assumption of normality is not important provided no single
observation has too much influence. What is meant by a “large” sample? It depends on
how severe the violations are. What is “too much” influence? The influence of the most
influential observation must tend to zero as the sample size approaches infinity. You’re
welcome.

The assumption of equal variances can be safely violated provided that the numbers
of observations at each combination of IV values are large and close to equal. This is most
likely to be the case with designed experiments having categorical independent variables.

The assumption of independent observations is very important, almost always. Ex-
amples where this does not hold is if a student takes a test more than once, members of
the same family respond to the same questionnaire about eating habits, litter-mates are
used in a study of resistance to cancer in mice, and so on.

When you know in advance which observations form non-independent sets, one option
is to average them, and let n be the number of independent sets of observations. There
are also ways to incorporate non-independence into the statistical model. We will discuss
repeated measures designs, multivariate analysis and other examples later.

4.4.1 The standard F and t-tests

SAS proc reg (like other programs) usually starts with an overall F -test, which tests all
the independent variables in the equation simultaneously. If this test is significant, we
can conclude that one or more of the independent variables is related to the dependent
variable.

Again like most programs that do multiple regression, SAS produces t-tests for the
individual regression coefficients. If one of these is significant, we can conclude that
controlling for all other independent variables in the model, the independent variable in
question is related to the dependent variable. That is, each variable is tested controlling
for all the others.

It is also possible to test subsets of independent variables, controlling for all the others.
For example, in an educational assessment where students use 4 different textbooks, the
variable ”textbook” would be represented by 3 dummy variables. These variables could
be tested simultaneously, controlling for several other variables such as parental education
and income, child’s past academic performance, experience of teacher, and so on.

In general, to test a subset A of independent variables while controlling for another
subset B, fit a model with both sets of variables, and simultaneously test the b coefficients
of the variables in subset A; there is an F test for this.

This is 100% equivalent to the following. Fit a model with just the variables in subset
B, and calculate R2. Then fit a second model with the A variables as well as the B
variables, and calculate R2 again. Test whether the increase in R2 is significant. It’s the
same F test.

Call the regression model with all the independent variables the Full Model, and
call the model with fewer independent variables (that is, the model without the variables
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being tested) the Reduced Model. Let SSRF represent the explained sum of squares
from the full model, and SSRR represent the explained sum of squares from the reduced
model.

Sample Question 4.4.1 Why is SSRF ≥ SSRR?

Answer to Sample Question 4.4.1 In the full model, if the best-fitting hyperplane had
all the b coefficients corresponding to the extra variables equal to zero, it would fit exactly
as well as the hyperplane of the reduced model. It could not do any worse.

Since R2 = SSR
SSTO

, it is clear that SSRF ≥ SSRR implies that adding independent
variables to a regression model can only increase R2. When these additional independent
variables are correlated with independent variables already in the model (as they usually
are in an observational study),

• Statistical significance can appear when it was not present originally, because the
additional variables reduce error variation, and make estimation and testing more
precise.

• Statistical significance that was originally present can disappear, because the new
variables explain some of the variation previously attributed to the variables that
were significant, so when one controls for the new variables, there is not enough
explained variation left to be significant. This is especially true of the t-tests, in
which each variable is being controlled for all the others.

• Even the signs of the bs can change, reversing the interpretation of how their vari-
ables are related to the dependent variable. This is why it’s very important not to
leave out important independent variables in an observational study.

The F -test for the full versus reduced model is based on the test statistic

F =
(SSRF − SSRR)/s

MSEF
, (4.3)

where MSEF is the mean square error for the full model: MSEF =
SSEF
n−p . Equation 4.3

is a very general formula. As we will see, all the standard tests in regression and the usual
(fixed effects) Analysis of Variance are special cases of this F -test.

Examples of Full and Reduced Models

At this point, it might help to have some concrete examples. Recall the SENIC data
set (catching infection in hospital) that was used to illustrate a collection of elementary
significance tests in lecture. For reference, here is the label statement again.

label id = ’Hospital identification number’

stay = ’Av length of hospital stay, in days’

age = ’Average patient age’

infrisk = ’Prob of acquiring infection in hospital’

culratio = ’# cultures / # no hosp acq infect’

xratio = ’# x-rays / # no signs of pneumonia’
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nbeds = ’Average # beds during study period’

medschl = ’Medical school affiliation’

region = ’Region of country (usa)’

census = ’Aver # patients in hospital per day’

nurses = ’Aver # nurses during study period’

service = ’% of 35 potential facil. & services’ ;

The SAS program senicread.sas could have defined dummy variables for region
and medschl in the data step as follows:

if region = 1 then r1=1; else r1=0;

if region = 2 then r2=1; else r2=0;

if region = 3 then r3=1; else r3=0;

if medschl = 2 then mschool = 0; else mschool = medschl;

/* mschool is an indicator for medical school = yes */

The definition of r1, r2 and r2 above is correct, but it is risky. It works only because
the data file happens to have no missing values for region. If there were missing values
for region, the else statements would assign them to zero for r1, r2 and r3, because
else means anything else. The definition of mschool is a bit more sophisticated; missing
values for medschl will also be missing for mschool.

