
Chapter 0

Regression with measurement error

Introduction

This chapter seeks to accomplish two things. First, it is a self-contained introduction
to linear regression with measurement error in the explanatory variables, suitable as a
supplement to an ordinary regression course. Second, it is an introduction to the study
of structural equation models. Without confronting the general formulation at first, the
student will learn why structural equation models are important and see what can be
done with them. Some of the ideas and definitions are repeated later in the book, so that
the theoretical treatment of structural equation modeling does not depend much on this
chapter. On the other hand, the material in this chapter will be used throughout the rest
of the book as a source of examples. It should not be skipped by most readers.

0.1 Covariance and Relationship

Most of the models we will consider are linear in the explanatory variables as well as the
regression parameters, and so relationships between explanatory variables and response
variables are represented by covariances. To clarify this fundamental point, first note that
saying two random variables are “related” really just means that they are not independent.
A non-zero covariance implies lack of independence, and therefore it implies a relationship
of some kind between the variables. Furthermore, if the random variables in question are
normally distributed (a common and very useful model), zero covariance is exactly the
same thing as independence.

More generally, consider two random variables X and Y whose joint distribution might
not be bivariate normal. Suppose there is a tendency for higher values of X to go with
higher values of Y , and for lower values of X to go with lower values of Y . This idea of
a “positive” relationship is pictured in the left panel of Figure 1. Since the probability of
an (x, y) pair is roughly proportional to the height of the surface, a large sample of points
will be most dense where the surface is highest1. On a scatterplot, the best-fitting line

1Presumably this is why it’s called a probability density function.
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relating X to Y will have a positive slope. The right panel of Figure 1 shows a negative
relationship. There, the best-fitting line will have a negative slope.

Figure 1: Relationship between X and Y
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The word “covariance” suggests that it is a measure of how X and Y vary together. To
see that positive relationships yield positive covariances and negative relationships yield
negative covariances, look at Figure 2.

Figure 2 shows contour plots of the densities in Figure 1. Imagine you are looking
down at a density from directly above, and that the density has been cut into slices that
are parallel with the x, y plane. The ellipses are the cut marks. The outer ellipse is lowest,
the next one in is a bit higher, and so on. All the points on an ellipse (contour) are at
the same height. It’s like a topographic map of a mountainous region, except that the
contours on maps are not so regular.

The definition of covariance is

Cov(X, Y ) = E {(X − µx)(Y − µy)} =

∫ ∞
−∞

∫ ∞
−∞

(x− µx)(y − µy)f(x, y) dx dy

In the left panel of Figure 2, more of the probability is in the upper right and lower left,
and that is where (x − µx)(y − µy) is positive. The positive volume in these regions is
greater than the negative volume in the upper left and lower right, so that the integral
is positive. In the right-hand panel the opposite situation occurs, and the covariance is
negative. The pictures are just of one example, but the rule is general. Positive covariances
reflect positive relationships and negative covariances reflect negative relationships.
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Figure 2: Contour Plots
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In the study of linear structural equation models, one frequently needs to calculate
covariances and matrices of covariances. Covariances of linear combinations are frequently
required. The following rules are so useful that they are repeated from Sections A.1
and A.3 of Appendix A.

Let X1, . . . , Xn1 and Y1, . . . , Yn2 be scalar random variables, and define the linear
combinations L1 and L2 by

L1 = a1X1 + · · ·+ an1Xn1 =

n1∑
i=1

aiXi, and

L2 = b1Y1 + · · ·+ bn2Yn2 =

n2∑
i=1

biYi,

where the aj and bj are constants. Then

cov(L1, L2) =

n1∑
i=1

n2∑
j=1

aibjCov(Xi, Yj). (1)

In the matrix version, let x1, . . . ,xn1 and y1, . . . ,yn2 be random vectors, and define
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the linear combinations `1 and `2 by

`1 = A1x1 + · · ·+ An1xn1 =

n1∑
i=1

Aixi, and

`2 = B1y1 + · · ·+ Bn2yn2 =

n2∑
i=1

Biyi,

where the Aj and Bj are matrices of constants. Then

cov(`1, `2) =

n1∑
i=1

n2∑
j=1

Ai cov(xi,yj) B>j . (2)

Both these results say that to calculate the covariance of two linear combinations, just take
the covariance of each term in the first linear combination with each term in the second
linear combination, and add them up. When simplifying the results of calculations, it can
be helpful to recall that Cov(X,X) = V ar(X) and cov(x,x) = cov(x).

