
Logistic Regression 

For a binary response variable: 
1=Yes, 0=No 
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Binary outcomes are common 
and important 

•  The patient survives the operation, or does not. 
•  The accused is convicted, or is not. 
•  The customer makes a purchase, or does not. 
•  The marriage lasts at least five years, or does not. 
•  The student graduates, or does not. 
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For a binary variable 

•  The population mean E[Y] is the 
probability that Y=1 

•  Make the mean depend on a set of 
explanatory variables 

•  Consider one explanatory variable. 
Think of a scatterplot 
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Least Squares vs. Logistic 
Regression 
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The logistic regression curve arises from an indirect  
representation of the probability of Y=1 for a given set  
of x values. 
 
Representing the probability of an event by   
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•  If P(Y=1)=1/2, odds = .5/(1-.5) = 1 (to 1) 
•  If P(Y=1)=2/3, odds = 2 (to 1) 
•  If P(Y=1)=3/5, odds = (3/5)/(2/5) = 1.5 

(to 1) 
•  If P(Y=1)=1/5, odds = .25 (to 1) 
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The higher the probability, the 
greater the odds 
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Linear model for the log odds 

•  Natural log, not base 10 
•  Symbolized ln

•  The higher the probability, the higher the 
log odds. 8 



Linear regression model for 
the log odds of the event Y=1 
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Probability zero or one is excluded 

•  Log is only defined for positive numbers.  
•  So any model for the log odds, including 

logistic regression, will not work for events 
of probability exactly zero or exactly one. 

•   Why not one? 
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Equivalent Statements 
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In terms of log odds, logistic 
regression is like regular 

regression 
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In terms of plain odds,  

•  Logistic regression coefficients are 
related to odds ratios. 

•  For example, “Among 50 year old men, 
the odds of being dead before age 60 
are three times as great for smokers.” 
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Logistic regression 

•  X=1 means smoker, X=0 means non-
smoker 

•  Y=1 means dead, Y=0 means alive 

•  Log odds of death =  

•  Odds of death =  
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Exponential function f(t) = et 
•  Always positive 
•  e0=1, so when            , the odds 

ratio eβ1 equals one (50-50). 
•  f(t) = et  is increasing 
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Another example 
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For any given disease severity x, 
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In general, 

•  When xk is increased by one unit and all other 
explanatory variables are held constant, the 
odds of Y=1 are multiplied by 

•  That is,       is an odds ratio --- the ratio of 
the odds of Y=1 when xk is increased by one 
unit, to the odds of Y=1 when everything is 
left alone. 

•  As in ordinary regression, we speak of 
“controlling” for the other variables. 
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Equal slopes in the log odds scale 



Equal slopes in the log odds scale 
means proportional odds 



Proportional Odds in Terms of Probability 



Interactions  
•  With equal slopes in the log odds scale, 

differences in odds and differences in 
probabilities do depend on x.  

•  Regression coefficients for product terms 
still mean something. 

•  If zero, they mean that the odds ratio does 
not depend on the value(s) of the 
covariate(s). 

•  Odds ratio has odds of Y=1 for the 
reference category in the denominator.  

•  Most of our models will not have product 
terms. 



The conditional probability of 
Y=1 

This formula can be used to calculate an estimated P(Y=1) 
Just replace betas by their estimates (b) 

It can also be used to calculate the probability of getting 
The sample data values we actually did observe. 
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Maximum likelihood 
estimation 

•  Likelihood = Probability of getting the 
data values we did observe 

•  Viewed as a function of the parameters 
(betas), it’s called the “likelihood 
function.” 

•  Those parameter values for which the 
likelihood function is greatest are called 
the maximum likelihood estimates. 

•  Thank you again, Mr. Fisher. 
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Likelihood Function for Simple 
Logistic Regression 
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Maximum likelihood estimates 

•  Must be found numerically. 
•  For the record, using “iteratively re-

weighted least squares.” 
•  Lead to nice large-sample chi-square 

tests. 
•  Most common are likelihood ratio tests 

and Wald tests. 
•  We will mostly use Wald tests.  
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Likelihood Ratio Tests 
•  Likelihood at MLE is the maximum 

probability of obtaining the observed data. 
•  Higher probability means better model fit, 

but they are all very small. 
•  -2 log likelihood measures lack of fit. 
•  Restricted (reduced) model always fits 

worse than unrestricted (full). 
•  G2 = -2LLR  -  -2LLF 

•  df is number of = signs in H0. 
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Likelihood Ratio Tests: The usual formula 
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Wald tests 
•  Based directly on approximate large-sample 

normality of the MLE. 
•  Thank you, Mr. Wald. 
•  Formula looks like the numerator of the general linear 

F-test statistic. 
•  Wald and LR tests are asymptotically equivalent 

under H0. 
•  Meaning that if H0 is true, the difference between the 

test statistics goes to zero in probability as n è ∞. 
•  If H0 is false, they both go to ∞ but need not be close. 
•  LR tests perform better for smaller samples, and 

have other advantages. 
•  We will mostly use Wald tests because SAS makes 

them more convenient. 30 
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