Here is what I’d recommend for region. It’s more trouble, but it’s worth it.

/* Indicator dummy variables for region */

if region = . then r1=.;

else if region = 1 then r1 = 1;

else r1 = 0;

if region = . then r2=.;

else if region = 2 then r2 = 1;

else r2 = 0;

if region = . then r3=.;

else if region = 3 then r3 = 1;

else r3 = 0;

When you create dummy variables with if statements, always do crosstabulations of
the new dummy variables by the categorical variable they represent, to make sure you
did it right. Use the option of proc freq to see what happened to the missing values
(missprint makes “missing” a value of the variables).

proc freq;

tables region * (r1-r3) / missprint nocol norow nopercent ;

Sample Question 4.4.2 Controlling for hospital size as represented by number of beds
and number of patients, is average patient age related to infection risk?

1. What are the variables in the full model?

2. What are the variables in the reduced model?

Answer to Sample Question 4.4.2
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1. nbeds, census, age

2. nbeds, census

I would never ask for SAS syntax on a test, but for completeness,

proc reg;

model infrisk = nbeds, census, age;

size: test age=0;

Sample Question 4.4.3 Controlling for average patient age and hospital size as repre-
sented by number of beds and number of patients, does infection risk differ by region of
the country?

1. What are the variables in the full model?

2. What are the variables in the reduced model?

Answer to Sample Question 4.4.3

1. age, nbeds, census, r1, r2, r3

2. age, nbeds, census

To test the full model versus the reduced model,

proc reg;

model infrisk = age nbeds census r1 r2 r3;

regn: test r1=r2=r3=0;

Sample Question 4.4.4 Controlling for number of beds, number of patients, average
length of stay and region of the country, are number of nurses and medical school affiliation
(considered simultaneously) significant predictors of infection risk?

1. What are the variables in the full model?

2. What are the variables in the reduced model?

Answer to Sample Question 4.4.4

1. nbeds, census, stay, r1, r2, r3, nurses, mschool

2. nbeds, census, stay, r1, r2, r3

To test the full model versus the reduced model,

proc reg;

model infrisk = nbeds census stay r1 r2 r3 nurses mschool;

nursmeds: test nurses=mschool=0;

Sample Question 4.4.5 Controlling for average age of patient, average length of stay
and region of the country, is hospital size (as represented by number of beds and number
of patients) related to infection risk?
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1. What are the variables in the full model?

2. What are the variables in the reduced model?

Answer to Sample Question 4.4.5

1. age, stay, r1, r2, r3, nbeds, census

2. age, stay, r1, r2, r3

To test the full model versus the reduced model,

proc reg;

model infrisk = nbeds census stay r1 r2 r3 nurses mschool;

size2: test nurses=mschool=0;

Sample Question 4.4.6 Controlling for region of the country and medical school affilia-
tion, are average length of stay and average patient age (considered simultaneously) related
to infection risk?

1. What are the variables in the full model?

2. What are the variables in the reduced model?

Answer to Sample Question 4.4.6

1. r1, r2, r3, mschool, stay age

2. r1, r2, r3, mschool

To test the full model versus the reduced model,

proc reg;

model infrisk = nbeds census stay r1 r2 r3 nurses mschool;

agestay: test age=stay=0;

The pattern should be clear. You are “controlling for” the variables in the reduced
model. You are testing for the additional variables that appear in the full model but not
the reduced model.

Looking at the Formula for F

Formula 4.3 reveals some important properties of the F -test. Bear in mind that the
p-value is the area under the F -distribution curve above the value of the F statistic.
Therefore, anything that makes the F statistic bigger will make the p-value smaller, and
if it is small enough, the results will be significant. And significant results are what we
want, if in fact the full model is closer to the truth than the reduced model.

• Since there are s more variables in the full model than in the reduced model, the
numerator of (4.3) is the average improvement in explained sum of squares when
we compare the full model to the reduced model. Thus, some of the extra variables
might be useless for prediction, but the test could still be significant at least one of
them contributes a lot to the explained sum of squares, so that the average increase
is substantially more than one would expect by chance.
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• On the other hand, useless extra independent variables can dilute the contribution
of extra independent variables with modest but real explanatory power.

• The denominator is a variance estimate based on how spread out the residuals are.
The smaller this denominator is, the larger the F statistic is, and the more likely it
is to be significant. Therefore, control extraneous sources of variation.

– If possible, always collect data on any potential independent variable that is
known to have a strong relationship to the dependent variable, and include it
in both the full model and the reduced model. This will make the analysis
more sensitive, because increasing the explained sum of squares will reduce the
unexplained sum of squares. You will be more likely to detect a real result
as significant, because it will be more likely to show up against the reduced
background noise.