0.2 Regression: Conditional or Unconditional?

Consider the usual version of univariate multiple regression. For i = 1, . . . , n,

Yi = β0 + β1xi,1 + β2xi,2 + · · ·+ βp−1xi,p−1 + εi,

where ε1, . . . εn are independent random variables with expected value zero and common
variance σ2, and xi,1, . . . xi,p−1 are fixed constants. For testing and constructing confidence
intervals, ε1, . . . εn are typically assumed normal.

Alternatively, the regression model may be written in matrix notation, as follows:

y = Xβ + ε, (3)

where X is an n×p matrix of known constants, β is a p×1 vector of unknown constants,
and ε is multivariate normal with mean zero and covariance matrix σ2In; the variance
σ2 > 0 is a constant.

Now please take a step back and think about this model, rather than just accepting it
without question. In particular, think about why the x variables should be constants. It’s
true that if they are constants then all the calculations are easier, but in the typical appli-
cation of regression to observational2 data, it makes more sense to view the explanatory
variables as random variables rather than constants. Why? Because if you took repeated

2Observational data are just observed, rather than being controlled by the investigator. For example,
the average number of minutes per day spent outside could be recorded for a sample of dogs. In contrast
to observational data are experimental data, in which the values of the variable in question are controlled
by the investigator. In an experimental study, dogs could be randomly assigned to several different values
of the variable “time outside.”
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samples from the same population, the values of the explanatory variables would be dif-
ferent each time. Even for an experimental study with random assignment of cases (say
dogs) to experimental conditions, suppose that the data are recorded in the order they
were collected. Again, with high probability the values of the explanatory variables would
be different each time.

So, why are the x variables a set of constants in the formal model? One response is
that the regression model is a conditional one, and all the conclusions hold conditionally
upon the values of the explanatory variables. This is technically correct, but consider the
reaction of a zoologist using multiple regression, assuming he or she really appreciated
the point. She would be horrified at the idea that the conclusions of the study would be
limited to this particular configuration of explanatory variable values. No! The sample
was taken from a population, and the conclusions should apply to that population, not
to the subset of the population with these particular values of the explanatory variables.

At this point you might be a bit puzzled and perhaps uneasy, realizing that you have
accepted something uncritically from authorities you trusted, even though it seems to be
full of holes. In fact, everything is okay this time. It is perfectly all right to apply a
conditional regression model, even when the predictors are clearly random. But it’s not
so very obvious why it’s all right, or in what sense it’s all right. This section will give the
missing details. These are skipped in every regression textbook I have seen; I’m not sure
why.

Unbiased Estimation Under the standard conditional regression model (3), it is straight-

forward to show that the vector of least-squares regression coefficients β̂ is unbiased for
β (both of these are p × 1 vectors). This means that it’s unbiased conditionally upon
X = x. In symbols,

E{β̂|X = x} = β.

This applies to every fixed x matrix with linearly independent columns, a condition that
is necessary and sufficient for β̂ to exist. Assume that the joint probability distribution
of the random matrix X assigns zero probability to matrices with linearly dependent
columns (which is the case for continuous distributions). Using the double expectation
formula E{Y } = E{E{Y |X}},

E{β̂} = E{E{β̂|X}} = E{β] = β,

since the expected value of a constant is just the constant. This means that estimates
of the regression coefficients from the conditional model are still unbiased, even when the
explanatory variables are random.

The following calculation might make the double expectation a bit clearer. The outer
expected value is with respect to the joint probability distribution of the explanatory
variable values – all n vectors of them; think of the n× p matrix X. To avoid unfamiliar
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notation, suppose they are all continuous, with joint density f(x). Then

E{β̂} = E{E{β̂|X}}

=

∫
· · ·
∫
E{β̂|X = x} f(x) dx

=

∫
· · ·
∫
β f(x) dx

= β

∫
· · ·
∫
f(x) dx

= β · 1 = β.

Consistent Estimation It will now be shown that when the explanatory variable val-
ues are random, β̂n

p→ β; see Section A.5 in Appendix A for a brief discussion of con-
sistency. The demonstation is a bit lengthy, but the details are shown because one of
the intermediate results will be very useful later. The argument begins by establishing
an alternative formula for the ordinary least-squares estimates. The explanatory variable
values are fixed for now, but in the end, the formula will be applied to random X values.

