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Topics 

•  Residuals 
•  More about dummy variables 
•  Interactions 
•  Centering the explanatory variables 



Analysis	
  of	
  Residuals	
  

Data	
  =	
  Fit	
  +	
  Residual	
  

ei = Yi � �Yi

Yi = b0 + b1 Xi,1 + ... + bp-1 Xi,p-1 + ei 



Mean residual equals zero 
(usually) 

•  Suppose a regression model has an intercept. 
•  Then the residuals add up to zero. Having an 

intercept in the model is a sufficient but not a 
necessary condition for the sum of residuals to 
be zero. 

•  That is, there are some models without 
intercepts for which the residuals still add to 
zero. 

•  Often these are equivalent to models with 
intercepts. 



Residual	
  means	
  le5	
  over	
  

•  Ver9cal	
  distance	
  of	
  Yi	
  from	
  the	
  regression	
  
hyper-­‐plane	
  

•  An	
  error	
  of	
  “predic9on”	
  
•  Big	
  residuals	
  merit	
  further	
  inves9ga9on	
  
•  Big	
  compared	
  to	
  what?	
  
•  They	
  are	
  normally	
  distributed	
  
•  Consider	
  standardizing	
  
•  Maybe	
  detect	
  outliers	
  



Residuals	
  are	
  like	
  es9mated	
  error	
  terms	
  

Yi = b0 + b1 Xi,1 + ... + bp-1 Xi,p-1 + ei 

Yi = β0 + β1 Xi,1 + ... + βp-1 Xi,p-1 + εi 

Normal distribution of εi implies normal distribution of ei    



Standardized	
  Residuals	
  

•  Could	
  divide	
  by	
  square	
  root	
  of	
  sample	
  
variance	
  of	
  e1,	
  ...,	
  en	
  	
  

•  “Semi-­‐Studen9zed”	
  (Kutner	
  et	
  al.)	
  

•  Studen9zed:	
  Es9mate	
  Var(ei)	
  (not	
  all	
  the	
  
same)	
  and	
  divide	
  by	
  square	
  root	
  of	
  that	
  

e�i =
ei�

MSE



Studen9zed	
  deleted	
  residuals	
  

•  An	
  outlier	
  will	
  make	
  MSE	
  big	
  
•  In	
  that	
  case,	
  the	
  Studen9zed	
  residual	
  will	
  be	
  
too	
  small	
  –	
  less	
  no9ceable	
  

•  So	
  calculate	
  Y-­‐hat	
  for	
  each	
  observa9on	
  based	
  
on	
  all	
  the	
  other	
  observa9ons,	
  but	
  not	
  that	
  one	
  

•  Basically,	
  predict	
  each	
  observed	
  Y	
  based	
  on	
  all	
  
the	
  others,	
  and	
  assess	
  error	
  of	
  predic9on	
  
(divide	
  by	
  standard	
  error).	
  



Deleted	
  residual	
  

Studentized deleted residual is
ti = di

s{di} ⇥ t(n� p� 1)

Is it too big? Use a t-test.

di = Yi � �Yi(i)

s2{di} = . . .



A	
  mul9ple	
  comparisons	
  problem	
  

•  Treat	
  studen9zed	
  deleted	
  residual	
  as	
  a	
  test	
  
sta9s9c	
  for	
  detec9ng	
  outliers.	
  

•  You	
  are	
  doing	
  n	
  tests	
  on	
  the	
  same	
  data	
  set.	
  
•  If	
  all	
  null	
  hypotheses	
  are	
  true	
  (that	
  is,	
  no	
  
outliers),	
  the	
  chance	
  of	
  rejec9ng	
  at	
  least	
  one	
  
of	
  them	
  can	
  be	
  close	
  to	
  one.	
  

•  Use	
  a	
  Bonferroni	
  correc*on.	
  