– On the other hand, the denominator of formula (4.3) for F is MSEF =
SSEF
n−p ,

where the number of independent variables is p−1. Adding useless independent
variables to the model will increase the explained sum of squares by at least
a little, but the denominator of MSEF will go down by one, making MSEF
bigger, and F smaller. The smaller the sample size n, the worse the effect of
useless independent variables. You have to be selective.

– The (internal) validity of most experimental research depends on experimental
designs and procedures that balance sources of extraneous variation evenly
across treatments. But even better are careful experimental procedures that
eliminate random noise altogether, or at least hold it to very low levels. Reduce
sources of random variation, and the residuals will be smaller. The MSEF will
be smaller, and F will be bigger if something is really going on.

– Most dependent variables are just indirect reflections of what the investigator
would really like to study, and in designing their studies, scientists routinely
make decisions that are tradeoffs between expense (or convenience) and data
quality. When dependent variables represent low-quality measurement, they
essentially contain random variation that cannot be explained. This variation
will show up in the denominator of (4.3), reducing the chance of detecting
real results against the background noise. An example of a dependent variable
that might have too much noise would be a questionnaire or subscale of a
questionnaire with just a few items.

The comments above sneaked in the topic of statistical power by discussing the
formula for the F -test. Statistical power is the probability of getting significant results
when something is really going on in the population. It should be clear that high power is
good. We have just seen that statistical power can be increased by including important
explanatory variables in the study, by carefully controlled experimental conditions, and
by quality measurement. Power can also be increased by increasing the sample size. All
this is true in general, and does not depend on the use of the traditional F test.
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4.4.2 Connections between Explained Variation and Significance

Testing

If you divide numerator and denominator of Equation (4.3) by SSTO, the numerator
becomes (R2

F − R2
R)/s, so we see that the F test is based on change in R2 when one

moves from the reduced model to the full model. But the F test for the extra variables
(controlling for the ones in the reduced model) is based not just on R2

F − R2
R, but on a

quantity I’ll denote by a =
R2
F−R

2
R

1−R2
R
. This expresses change in R2 as a proportion of the

variation left unexplained by the reduced model. That is, it’s the proportion of remaining
variation that the additional variables explain.

This is actually a more informative quantity than simple change in R2. For example,
suppose you’re controlling for a set of variables that explain 80% of the variation in the
dependent variable, and you test a variable that accounts for an additional 5%. You have
explained 25% of the remaining variation – much more impressive than 5%.

The a notation is non-standard. It’s sometimes called a squared multiple partial
correlation, but the usual notation for partial correlations is intricate and hard to look
at, so we’ll just use a.

You may recall that an F test has two degree of freedom values, a numerator degrees
of freedom and a denominator degrees of freedom. In the F test for a full versus reduced
model, the numerator degrees of freedom is s, the number of extra variables. The denom-
inator degrees of freedom is n− p. Recall that the sample size is n, and if the regression
model has an intercept, there are p − 1 independent variables. Applying a bit of high
school algebra to Equation (4.3), we see that the relationship between F and a is

F =
(
n− p
s

)(
a

1− a

)
. (4.4)

so that for any given sample size, the bigger a becomes, the bigger F is. Also, for a given
value of a �= 0, F increases as a function of n. This means you can get a large F (and if
it’s large enough it will be significant) from strong results and a small sample, or from
weak results and a large sample. Again, examining the formula for the F statistic yields
a valuable insight.

Expression (4.4) for F can be turned around to express a in terms of F , as follows:

a =
sF

n− p+ sF (4.5)

This is a useful formula, because scientific journals often report just F values, degrees
of freedom and p-values. It’s easy to tell whether the results are significant, but not
whether the results are strong in the sense of explained variation. But the equality (4.5)
above lets you recover information about strength of relationship from the F statistic and
its degrees of freedom. For example, based on a three-way ANOVA where the dependent
variable is rot in potatoes, suppose the authors write “The interaction of bacteria by
temperature was just barely significant (F=3.26, df=2,36, p=0.05).” What we want to
know is, once one controls for other effects in the model, what proportion of the remaining
variation is explained by the temperature-by-bacteria interaction?

We have s=2, n − p = 36, and a = 2×3.26
36+(2×3.26)

= 0.153. So this effect is explaining

a respectable 15% of the variation that remains after controlling for all the other main
effects and interactions in the model.
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4.5 Multiple Regression with SAS

It is always good to start with a textbook example, so that interested students can locate
a more technical discussion of what is going on. The following example is based on
the “Dwaine Studios” Example from Chapter 6 of [5]. The observations correspond to
photographic portrait studios in 21 towns. In addition to sales (the dependent variable),
the data file contains number of children 16 and younger in the community (in thousands
of persons), and per capita disposable income in thousands of dollars. Here is the SAS
program.

