Chapter 6

Logistic Regression

In logistic regression, there is a categorical response variables, often coded 1=Yes and
0=No. Many important phenomena fit this framework. The patient survives the opera-
tion, or does not. The accused is convicted, or is not. The customer makes a purchase,
or does not. The marriage lasts at least five years, or does not. The student graduates,
or does not.

As usual, we assume that there is a huge population, with a sizable sub-population at
each x value or configuration of x values. And as in ordinary regression, we want a re-
gression surface that consists of the estimated sub-population mean (conditional expected
value) at each z value or configuration of x values. It turns out that for any response
variable coded zero or one, this conditional mean is exactly the conditional probability
that Y = 1 given that set of x values. Again, for binary data, the population mean is just
the probability of getting a one. And since it’s a probability, it must lie between zero and
one inclusive.

Consider the scatterplot of a single quantitative explanatory variable and a response
variable Y equal to zero or one. The left panel of Figure 6.1 shows what happens when
we fit a least squares line to such data. It may be reasonable in some sense, but because
it is sometimes less than zero and sometimes greater than one, it can’t be a probability
and it’s not yielding a sensible estimate of the conditional population mean. However,
the logistic regression curve in the right panel stays nicely between zero and one. And
like the least-squares line, it indicates a positive relationship for this particular data set.

6.1 A linear model for the log odds

The logistic regression curve arises from an indirect representation of the probability of
Y =1 for a given set of x values. Representing the probability of an event by 7 (it’s a
probability, not 3.14159. . .), we define the odds of the event as

™

Odds =

1—7
Implicitly, we are saying the odds are "~ “to one.” That is, if the probability of the event
2/3

is m = 2/3, then the odds are 7= 2, or two to one. Instead of saying the odds are 5 to
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Figure 6.1: Scatterplots with a binary response variable
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2, we’d say 2.5 to one. Instead of saying 1 to four, we’d say 0.25 to one.

The higher the probability, the greater the odds. And as the probability of an event
approaches one, the denominator of the odds approaches zero. This means the odds can
be anything from zero to an arbitrarily large positive number. Logistic regression adopts
a regression-like linear model not for the probability of the event Y = 1 nor for the odds,
but for the log odds. By log we mean the natural or Napierian log, designated by In on
scientific calculators — not the common log base 10. Here are a few necessary facts about
the natural log function.

Figure 6.2 shows that the natural log increases from minus infinity when the odds
are zero, to zero when the odds equal one (fifty-fifty), and then it keeps on increasing
as the odds rise, but more and more slowly.

The fact that the log function is increasing means that if P(A) > P(B), then
Odds(A) > Odds(B), and therefore In(Odds(A)) > In(Odds(B)). That is, the
bigger the probability, the bigger the log odds.

Notice that the natural log is only defined for positive numbers. This is usually fine,
because odds are always positive or zero. But if the odds are zero, then the natural
log is either minus infinity or undefined — so the methods we are developing here
will not work for events of probability exactly zero or exactly one. What’s wrong
with a probability of one? You’d be dividing by zero when you calculated the odds.

The natural log is the inverse of exponentiation, meaning that In(e?) = e™@ = g,
where e is the magic non-repeating decimal number 2.71828. ... The number e really
is magical, appearing in such seemingly diverse places as the mathematical theory
of epidemics, the theory of compound interest, and the normal distribution.

The log of a product is the sum of logs: In(ab) = In(a) + In(b), and In($) = In(a) —
In(b). This means the log of an odds ratio is the difference between the two log odds
quantities.
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Figure 6.2: Graph of the natural log function

Y =In(x)
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To get back to the main point, we adopt a linear regression model for the log odds
of the event Y = 1. As in normal regression, there is a conditional distribution of the
response variable Y for every configuration of explanatory variable values. Keeping the
notation consistent with ordinary regression, we have p — 1 explanatory variables, and the
conditional distribution of the binary response variable Y is completely specified by the
log odds

1<HY=HX=@

P(Y:O|X:X)) :50+ﬁ1$1+...+ﬁp,1xp,1. (61)
This is equivalent to a multiplicative model for the odds