Predic9on	
  interval	
  

•  Apply	
  the	
  same	
  technology	
  
•  Think	
  of	
  Studen9zed	
  deleted	
  residual	
  for	
  case	
  
n+1	
  

•  So	
   tn+1 =
dn+1

s{dn+1}
⇥ t(n� p)

1� � = Pr

�
�t�/2(n� p) <

Yn+1 � ⇤Yn+1

s{dn+1}
< t�/2(n� p)

⇥

= Pr
⌅
�t�/2 s{dn+1} < Yn+1 � ⇤Yn+1 < t�/2 s{dn+1}

⇧

= Pr
⌅

⇤Yn+1 � t�/2 s{dn+1} < Yn+1 < ⇤Yn+1 + t�/2 s{dn+1}
⇧



PloXng	
  residuals	
  

•  Against	
  explanatory	
  variables	
  not	
  in	
  the	
  
equa9on	
  

•  Against	
  explanatory	
  variables	
  in	
  the	
  equa9on	
  
•  Test	
  for	
  approximate	
  normality	
  



Plot Residuals Against explanatory 
Variables Not in the Equation 



Plot Residuals Against explanatory Variables in 
the Equation: E(Y|X)=β0+β1X1+β2X2  



Plot Residuals Against explanatory 
Variables in the Equation 



More about Dummy Variables 

•  Indicator dummy variables with intercept 
•  Indicator dummy variables without 

intercept (Cell means coding) 
•  Effect coding 



Recall indicators with intercept 

•  x1 = Age 
•  x2 = 1 if Drug A, Zero otherwise 
•  x3 = 1 if Drug B, Zero otherwise 
•    



Can test contrasts controlling 
for covariates 

•  Valuable 
•  Sometimes very easy, sometimes can 

require a bit of algebra 
•  An easy example: Are responses to 

Drug A and B different, controlling for 
age? 



Are responses to Drug A and 
B different, controlling for 

age? 
 



Test whether the average response to 
Drug A and Drug B is different from 
response to the placebo, controlling for 
age. What is the null hypothesis? 



Show your work 

We want to avoid this kind of thing 



A common error 

•  Categorical explanatory variable with p 
categories 

•  p dummy variables (rather than p-1) 
•  And an intercept 

•  There are p population means 
represented by p+1 regression 
coefficients – representation is not 
unique 



But suppose you leave off the 
intercept 

•  Now there are p regression coefficients 
and p population means 

•  The correspondence is unique, and the 
model can be handy -- less algebra 

•  Called cell means coding 



Cell means coding: p 
indicators and no intercept 

(This model is equivalent to the one with the intercepts.) 
 



Add a covariate: x4 

•  Parallel regression lines 
•  Equivalent to the model with intercept 
•  Regression coefficients for the dummy vars 

are the intercepts 
•  Easy to specify contrasts 



Effect coding 
•  p-1 dummy variables for p categories 
•  Include an intercept 
•  Last category gets -1 instead of zero 
•  What do the regression coefficients 

mean? 
 



Meaning of the regression 
coefficients 



With effect coding 
•  Intercept is the Grand Mean 
•  Regression coefficients are deviations of 

group means from the grand mean 
•  Equal population means is equivalent to zero 

coefficients for all the dummy variables 
•  Last category is not a reference category 
 



Sometimes speak of the “main 
effect” of a categorical variable 

•  More than one categorical explanatory 
variable (factor) 

•  Marginal means are average group mean, 
averaging across the other factors 

•  This is loose speech: There are actually p 
main effects for a variable, not one 

•  Blends the “effect” of an experimental 
variable with the technical statistical meaning 
of effect. 

•  It’s harmless 



Add a covariate: Age = x1 

Regression coefficients are deviations from the 
average conditional population mean (conditional on 
x1). 
 
So if the regression coefficients for all the dummy 
variables equal zero, the categorical explanatory 
variable is unrelated to the response variable, 
controlling for the covariates. 



We will see later that effect coding is very 
useful when there is more than one 
categorical explanatory variable and we 
are interested in interactions --- ways in 
which the relationship of an explanatory 
variable with the response variable 
depends on the value of another 
explanatory variable. 



What dummy variable coding 
scheme should you use? 

•  Whichever is most convenient, and 
gives you the information you want most 
directly 

•  They are all equivalent, if done correctly 
•  Same test statistics, same conclusions 



Interactions 

•  Interaction between explanatory 
variables means “It depends.” 

•  Relationship between one explanatory 
variable and the response variable 
depends on the value of another 
explanatory variable.  

•  Note that an interaction is not a 
relationship between explanatory 
variables (in this course). 