/* appdwaine1.sas */

options linesize=79;

title ’Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al’;

title2 ’Just the defaults’;

data portrait;

infile ’dwaine.dat’;

input kids income sales;

proc reg;

model sales = kids income;

/* model DV(s) = IV(s); */

Here is the list file appdwaine1.lst.
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Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 1

Just the defaults 15:52 Sunday, January 13, 2002

Model: MODEL1

Dependent Variable: SALES

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F

Model 2 24015.28211 12007.64106 99.103 0.0001

Error 18 2180.92741 121.16263

C Total 20 26196.20952

Root MSE 11.00739 R-square 0.9167

Dep Mean 181.90476 Adj R-sq 0.9075

C.V. 6.05118

Parameter Estimates

Parameter Standard T for H0:

Variable DF Estimate Error Parameter=0 Prob > |T|

INTERCEP 1 -68.857073 60.01695322 -1.147 0.2663

KIDS 1 1.454560 0.21178175 6.868 0.0001

INCOME 1 9.365500 4.06395814 2.305 0.0333

Here are some comments on the list file.

• First the ANOVA summary table for the overall F -test, testing all the independent
variables simultaneously. In C Total, C means corrected for the sample mean. The
p-value of 0.0001 actually means p < 0.0001, in this version of SAS. It’s better in
later versions.

• Root MSE is the square root of MSE.

• Dep Mean is the mean of the dependent variable.

• C.V. is the coefficient of variation – the standard deviation divided by the mean.
Who cares?

• R-square is R2

• Adj R-sq: Since R2 never goes down when you add independent variables, models
with more variables always look as if they are doing better. Adjusted R2 is an
attempt to penalize the usual R2 for the number of independent variables in the
model. It can be useful if you are trying to compare the predictive usefulness of
models with different numbers of variables.

• Parameter Estimates are the b values. Standard Error is the (estimated) stan-
dard deviation of the sampling distribution of b. It’s the denominator of the t test
in the next column.

• The last column is a two-tailed p-value for the t-test.

Here are some sample questions based on the list file.
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Sample Question 4.5.1 Suppose we wish to test simultaneously whether number of kids
16 and under and average family income have any relationship to sales. Give the value of
the test statistic, and the associated p-value.

Answer to Sample Question 4.5.1 F = 99.103, p < 0.0001

Sample Question 4.5.2 What can you conclude from just this one test?

Answer to Sample Question 4.5.2 Sales is related to either number of kids 16 and
under, or average family income, or both. But you’d never do this. You have to look at
the rest of the printout to tell what’s happening.

Sample Question 4.5.3 What percent of the variation in sales is explained by number
of kids 16 and under and average family income?

Answer to Sample Question 4.5.3 91.67%

Sample Question 4.5.4 Controlling for average family income, is number of kids 16
and under related to sales?

1. What is the value of the test statistic?

2. What is the p-value?

3. Are the results significant? Answer Yes or No.

4. Is the relationship positive, or negative?

Answer to Sample Question 4.5.4

1. t = 6.868

2. p < 0.0001

3. Yes.

4. Positive.

Sample Question 4.5.5 Controlling for number of kids 16 and under is average family
income related to sales?

1. What is the value of the test statistic?

2. What is the p-value?

3. Are the results significant? Answer Yes or No.

4. Is the relationship positive, or negative?

Answer to Sample Question 4.5.5

1. t = 2.305
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2. p = 0.0333

3. Yes.

4. Positive.

Sample Question 4.5.6 What do you conclude from this entire analysis? Direct your
answer to a statistician or researcher.

Answer to Sample Question 4.5.6 Number of kids 16 and under and average family
income are both related to sales, even when each variable is controlled for the other.

Sample Question 4.5.7 What do you conclude from this entire analysis? Direct your
answer to a person without statistical training.

Answer to Sample Question 4.5.7 Even when you allow for the number of kids 16
and under in a town, the higher the average family income in the town, the higher the
average sales. When you allow for the average family income in a town, the higher the
number of children under 16, the higher the average sales.

Sample Question 4.5.8 A new studio is to be opened in a town with 65,400 children
16 and under, and an average household income of $17,600. What annual sales do you
predict?

Answer to Sample Question 4.5.8 Ŷ = b0+b1x1+b2x2 = -68.857073 + 1.454560*65.4
+ 9.365500*17.6 = 191.104, so predicted annual sales = $191,104.

Sample Question 4.5.9 For any fixed value of average income, what happens to pre-
dicted annual sales when the number of children under 16 increases by one thousand?

Answer to Sample Question 4.5.9 Predicted annual sales goes up by $1,454.

Sample Question 4.5.10 What do you conclude from the t-test for the intercept?

Answer to Sample Question 4.5.10 Nothing. Who cares if annual sales equals zero
for towns with no children under 16 and an average household income of zero?