P(Y = 1|X = x)

—  SBotBizit..+Bp-1Tp-1 6.2
PY=0X=x  °© (6.2)

— eﬁoeﬂlwl . eﬁpfll'pfl’
and to a distinctly non-linear model for the conditional probability of Y = 1 given X =

(.Z'l, . ,a;p,l):
ebotBizit..+Bp—12p—1

P(Y = 1|JZ1, e ,ZEp_l) = (63)

1 + ebotbrizit.+Bp—12p—1 ’

6.2 The meaning of the regression coefficients

In the log odds world, the interpretation of regression coefficients is similar to what we
have seen in ordinary regression. [, is the intercept. It’s the log odds of Y = 1 when all
explanatory variables equal zero. And [}, is the increase in log odds of Y = 1 when z;, is
increased by one unit, and all other explanatory variables are held constant.

This is on the scale of log odds. But frequently, people choose to think in terms of plain
old odds rather than log odds. The rest of this section is an explanation of the following
statement: When xy is increased by one unit, and all other explanatory variables are held
constant, the odds of Y = 1 are multiplied by e’*. That is, e’ is an odds ratio — the
ratio of the odds of Y = 1 when x, is increased by one unit, to the odds of Y = 1 when x;
is left alone. As in ordinary regression, this idea of holding all the other variables constant
is what we mean when we speak of “controlling” for them.

Odds ratio with a single dummy variable Here is statement that makes sense and
seems like it should be approximately true: “Among 50 year old men, the odds of being
dead before age 60 are three times as great for smokers.” We are talking about an odds

ratio.
Odds of death given smoker 5
Odds of death given nonsmoker

The point is not that the true odds ratio is exactly 3. The point is that this is a reasonable
way to express how the chances of being alive might depend on whether you smoke
cigarettes.
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Now represent smoking status by an indicator dummy variable, with X = 1 meaning
Smoker, and X = 0 meaning nonsmoker; let Y = 1 mean death within 10 years and Y = 0
mean life. The logistic regression model (6.1) for the log odds of death given z are

Log odds = Sy + f1x,
and from (6.2), the odds of death given x are
Odds = e®e1®,

The table below shows the odds of death for smokers and non-smokers.

Group x | Odds of Death
Smokers ePoehr
Non-smokers | 0 | efo

—_

Now it’s easy to see that the odds ratio is

Odds of death given smoker e 5
= = e,

Odds of death given nonsmoker e

Our understanding of the regression coefficient 3; follows from several properties of the
function f(t) = €'

e ¢! is always positive. This is good because odds are non-negative, but the fact that
el is never zero reminds us that the logistic regression model cannot accommodate
events of probability zero or one.

e ¢ = 1. So when 8; = 0, the odds ratio is one. That is, the odds of ¥ = 1 (and
hence the probability that Y = 1) are the same when X = 0 and X = 1. That is,
the conditional distribution of Y is identical for both values of X, meaning that X
and Y are unrelated.

e f(t) = e is an increasing function. So, when f3; is negative, e”* < 1. Therefore,
the probability of Y = 1 would be less when X = 1. But if 3 is positive, then the
odds ratio is greater than one, and the probability of ¥ = 1 would be greater when
X =1, as in our example. In this sense, the sign of 3; tells us the direction of the
relationship between X and Y — just as in ordinary regression.
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The Exponential Function y = e/t

20
I
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It should be clear that all this discussion applies when any single explanatory variable is
increased by one unit; the increase does not have to be from zero to one. Now suppose
that there are several explanatory variables. We hold all variables constant except xj, and
form an odds ratio. In the numerator is the odds of Y = 1 when x;, is increased by one
unit, and in the denominator is the odds of Y = 1 when x;, is left alone. Both numerator
and denominator are products (see Equation 6.2) and there is a lot of cancellation in
numerator and denominator. We are left with e®*. These calculations are a lot like
the ones shown in (5.3) for regular regression; they will not be repeated here. But the
conclusion is this. When x; is increased by one unit, and all other explanatory variables
are held constant, the odds of Y =1 are multiplied by .