Interactions between 
explanatory variables can be 

• Quantitative by quantitative 
• Quantitative by categorical 
• Categorical by categorical 



General principle 

•  Interaction between A and B means 
– Relationship of A to Y depends on value of 

B 
– Relationship of B to Y depends on value of 

A 
•  The two statements are formally 

equivalent 



Quantitative by Quantitative 
 

Y = �0 + �1x1 + �2x2 + �3x1x2 + ⇥

E(Y |x) = �0 + �1x1 + �2x2 + �3x1x2

For fixed x2 

E(Y |x) = (�0 + �2x2) + (�1 + �3x2)x1

Both slope and intercept depend on value of x2 

And for fixed x1, slope and intercept relating x2 to E(Y) depend  
on the value of x1 



Quantitative by Categorical 
•  Separate regression line for each value of 

the categorical explanatory variable.  
•  Interaction means slopes of regression 

lines are not equal. 



One regression Model 
•  Form a product of quantitative variable 

times each dummy variable for the 
categorical variable 

•  For example, three treatments and one 
covariate: x1 is the covariate and x2, x3 are 
dummy variables 

Y = �0 + �1x1 + �2x2 + �3x3

+�4x1x2 + �5x1x3 + ⇥



E(Y |x) = �0 + �1x1 + �2x2 + �3x3 + �4x1x2 + �5x1x3

Group x2 x3 E(Y |x)
1 1 0 (�0 + �2) + (�1 + �4)x1

2 0 1 (�0 + �3) + (�1 + �5)x1

3 0 0 �0 + �1 x1



Group x2 x3 E(Y |x)
1 1 0 (�0 + �2) + (�1 + �4)x1

2 0 1 (�0 + �3) + (�1 + �5)x1

3 0 0 �0 + �1 x1

What null hypothesis would you test for 

•  Parallel slopes 
•  Compare slopes for group one vs three 
•  Compare slopes for group one vs two 
•  Equal regressions 
•  Interaction between group and x1 



What to do if H0: β4=β5=0 is rejected 

•  How do you test Group “controlling” for 
x1? 

•  A popular choice is to set x1 to its sample 
mean, and compare treatments at that 
point. SAS calls the estimates (Y-hat 
values) “Least Squares Means.” 

•  Or, test equal regressions, in which mean 
response is the same for all values of the 
covariate(s).  

 



Test for differences at mean of x1? 



“Centering” the explanatory variables 
•  Subtract mean (for entire sample) from 

each quantitative explanatory variable. 



Properties of Centering 
•  When explanatory variables are 

centered, estimates and tests for 
intercepts are affected. 

•  Relationships between explanatory 
variables and response variables are 
unaffected. 

•  Estimates and tests for slopes are 
unaffected.  

•  R2 is unaffected. 
•  Predictions and prediction intervals are 

unaffected. 



More Properties 

•  Suppose a regression model has an intercept. 
•  Then the residuals add up to zero. But there are 

models without intercepts where the sum of residuals 
is zero. These are often equivalent to models with 
intercepts. 

•  Suppose the residuals do add to zero. Then if each 
explanatory variable is set to its sample mean value, 
Y-hat equals Y-bar, the sample mean of all the Y 
values. 

•  In this case, if all explanatory variables are centered 
by subtracting off their means, then the intercept 
equals Y-bar, exactly. 



Comments 

•  Often, X=0 is outside the range of explanatory 
variable values, and it is hard to say what the 
intercept means in terms of the data. 

•  When explanatory variables are centered, the 
intercept is the average Y value for average value(s) 
of X. 

•  If there are both quantitative variables and 
categorical variables (represented by dummy 
variables), it can help to center just the quantitative 
variables. 

 



“Centering” just the quantitative 
explanatory variables 

•  Subtract mean (for entire sample) from each 
quantitative explanatory variable. 

•  Then, comparing intercepts is the same as 
comparing expected values for “average” X 
values.  It’s more convenient than testing 
linear combinations. 

Group x2 x3 E(Y |x)
1 1 0 (�0 + �2) + (�1 + �4)x1

2 0 1 (�0 + �3) + (�1 + �5)x1

3 0 0 �0 + �1 x1



For Example 

•  Suppose you want to test for differences 
among population mean Y values when x1 
equals its sample mean value. 

•  You could test H0:  
•  Or, center x1 and test H0: β2=β3=0 

Group x2 x3 E(Y |x)
1 1 0 (�0 + �2) + (�1 + �4)x1

2 0 1 (�0 + �3) + (�1 + �5)x1

3 0 0 �0 + �1 x1

�2 + �4x1 = �3 + �5x1 = 0



Categorical by Categorical 

•  Soon 
•  But first, some examples 
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