The final two questions ask for a proportion of remaining variation, the quantity we
are denoting by a. If you were doing an analysis yourself and wanted this statistic, you’d
likely fit a full and a reduced model (or obtain sequential sums of squares; we’ll see how
to do this in the next example), and calculate the answer directly. But in the published
literature, sometimes all you have are reports of t-tests for regression coefficients.

Sample Question 4.5.11 Controlling for average household income, what proportion of
the remaining variation is explained by number of children under 16?

Answer to Sample Question 4.5.11 Using F = t2 and plugging into (4.5), we have
a = 1×6.8682

21−3+1×6.8682 = 0.691944, or around 70% of the remaining variation.

Sample Question 4.5.12 Controlling for number of children under 16, what proportion
of the remaining variation is explained by average household income?

Answer to Sample Question 4.5.12 a = 2.3052

18+2.3052 = 0.2278994, or about 23%.

These a values are large, but the sample size is small; after all, it’s a textbook example,
not real data. Now here is a program file that illustrates some options, and gives you a
hint of what a powerful tool SAS can be.
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/* appdwaine2.sas */

options linesize=79 pagesize=35;

title ’Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al’;

title2 ’With bells and whistles’;

data portrait;

infile ’dwaine.dat’;

input kids income sales;

proc reg simple corr; /* "simple" prints simple descriptive statistics */

model sales = kids income / ss1; /* "ss1" prints Sequential SS */

output out=resdata predicted=presale residual=resale;

/* Creates new SAS data set with Y-hat and e as additional variables*/

/* Now all the default F-test, in order */

allivs: test kids = 0, income = 0;

inter: test intercept=0;

child: test kids=0;

money: test income=0;

proc iml; /* Income controlling for kids: Full vs reduced by "hand" */

fcrit = finv(.95,1,18); print fcrit;

/* Had to look at printout from an earlier run to get these numbers*/

f = 643.475809 / 121.16263; /* Using the first F formula */

pval = 1-probf(f,1,18);

tsq = 2.305**2; /* t-squared should equal F*/

a = 643.475809/(26196.20952 - 23372);

print f tsq pval;

print "Proportion of remaining variation is " a;

proc glm; /* Use proc glm to get a y-hat more easily */

model sales=kids income;

estimate ’Xh p249’ intercept 1 kids 65.4 income 17.6;

proc print; /* To see the new data set with residuals*/

proc univariate normal plot;

var resale;

proc plot;

plot resale * (kids income sales);

Here are some comments on appdwaine2.sas.

• simple corr You could get means and standard deviations from proc means and
correlations from proc corr, but this is convenient.

• ss1 These are Type I Sums of Squares, produced by default in proc glm. In proc

reg, you must request them is you want to see them. The independent variables in
the model statement are added to the model in order, so that for each variable, the
reduced model has all the variables that come before it, and the full model has all
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those variables plus the current one. The ss1 option shows the increase in explained
sum of squares that comes from adding each variable to the model, in the order they
appear in the model statement.

• output creates a new sas data set called resdata. It has all the variables in the
data set portrait, and in addition it has Ŷ (named presale for predicted sales)
and e (named resale for residual of sales).

• Then we have some custom tests, all of them equivalent to what we would get by
testing a full versus reduced model. SAS takes the approach of testing whether s
linear combinations of β values equal s specified constants (usually zero). Again,
this is the same thing as testing a full versus a reduced model. The form of a custom
test in proc reg is

1. A name for the test, 8 characters or less, followed by a colon; this name will
be used to label the output.

2. the word test.

3. s linear combinations of independent variable names, each set equal to some
constant, separated by commas.

4. A semi-colon to end, as usual.

If you want to think of the significance test in terms of a collection of linear com-
binations that specify constraints on the β values (this is what a statistician would
appreciate), then we would say that the names of the independent variables (includ-
ing the weird variable “intercept”) are being used to refer to the corresponding βs.
But usually, you are testing a subset of independent variables controlling for some
other subset. In this case, include all the variables in the model statement, and
set the variables you are testing equal to zero in the test statement. Commas are
optional. As an example, for the test allivs (all independent variables) we could
have written allivs: test kids = income = 0;.

• Now suppose you wanted to use the Sequential Sums of Squares to test income con-
trolling for kids. You could use a calculator and a table of the F distribution from
a textbook, but for larger sample sizes the exact denominator degrees of freedom
you need are seldom in the table, and you have to interpolate in the table. With
proc iml (Interactive Matrix Language), which is actually a nice programming en-
vironment, you can use SAS as your calculator. Among other things, you can get
exact critical values and p-values quite easily. Statistical tables are obsolete.

In this example, we first get the critical value for F ; if the test statistic is bigger
than the critical value, the result is significant. Then we calculate F using formula
4.3 and its p-value. This F should be equal to the square of the t statistic from the
printout, so we check. Then we use (4.5) to calculate a, and print the results.