“Analysis of covariance” with a binary outcome Here is one more example. Sup-
pose the cases are patients with cancer, and we are comparing three treatments — radiation,
chemotherapy and both. There is a single quantitative variable X, representing severity
of the disease (a clinical judgement by the physician). The response variable is Y = 1 if
the patient is alive 12 months later, zero otherwise. The question is which treatment is
most effective, controlling for severity of disease.

Treatment will be represented by two indicator dummy variables: d; = 1 if the patient
receives chemotherapy only, and dy = 1 if the patient receives radiation only. Odds of
survival are shown in the table below.



6.3. PARAMETER ESTIMATION BY MAXIMUM LIKELIHOOD 173

Treatment dy | dy | Odds of Survival = efoefrdiphadz sz
Chemotherapy | 1 | O ePo P B3

Radiation 0 1 ePo B2 B3

Both 010 ePoBs

For any given disease severity x,

Survival odds with Chemo B ePoehrefsx
Survival odds with Both ~ efoeBse

1

=€

and
Survival odds with Radiation B ebPo P2 pfsx

Survival odds with Both ~ efoefse
If By = By = 0, then for any given level of disease severity, the odds of survival are
the same in all three experimental conditions. So the test of Hy : 51 = [ = 0 would
tell us whether, controlling for severity of disease, the three treatments differ in their
effectiveness.

= 2

Sample Question 6.2.1 What would S, > 0 mean?

Answer to Sample Question 6.2.1 Allowing for severity of disease, chemotherapy alone
yields a higher one-year survival rate than the combination treatment. This could easily
happen. Chemotherapy drugs and radiation are both dangerous poisons.

This example shows that as in ordinary regression, categorical explanatory variables
may be represented by collections of dummy variables. But equal slopes on the log odds
scale translates to proportional odds — like the odds of Y =1 for Group 1 are always 1.3
times the odds of Y = 1 for Group 2, regardless of the value of x. How realistic this is
will depend upon the particular application.

6.3 Parameter Estimation by Maximum likelihood

Using formula 6.3 for the probability of Y = 1 given the explanatory variable values, it is
possible to calculate the probability of observing the data we did observe, for any set of
values. One of R. A. Fisher’s many good suggestions was to take as our estimates of [y,
[1 and so forth, those values that make the probability of getting the data we actually did
observe as large as possible. Viewed as a function of the parameter values, the probability
that we will get the data we actually did get is called the likelihood. The parameter values
that make this thing as big as possible are called maximum likelithood estimates.

Figure 6.3 is a picture of this for one explanatory variable. The [y, 5, values located
right under the peak is our set of maximum likelihood estimates. Of course it’s hard to
visualize in higher dimension, but the idea is the same.

In regular regression, maximum likelihood estimates are identical to least squares esti-
mates, but not here (though they may be close for large samples). Also, the 8 quantities
can be calculated by an explicit formula for regular regression, while for logistic regression
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Figure 6.3: Graph of the Likelihood Function for Simple Logistic Regression
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they need to be found numerically. That is, a program like SAS must calculate the likeli-
hood function for a bunch of sets of g values, and somehow find the top of the mountain.
Numerical routines for maximum likelihood estimation essentially march uphill until they
find a place where it is downhill in every direction. Then they stop.

For some statistical methods, the place you find this way could be a so-called “local
maximum,” something like the top of a foothill. You don’t know you’re not at the top
of the highest peak, because you're searching blindfolded, just walking uphill and hoping
for the best. Fortunately, this cannot happen with logistic regression. There is only one
peak, and no valleys. Start anywhere, walk uphill, and when it levels off you're at the
top. This is true regardless of the particular data values and the number of explanatory
variables.

6.4 Chi-square tests

As in regular regression, you can test hypotheses by comparing a full, or unrestricted
model to a reduced, or restricted model. Typically the reduced model is the same as
the full, except that’s it’s missing one or more explanatory variables. But the reduced
model may be restricted in other ways, for example by setting a collection of regression
coefficients equal to one another, but not necessarily equal to zero.