A regression model can be “centered” by subtracting sample means from the values of
the explanatory variables. Geometrically, what this does is to shift the cloud of points in
a high-dimensional scatterplot left or right along each x axis – or equivalently, to adopt
a shifted set of co-ordinate axes. Clearly, this will not affect the tilt (slopes) of the best-
fitting hyperplane, but it will affect the intercept. Writing the regression model in scalar
form and then centering, . . .

yi = β0 + β1xi,1 + · · ·+ βpxi,p + εi

= β0 + β1x1 + · · ·+ βpxp

+β1(xi,1 − x1) + · · ·+ βp(xi,p − xp) + εi

= α0 + α1(xi,1 − x1) + · · ·+ αp(xi,p − xp) + εi,

where the α parameters are the regression coefficients of the centered model. We have
α0 = β0 +β1x1 + · · ·+βkxp, and αj = βj for j = 1, . . . , p. This re-parameterization is one-
to-one. Since the least-squares and maximum likelihood estimates coincide for multiple
regression with normal errors, the invariance principle of maximum likelihood estimation
(See Section A.6.3 in Appendix A) says that α̂j = β̂j for j = 1, . . . , p. That is, centering
does not change the estimated slopes. In addition, the MLE of the intercept for the
centered model is α̂0 = β̂0 + β̂1x1 + · · ·+ β̂pxp. Invoking once again the identity of least-
squares and maximum likelihood estimates for this case, we see that the α̂j quantities are
also the least-squares estimates for the centered model3.

3This argument uses the invariance principle for maximum likelihood estimation, but that’s not really
necessary. There is also an invariance principle for least-squares, which is proved in exactly the same way
as the invariance principle for maximum likelihood.
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For any regression model with an intercept, the sum of residuals is zero. Thus,

ȳ =
1

n

n∑
i=1

ŷi

=
1

n

n∑
i=1

(
β̂0 + β̂1xi,1 + · · ·+ β̂pxi,p

)
= β̂0 + β̂1x1 + · · ·+ β̂pxp

= α̂0

That is, the least-squares estimate of the intercept is ȳ for any centered regression model,
regardless of the data.

We already know how to calculate the β̂j, but we are working toward another formula
for them. Suppose we start with the centered model

yi = α0 + β1(xi,1 − x1) + · · ·+ βp(xi,p − xp) + εi.

Because this is a centered model, we know that α̂0 = y. To find the β̂j, first substitute
α̂0 = y and then minimize

Q(β) =
n∑
i=1

(yi − y − β1(xi,1 − x1)− · · · − βp(xi,p − xp) )2

over all β. This is the same as centering y as well as x, and then fitting a regression
through the origin. The usual formula β̂ = (X>X)−1X>y applies. We just need to
remember that the columns of the n× p matrix X are centered, and so is the n× 1 vector
y. For p = 3, the X matrix looks like this:

x11 − x̄1 x12 − x̄2 x13 − x̄3

x21 − x̄1 x22 − x̄2 x23 − x̄3

x31 − x̄1 x32 − x̄2 x33 − x̄3
...

...
...

xn1 − x̄1 xn2 − x̄2 xn3 − x̄3

 .

The X>X matrix, the so-called the “sums of squares and cross products” matrix, is

X>X =

 x11 − x̄1 x21 − x̄1 x31 − x̄1 · · · xn1 − x̄1

x12 − x̄2 x22 − x̄2 x32 − x̄2 · · · xn2 − x̄2

x13 − x̄3 x23 − x̄3 x33 − x̄3 · · · xn3 − x̄3




x11 − x̄1 x12 − x̄2 x13 − x̄3

x21 − x̄1 x22 − x̄2 x23 − x̄3

x31 − x̄1 x32 − x̄2 x33 − x̄3
...

...
...

xn1 − x̄1 xn2 − x̄2 xn3 − x̄3


=

 ∑n
i=1(xi1 − x1)2

∑n
i=1(xi1 − x1)(xi2 − x2)

∑n
i=1(xi1 − x1)(xi3 − x3)∑n

i=1(xi2 − x2)(xi1 − x1)
∑n

i=1(xi2 − x2)2
∑n

i=1(xi2 − x2)(xi3 − x3)∑n
i=1(xi3 − x3)(xi1 − x1)

∑n
i=1(xi3 − x3)(xi2 − x2)

∑n
i=1(xi3 − x3)2

 .
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It’s clear that larger examples would follow this same pattern. The entries in the matrix
look like sample variances and covariances, except that they are not divided by n. Dividing
and multiplying by n, we have X>X = nΣ̂x, where Σ̂x is the sample variance-covariance
matrix of the explanatory variables.