• proc glm The glm procedure is very useful when you have categorical independent
variables, because it makes your dummy variables for you. But it also can do
multiple regression. This example calls attention to the estimate command, which
lets you calculate Ŷ values more easily and with less chance of error than with a
calculator or proc iml.
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• proc print prints all the data values, for all the variables. This is a small data
set, so it’s not producing a telephone book here. You can limit the variables and
the number of cases it prints; see the manual or Applied statistics and the SAS
programming language [2]. By default, all SAS procedures use the most recently
created SAS data set; this is resdata, which was created by proc reg – so the
predicted values and residuals will be printed by proc print.

• You didn’t notice, but proc glm also used resdata rather than portrait. But it
was okay, because resdata has all the variables in portrait, and also the predicted
Y and the residuals.

• proc univariate produces a lot of useful descriptive statistics, along with a fair
amount of junk. The normal option gives some tests for normality, and textttplot
generates some line-printer plots like boxplots and stem-and-leaf displays. These are
sometimes informative. It’s a good idea to run the residuals (from the full model)
through proc univariate if you’re starting to take an analysis seriously.

• proc plot This is how you would plot residuals against variables in the model. It
the data file had additional variables you were thinking of including in the analysis,
you could plot them against the residuals too, and look for a correlation. My
personal preference is to start plotting residuals fairly late in the exploratory game,
once I am starting to get attached to a regression model.

Here is the list file appdwaine2.lst.

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 1

With bells and whistles

10:58 Saturday, January 19, 2002

Descriptive Statistics

Variables Sum Mean Uncorrected SS

INTERCEP 21 1 21

KIDS 1302.4 62.019047619 87707.94

INCOME 360 17.142857143 6190.26

SALES 3820 181.9047619 721072.4

Variables Variance Std Deviation

INTERCEP 0 0

KIDS 346.71661905 18.620328113

INCOME 0.9415714286 0.9703460355

SALES 1309.8104762 36.191303875

Correlation

CORR KIDS INCOME SALES

KIDS 1.0000 0.7813 0.9446

INCOME 0.7813 1.0000 0.8358

SALES 0.9446 0.8358 1.0000

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al

2

With bells and whistles

10:58 Saturday, January 19, 2002

Model: MODEL1
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Dependent Variable: SALES

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F

Model 2 24015.28211 12007.64106 99.103 0.0001

Error 18 2180.92741 121.16263

C Total 20 26196.20952

Root MSE 11.00739 R-square 0.9167

Dep Mean 181.90476 Adj R-sq 0.9075

C.V. 6.05118

Parameter Estimates

Parameter Standard T for H0:

Variable DF Estimate Error Parameter=0 Prob > |T|

INTERCEP 1 -68.857073 60.01695322 -1.147 0.2663

KIDS 1 1.454560 0.21178175 6.868 0.0001

INCOME 1 9.365500 4.06395814 2.305 0.0333

Variable DF Type I SS

INTERCEP 1 694876

KIDS 1 23372

INCOME 1 643.475809

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al

3

With bells and whistles

10:58 Saturday, January 19, 2002

Dependent Variable: SALES

Test: ALLIVS Numerator: 12007.6411 DF: 2 F value: 99.1035

Denominator: 121.1626 DF: 18 Prob>F: 0.0001

Dependent Variable: SALES

Test: INTER Numerator: 159.4843 DF: 1 F value: 1.3163

Denominator: 121.1626 DF: 18 Prob>F: 0.2663

Dependent Variable: SALES

Test: CHILD Numerator: 5715.5058 DF: 1 F value: 47.1722

Denominator: 121.1626 DF: 18 Prob>F: 0.0001

Dependent Variable: SALES

Test: MONEY Numerator: 643.4758 DF: 1 F value: 5.3108

Denominator: 121.1626 DF: 18 Prob>F: 0.0333

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al

4

With bells and whistles

10:58 Saturday, January 19, 2002

FCRIT

4.4138734

F TSQ PVAL

5.3108439 5.313025 0.0333214

A

Proportion of remaining variation is 0.2278428

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al
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5

With bells and whistles

10:58 Saturday, January 19, 2002

General Linear Models Procedure

Number of observations in data set = 21

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al

6

With bells and whistles

10:58 Saturday, January 19, 2002

General Linear Models Procedure

Dependent Variable: SALES

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 24015.282112 12007.641056 99.10 0.0001

