# Within-cases for binary response data using non-linear mixed models $^1$

<sup>&</sup>lt;sup>1</sup>This slide show is an open-source document. See last slide for copyright information.

## Vocabulary: Linear vs. non-linear models

- In a linear model,  $E(y|\mathbf{x})$  is a linear function of the parameters.
- Ordinary regression is linear:

$$E(y|\mathbf{x}) = \beta_0 + \beta_1 x_1 + \dots + \beta_{p-1} x_{p-1}$$

• Logistic regression is non-linear:

$$E(y|\mathbf{x}) = \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_{p-1} x_{p-1}}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_{p-1} x_{p-1}}}$$

### Within-cases for binary data: The idea

- There are several binary responses for each case.
- Like was the person employed right after graduation, 6 months after, one year after ... Yes or No.
- Or did the consumer purchase at least one computer in 2016, 2017, 2018 . . .
- Or did the patient have a seizure on day 1, day 2, ... after treatment.
- Binary choices in laboratory studies can be repeated measures.
- Model: Logistic regression with a random shock for case, pushing all the log odds values for that case up and down by the same amount.
- Random shock is added to the regression equation for the log odds.
- Usually the random shock is normal what else?

A random intercept model For i = 1, ..., n and j = 1, ..., k

- $\Delta_1, \ldots, \Delta_n \overset{i.i.d.}{\sim} N(0, \sigma^2)$
- Conditionally on  $\Delta_i = \delta_i$  for i = 1, ..., n, binary responses  $y_{ij}$  are independent with

$$\log\left(\frac{\pi_{ij}}{1-\pi_{ij}}\right) = (\beta_0 + \delta_i) + \beta_1 x_{i,j,1} + \dots + \beta_{p-1} x_{i,j,p-1}$$
$$= \mathbf{x}'_{ij} \boldsymbol{\beta} + \delta_i, \text{ so that}$$

$$\pi_{ij} = \frac{e^{\mathbf{x}'_{ij}\boldsymbol{\beta} + \delta_i}}{1 + e^{\mathbf{x}'_{ij}\boldsymbol{\beta} + \delta_i}}$$

where  $\pi_{ij} = P\{y_{ij} = 1 | \Delta_i = \delta_i\}.$ 

Some of the  $x_{ij\ell}$  could be dummy variables for time period or within-case treatment, different for j = 1, ..., k within case *i*.

- Parameter vector is  $\boldsymbol{\theta} = (\beta_0, \beta_1, \dots, \beta_{p-1}, \sigma^2)'$ .
- Vector of binary observations  $\mathbf{y}_i = (y_{i1}, \dots, y_{ik})'$  for each case.
- Likelihood function is  $L(\boldsymbol{\theta}) = \prod_{i=1}^{n} p_{\boldsymbol{\theta}}(\mathbf{y}_i)$
- Where  $p_{\theta}(\mathbf{y}_i)$  is the probability of observing the vector  $\mathbf{y}_i$ .
- Need to calculate  $p_{\theta}(\mathbf{y}_i)$  as a function of  $\theta$  and maximize the likelihood.

#### Model gives us a *conditional* probability But we need the unconditional probability $p_{\theta}(\mathbf{y}_i)$

• Given  $\Delta_i = \delta_i$ , the  $y_{ij}$  are independent, so

$$p_{\boldsymbol{\theta}}(\mathbf{y}_i | \Delta_i = \delta_i) = \prod_{j=1}^k \left( \frac{e^{\mathbf{x}'_{ij}\boldsymbol{\beta} + \delta_i}}{1 + e^{\mathbf{x}'_{ij}\boldsymbol{\beta} + \delta_i}} \right)^{y_{ij}} \left( 1 - \frac{e^{\mathbf{x}'_{ij}\boldsymbol{\beta} + \delta_i}}{1 + e^{\mathbf{x}'_{ij}\boldsymbol{\beta} + \delta_i}} \right)^{1-y_{ij}}$$

- This is a conditional probability.
- Conditional on  $\mathbf{x}_{ij}$  as well as  $\delta_i$ .
- It's okay to treat  $\mathbf{x}_{ij}$  as known constants because they are observed.
- But  $\delta_i$  are unobservable (latent random variables).
- Integrate them out using the law of total probability.

#### Law of total probability Double expectation

$$p_{\theta}(\mathbf{y}_{i}) = \int_{-\infty}^{\infty} p_{\theta}(\mathbf{y}_{i} | \Delta_{i} = \delta_{i}) f(\delta_{i} | \sigma^{2}) d\delta_{i}$$
$$= \int_{-\infty}^{\infty} \prod_{j=1}^{k} \left( \frac{e^{\mathbf{x}'_{ij}\boldsymbol{\beta} + \delta_{i}}}{1 + e^{\mathbf{x}'_{ij}\boldsymbol{\beta} + \delta_{i}}} \right)^{y_{ij}} \left( 1 - \frac{e^{\mathbf{x}'_{ij}\boldsymbol{\beta} + \delta_{i}}}{1 + e^{\mathbf{x}'_{ij}\boldsymbol{\beta} + \delta_{i}}} \right)^{1-y_{ij}} f(\delta | \sigma^{2}) d\delta_{i}$$

where  $f(\delta|\sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-\frac{\delta^2}{2\sigma^2})$ .

- The likelihood is a product of *n* terms like this.
- Nobody can do the integral.
- It has to be done numerically, n times.
- Numerical integration as well as a numerical search.

- The theory is mainstream large-sample maximum likelihood.
- Computation is a bit bleeding edge.
- Methods for finding parameter estimates are iterative.
- Convergence problems are common.
- R and SAS give similar results for all the examples I've seen.
- In R, use the glmer function in the lme4 package.
- In SAS, use proc nlmixed.
- It's not at all like proc mixed.

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website:

 $\tt http://www.utstat.toronto.edu/~brunner/oldclass/441s20$