There are many ways to test hypotheses in logistic regression; most are large-sample
chi-square tests. Two popular ones are likelihood ratio tests and Wald tests.

6.4.1 Likelihood ratio tests

Likelihood ratio tests are based on a direct comparison of the likelihood of the observed
data assuming the full model to the likelihood of the data assuming the reduced model.
Let Lp stand for the maximum probability (likelihood) of the observed data under the
full model, and Lz stand for the maximum probability of the observed data under the
reduced model. Dividing the latter quantity by the former yields a likelthood ratio: ﬁ—?. It
is the maximum probability of obtaining the sample data under the reduced model (null
hypothesis), relative to the maximum probability of obtaining the sample data under the
null hypothesis under the full, or unrestricted model.

As with regular regression, the model cannot fit the data better when it is more
restricted, so the likelihood of the reduced model is always less than the likelihood of the
full model. If it’s a lot less — that is, if the observed data are a lot less likely assuming
the reduced model than assuming the full model — then this is evidence against the null
hypothesis, and perhaps the null hypothesis should be rejected.

Well, if the likelihood ratio is small, then the natural log of the likelihood ratio is a
big negative number, and minus the natural log of the likelihood ratio is a big positive
number. So is twice minus the natural log of the likelihood ratio. It turns out that if the
null hypothesis is true and the sample size is large, then the quantity
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has an approximate chi-square distribution, with degrees of freedom equal to the number
of non-redundant restrictions that the null hypothesis places on the set of 5 parameters.
For example, if three regression coefficients are set to zero under the null hypotheses, the
degrees of freedom equal three.

6.4.2 Wald tests

You may recall that the Central Limit Theorem says that even when data come from a
non-normal distribution, the sampling distribution of the sample mean is approximately
normal for large samples. The Wald tests are based on a kind of Central Limit Theorem
for maximum likelihood estimates. Under very general conditions that include logistic
regression, a collection of maximum likelihood estimates has an approximate multivariate
normal distribution, with means approximately equal to the parameters, and variance
covariance matrix that has a complicated form, but can be calculated (or approximated
as a by-product of the most common types of numerical maximum likelihood).

This was discovered and proved by Abraham Wald, and is the basis of the Wald
tests. It is pretty remarkable that he was able to prove this even for maximum likelihood
estimates with no explicit formula. Wald was quite a guy. Anyway, if the null hypothesis is
true, then a certain sum of squares of the maximum likelihood estimates has a large sample
chi-square distribution. The degrees of freedom are the same as for the likelihood ratio
tests, and for large enough sample sizes, the numerical values of the two tests statistics
get closer and closer.

SAS makes it convenient to do Wald tests and inconvenient to do most likelihood ratio
tests, so we’ll stick to the Wald tests in this course.

6.5 Logistic Regression with SAS
6.6 QOutcomes with more than two categories

6.7 Scheffé-like Tests for Logistic Regression

For logistic regression, there are Scheffé-like follow-up tests called union-intersection tests.
The primary source for union-intersection multiple comparisons is Gabriel’s (1969) arti-
cle [11]. Hochberg and Tamhane’s (1987) monograph Multiple comparison procedures [13]
present Gabriel’s discovery in an appendix. The true Scheffé tests are a special kind of
union-intersection method that applies to the (multivariate) normal linear model. Scheffé
tests have one property that is not true of union-intersection follow-ups in general: the
guaranteed existence of a significant one-degree-of-freedom test. This is tied to geometric
properties of the multivariate normal distribution.

Just as in normal regression, suppose the initial null hypothesis is that r coefficients
in the logistic regression model are all equal to zero. We will follow up by testing whether
s linear combinations of these regression coefficients are different from zero; s < r. The
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critical value for the follow-up tests is exactly that of the initial test: a chi-
square with r degrees of freedom. This principle applies to both likelihood ratio and
Wald tests. In fact, it is true of likelihood ratio and Wald tests in general, not just for
logistic regression. Theoretically, the family of union-intersection follow-ups is embedded
in the initial test, and it does not inflate the Type I error rate at all to take a look.
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