Error 18 2180.927411 121.162634

Corrected Total 20 26196.209524

R-Square C.V. Root MSE SALES Mean

0.916746 6.051183 11.007390 181.90476

Source DF Type I SS Mean Square F Value Pr > F

KIDS 1 23371.806303 23371.806303 192.90 0.0001

INCOME 1 643.475809 643.475809 5.31 0.0333

Source DF Type III SS Mean Square F Value Pr > F

KIDS 1 5715.5058347 5715.5058347 47.17 0.0001

INCOME 1 643.4758090 643.4758090 5.31 0.0333

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al

7

With bells and whistles

10:58 Saturday, January 19, 2002

General Linear Models Procedure

Dependent Variable: SALES

T for H0: Pr > |T| Std Error of

Parameter Estimate Parameter=0 Estimate

Xh p249 191.103930 69.07 0.0001 2.76679783

T for H0: Pr > |T| Std Error of

Parameter Estimate Parameter=0 Estimate

INTERCEPT -68.85707315 -1.15 0.2663 60.01695322

KIDS 1.45455958 6.87 0.0001 0.21178175

INCOME 9.36550038 2.30 0.0333 4.06395814

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 8

With bells and whistles

11:32 Tuesday, January 15, 2002

OBS KIDS INCOME SALES PRESALE RESALE

1 68.5 16.7 174.4 187.184 -12.7841

2 45.2 16.8 164.4 154.229 10.1706

3 91.3 18.2 244.2 234.396 9.8037
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4 47.8 16.3 154.6 153.329 1.2715

5 46.9 17.3 181.6 161.385 20.2151

6 66.1 18.2 207.5 197.741 9.7586

7 49.5 15.9 152.8 152.055 0.7449

8 52.0 17.2 163.2 167.867 -4.6666

9 48.9 16.6 145.4 157.738 -12.3382

10 38.4 16.0 137.2 136.846 0.3540

11 87.9 18.3 241.9 230.387 11.5126

12 72.8 17.1 191.1 197.185 -6.0849

13 88.4 17.4 232.0 222.686 9.3143

14 42.9 15.8 145.3 141.518 3.7816

15 52.5 17.8 161.1 174.213 -13.1132

16 85.7 18.4 209.7 228.124 -18.4239

17 41.3 16.5 146.4 145.747 0.6530

18 51.7 16.3 144.0 159.001 -15.0013

19 89.6 18.1 232.6 230.987 1.6130

20 82.7 19.1 224.1 230.316 -6.2161

21 52.3 16.0 166.5 157.064 9.4356

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 9

With bells and whistles

9

With bells and whistles

11:41 Saturday, January 19, 2002

Univariate Procedure

Variable=RESALE Residual

Moments

N 21 Sum Wgts 21

Mean 0 Sum 0

Std Dev 10.44253 Variance 109.0464

Skewness -0.09705 Kurtosis -0.79427

USS 2180.927 CSS 2180.927

CV . Std Mean 2.278746

T:Mean=0 0 Pr>|T| 1.0000

Num ^= 0 21 Num > 0 13

M(Sign) 2.5 Pr>=|M| 0.3833

Sgn Rank 1.5 Pr>=|S| 0.9599

W:Normal 0.955277 Pr<W 0.4190

Quantiles(Def=5)

100% Max 20.21507 99% 20.21507

75% Q3 9.435601 95% 11.51263

50% Med 0.744918 90% 10.17057

25% Q1 -6.21606 10% -13.1132

0% Min -18.4239 5% -15.0013

1% -18.4239

Range 38.63896

Q3-Q1 15.65166

Mode -18.4239

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 1

0

With bells and whistles

11:41 Saturday, January 19, 2002

Univariate Procedure

Variable=RESALE Residual

Extremes

Lowest Obs Highest Obs

-18.4239( 16) 9.758578( 6)

-15.0013( 18) 9.803676( 3)

-13.1132( 15) 10.17057( 2)

-12.7841( 1) 11.51263( 11)

-12.3382( 9) 20.21507( 5)

91



Stem Leaf # Boxplot

2 0 1 |

1 |

1 0002 4 |

0 99 2 +-----+

0 011124 6 *--+--*

-0 | |

-0 665 3 +-----+

-1 332 3 |

-1 85 2 |

----+----+----+----+

Multiply Stem.Leaf by 10**+1

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 1

1

With bells and whistles

11:41 Saturday, January 19, 2002

Univariate Procedure

Variable=RESALE Residual

Normal Probability Plot
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9

With bells and whistles

11:32 Tuesday, January 15, 2002

Plot of RESALE*KIDS. Legend: A = 1 obs, B = 2 obs, etc.
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Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 12

With bells and whistles

11:32 Tuesday, January 15, 2002

Plot of RESALE*INCOME. Legend: A = 1 obs, B = 2 obs, etc.
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Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 13

With bells and whistles

11:32 Tuesday, January 15, 2002

Plot of RESALE*SALES. Legend: A = 1 obs, B = 2 obs, etc.
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Here are some comments.

• proc reg

– In the descriptive statistics produced by the simple option, one of the “vari-
ables” is INTERCEP; it’s our friend X0 = 1. The SAS programmers (or the
statisticians directing them) are really thinking of this as an independent vari-
able.

– The Type I (sequential) sum of squares starts with INTERCEP, and a really
big number for the explained sum of squares. Well, think of a reduced model
that does not even have an intercept — that is, one in which there are not
only no independent variables, but the population mean is zero. Then add an
intercept, so the full model is E[Y ] = β0. The least squares estimate of β0 is
Y , so the improvement in explained sum of squares is

∑n
i=1(Yi−Y )2 = SSTO.

