Introduction to Time Series?

!This slide show is an open-source document. See last slide for copyright
information.



Time series

A sequence of measurements (random variables) X1, Xo, ...

o Not a random sample.
o Not necessarily independent.

e Sequentially dependent.
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Correlations: 50 pairs of independent random walks,

n = 1000 steps

Need around |r| = 0.13 for significance
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Random walk

Sometimes called Drunkard’s walk

e Take a step left or right at random.
@ Steps could be of variable length.

o Location at time ¢t depends on location at time ¢t — 1.

Xi =X+ ¢

€1, €9, ... all independent and identically distributed.



Autoregressive Time Series

A generalization of the random walk

Xi =Xt 1+e Random walk
Xi =00+ 51 Xe1+ e First order autoregressive
Xe= 0o+ 1 X¢—1 + BoXt—o+ € Second order autogrgressive

etc.
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Stationary Time Series

e In a stationary time series, the distribution of X} is not changing.

o In particular, all the X; have the same mean and variance.



Expected value does not change

BE(X;) = E(Bo+ 5i1Xi—1 + &)
= By + LiE(Xi—1) +0
= pu = Po+ Oip

= [y = p(l—51)
Bo
1— 5

= U =



Variance does not change

Var(Xy) = Var(Bo+ 61Xi-1 + €)
= BiVar(X;_1)+ Var(e)
= 0 = Bio* + Var(e)
= Var(e) = o*(1 - B)



Covariance

Cov(Xi—1,Xy) = Cov(Xi—1,Bo+ Bi X1 + &)
= [1Cov(Xi—1,Xi—1) + Cov(Xi_1, €)
p1Var(X;_1)+0

5102
So
o 5102
COT’T(thl,Xt) = m



N
Corr(Xe, X¢—1) = b1

Where X; = 8o + 1 Xi—1 + €

@ The regression coefficient 3 is usually denoted by p.

@ The First-order Autocorrelation.
o Continuing the calculations, get Corr(X;, X; o) = p?, ...
o Corr(X¢, Xe—m) = p™.
@ So the correlation matrix looks like this:

L p p* p?

p 1 p p?

2P p 1 p
B 2

pe p 1



Signatures

Identifying the times series model

@ Because —1 < p < 1, the pattern p, p?, p3, ... displays a pattern of
exponential decay: Graph it.

@ Other time series structures have known signatures too.
e Higher-order autoregressive.

e Moving average.

o ARMA: Autoregressive Moving Average.

e Seasonal: Blips at seasonal lags.

e Non-stationary.

e Differencing is a big trick.

o ARIMA: Autoregressive Integrated Moving Average.

@ Theorem: All the stationary processes can be approximated by
autogregressive with enough lags.
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Time series structures for the error terms (epsilons) in a
regression

What is the error term € in a regression?

o Everything that affects y other than the x variables.

o Maybe those omitted variables are sequentially dependent.
o Like the temperature influences pop sales.

o Is sequential dependence likely? Depends on the logic of the data
collection.

e Diagnose by the Durbin-Watson test and time series diagnostics
on the residuals.
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Durbin-Watson Test for Autocorrelation

Usually, autocorrelation is positive.
Hy:p=0vs. H :p>0

D _ izl =€)’
D1 €

Reject when D is small. How small?

o Critical values and p-values are brutally hard to compute.

@ Durbin and Watson published tables with upper and lower bounds
for the critical values.

Now SAS can compute all p—values, but it’s an option.



What to do about autocorrelated residuals

e Try adding more explanatory variables, perhaps including time.

e Consider differencing.

@ Directly model autocorrelated errors.



proc autoreg

Regression model with autogregressive errors: covers a lot of
important cases.

Especially in combination with lagged explanatory variables.

Estimate ; and py all at once by maximum likelihood.

@ proc autoreg has many capabilities. As usual, we will explore
just a few.

e Can you say GARCH?
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