Within-cases for binary response data using
non-linear mixed models!

!This slide show is an open-source document. See last slide for copyright
information.
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Vocabulary: Linear vs. non-linear models

e In a linear model, F(y|x) is a linear function of the parameters.

o Ordinary regression is linear:

E(y|x) = po+ frz1+ -+ Bp—12p—1

e Logistic regression is non-linear:

ebotBizit+Bp-_12p-1

E(y|x) - 1+ eBotBizit+ - +Bp—17p—1
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Within-cases for binary data: The idea

@ There are several binary responses for each case.

o Like was the person employed right after graduation, 6 months
after, one year after ... Yes or No.

@ Or did the consumer purchase at least one computer in 2016, 2017,
2018 ...

o Or did the patient have a seizure on day 1, day 2, ... after
treatment.

e Binary choices in laboratory studies can be repeated measures.

e Model: Logistic regression with a random shock for case, pushing
all the log odds values for that case up and down by the same
amount.

e Random shock is added to the regression equation for the log odds.

@ Usually the random shock is normal — what else?



A random intercept model
Fori=1,...,nand j=1,...,k

o Ai,..., A, K N(0,02)
e Conditionally on A; = 9; for 7 = 1,...,n, binary responses y;; are

independent with

o
log < L ) = (Bo+6&)+ fixiji+ ...+ Bp—1Tijp-1

1—m
= xgjﬁ + d;, so that
exéjﬁ"_&i

Tij = 7 .
1+€xijﬂ+5q,

where T35 = P{yij = 1|Az = 51}

Some of the x;;, could be dummy variables for time period or
within-case treatment, different for j = 1,..., k within case 1.



Maximum likelihood

Parameter vector is 6 = (89, 81, - - -, Bp—1,72)".

Vector of binary observations y; = (vi1,- - ., ¥ik) for each case.
e Likelihood function is L(0) =[]}, pe(y:)
Where pg(y;) is the probability of observing the vector y;.

e Need to calculate pg(y;) as a function of € and maximize the
likelihood.



Model gives us a conditional probability
But we need the unconditional probability pe(y:)

e Given A; = 4;, the y;; are independent, so

k x B+6 Yij ex;]ﬂ—&-éi
polvild =00 = I e ) (P

e This is a conditional probability.

e Conditional on x;; as well as d;.

It’s okay to treat x;; as known constants because they are
observed.

e But §; are unobservable (latent random variables).

Integrate them out using the law of total probability.

) 1-yi;



e
Law of total probability

Double expectation

po(y:) = / po(yilA; = 6;) f(6:]0?) do;

— o0

where f(3]o?) = 3= exp(— o ).

@ The likelihood is a product of n terms like this.

Nobody can do the integral.

It has to be done numerically, n times.

e Numerical integration as well as a numerical search.
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State of the art

Contemporary, not just modern

@ The theory is mainstream large-sample maximum likelihood.

Computation is a bit bleeding edge.

Methods for finding parameter estimates are iterative.

Convergence problems are common.

e In R, use the glmer function in the 1me4 package.

In SAS, use proc nlmixed.

It’s not at all like proc mixed.

R and SAS give similar results for all the examples I've seen.
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This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported License. Use

any part of it as you like and share the result freely. The IXTEX source
code is available from the course website:

http://www.utstat.toronto.edu/~brunner/oldclass/441s20
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