That’s the first line. It makes sense, in a twisted way.

– Then we have the custom tests, which reproduce the default tests, in order.
See how useful the names of the custom tests can be?

• proc iml: Everything works as advertised. F = t2 except for rounding error, and
a is exactly what we got as the answer to Sample Question 4.5.12.

• proc glm

– After an overall test, we get tests labelled Type I SS and Type III SS. As
mentioned earlier, Type One sums of squares are sequential. Each variable is
added in turn to the model, in the order specified by the model statement.
Each one is tested controlling for the ones that precede it.

– When independent variables are correlated with each other and with the depen-
dent variable, some of the variation in the dependent variable is being explained
by the variation shared by the correlated independent variables. Which one
should get credit? If you use sequential sums of squares, the variable named
first by you gets all the credit. And your conclusions can change radically as
a result of the order in which you name the independent variables. This may
be okay, if you have strong reasons for testing A controlling for B and not the
other way around.

In Type Three sums of squares, each variable is controlled for all the others.
This way, nobody gets credit for the overlap. It’s conservative, and valuable.
Naturally, the last lines of Type I and Type III summary tables are identical,
because in both cases, the last variable named is being controlled for all the
others.

– I can never remember what Type II and Type IV sums of squares are.

– The estimate statement yielded an Estimate, that is, a |widehatY value, of
191.103930, which is what we got with a calculator as the answer to Sample
Question 4.5.8. We also get a t-test for whether this particular linear combina-
tion differs significantly from zero — insane in this particular case, but useful
at other times. The standard error would be very useful if we were construct-
ing confidence intervals or prediction intervals around the estimate, but we are
not.
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– Then we get a display of the b values and associated t-tests, as in proc reg.
I believe these are produced by proc glm only when none of the independent
variables is declared categorical with the class statement.

• proc print output is self-explanatory. If you are using proc print to print a large
number of cases, consider specifying a large page size in the options statement.
Then, the logical page length will be very long, as if you were printing on a long roll
of paper, and SAS will not print a new page header with the date and title and so
on every 24 line or 35 lines or whatever.

• proc univariate: There is so much output to explain, I almost can’t stand it. I’ll
do most of it in class, and just hit a few high points here.

– T:Mean=0 A t-test for whether the mean is zero. If the variable consisted of
difference scores, this would be a matched t-test. Here, because the mean of
residuals from a multiple regression is always zero as a by-product of least-
squares, t is exactly zero and the p-value is exactly one.

– M(Sign) Sign test, a non-parametric equivalent to the matched t.

– Sgn Rank Wilcoxon’s signed rank test, another non-parametric equivalent to
the matched t.

– W:Normal A test for normality. As you might infer from Pr<W, the associated
p-valuelower tail area of some distribution. If p < 0.05, conclude that the data
are not normally distributed.

The assumptions of the hypothesis tests for multiple regression imply that the
residuals are normally distributed, though not quite independent. The lack of
independence makes theW test a bit too likely to indicate lack of normality. If
the test is non-significant, can one conclude that the data are normal? This is
an example of a more general question: When can one conclude that the null
hypothesis is true?

To answer this question “Never” is just plain stupid, but still I don’t want to
go there right now. Instead, just two comments:

∗ Like most tests, the W test for normality is much more sensitive when
the sample size is large. So failure to observe a significant departure from
normality does not imply that the data really are normal, for a small
sample like this one (n=21).

∗ In an observational study, residuals can appear non-normal because im-
portant independent variables have been omitted from the full model.

– Extremes are the 5 highest and 5 lowest scores. Very useful for locating outliers.
The largest residual in this data set is 20.21507; it’s observation 5.

– Normal Probability Plot is supposed to be straight-line if the data are nor-
mal. Even though I requested pagesize=35, this plot is pretty squashed. Basi-
cally it’s useless.

• proc plot Does not show much of anything in this case. This is basically good
news, though again the data are artificial. The default plotting symbol is A; if two
points get too close together, they are plotted as B, and so on.
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Here are a few sample questions.

Sample Question 4.5.13 What is the mean of the average household incomes of the 21
towns?

Answer to Sample Question 4.5.13 $17,143

Sample Question 4.5.14 Is this the same as the average income of all the households
in the 21 towns?

Answer to Sample Question 4.5.14 No way.

Sample Question 4.5.15 The custom test labelled MONEY is identical to what default
test?

Answer to Sample Question 4.5.15 The t-test for INCOME. F = t2, and the p-value
is the same.

Sample Question 4.5.16 In the proc iml output, what can you learn from comparing
F to FCRIT?

Answer to Sample Question 4.5.16 p < 0.05

Sample Question 4.5.17 For a town with 68,500 children 16 and under, and an average
household income of $16,700, does the full model overpredict or underpredict sales? By
how much?

Answer to Sample Question 4.5.17 Underpredict by $12,784. This is the first resid-
ual produced by proc print.
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