Still looking at the p = 3 case for simplicity,

X>y =


x11 − x̄1 x21 − x̄1 x31 − x̄1 · · · xn1 − x̄1

x12 − x̄2 x22 − x̄2 x32 − x̄2 · · · xn2 − x̄2

x13 − x̄3 x23 − x̄3 x33 − x̄3 · · · xn3 − x̄3





y1 − ȳ

y2 − ȳ

y3 − ȳ
...

yn − ȳ



=


∑n

i=1(xi1 − x1)(yi − y)∑n
i=1(xi1 − x1)(yi − y)∑n
i=1(xi1 − x1)(yi − y)



= n


1
n

∑n
i=1(xi1 − x1)(yi − y)

1
n

∑n
i=1(xi1 − x1)(yi − y)

1
n

∑n
i=1(xi1 − x1)(yi − y)


= nΣ̂xy,

where Σ̂xy is the k × 1 vector of sample covariances between the explanatory variables
and the response variable.

Putting the pieces together, the least squares estimator of β is

β̂n = (X>X)−1X>y

= (nΣ̂x)
−1nΣ̂xy

=
1

n
(Σ̂x)

−1nΣ̂xy

= Σ̂
−1

x Σ̂xy. (4)

Several comments are in order. First, recall that β̂n is a vector of least-squares slopes only.
It does not include the intercept. However, the intercept for a centered model is ȳ, and
is easily computed. Second, because the slopes are the same for the centered model and
the uncentered model, formula (4) applies equally to uncentered models. Third, in spite

of the suggestive Σ̂ notation, expression (4) is just a computational formula. It applies
whether the explanatory variable values are random or fixed. Only when the variables
are random do Σ̂x and Σ̂xy actually estimate variances and covariances.
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When the explanatory variables are random, the Strong Law of Large Numbers and
continuous mapping yield

β̂n
a.s.→ Σ−1

x Σxy. (5)

The only requirement for convergence is that Σ−1
x exist, which is equivalent to Σx being

positive definite.
The convergence (5) applies whether the regression model is correct or not. For this

reason, it can be a valuable tool for studying mis-specified regression models — that is,
models that are assumed, but are not actually correct. If you can calculate Σ̂x and Σ̂xy

under the true model, you can determine where the estimated regression coefficients are
going as the sample size increases. This will often indicate whether the mis-specification
is likely to cause mistaken conclusions.

For the present, suppose that the usual uncentered regression model is correct. Inde-
pendently for i = 1, . . . , n, let

yi = β0 + β>Xi + εi

where

β0 (the intercept) is an unknown scalar constant.

β is a p× 1 vector of unknown slope parameters.

xi is a p× 1 random vector with expected value µ and positive definite covariance
matrix Σx.

εi is a scalar random variable with E(εi) = 0 and V ar(εi) = σ2.

cov(xi, εi) = 0.

So,

Σxy = cov(xi, yi)

= cov(xi, β0 + β>xi + εi)

= cov(xi,β
>xi + εi)

= cov(xi,β
>xi) + cov(xi, εi)

= cov(xi,xi)β + 0

= Σxβ.

Then by (5)

β̂n
a.s.→ Σ−1

x Σxy

= Σ−1
x Σxβ

= β.

Since almost sure convergence implies convergence in probability (see Section A.5 in Ap-

pendix A), we have β̂n
p→ β. This is the standard definition of (weak) consistency. The
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meaning is that as the sample size increases, the probability that the usual least-squares
estimate β̂n is arbitrarily close to β approaches one. This holds even though the explana-

tory variable values are random variables, and β̂n was derived under the assumption that
they are fixed constants.

Size α Tests Suppose Model (3) is conditionally correct, and we plan to use an F test.
Conditionally upon the x values, the F statistic has an F distribution when the null
hypothesis is true, but unconditionally it does not. Rather, its probability distribution is
a mixture of F distributions, with

Pr{F ∈ A} =

∫
· · ·
∫
Pr{F ∈ A|X = x}f(x) dx.

If the null hypothesis is true and the set A is the critical region for an exact size α F -test,
then Pr{F ∈ A|X = x} = α for every fixed set of explanatory variable values x. In that
case,

Pr{F ∈ A} =

∫
· · ·
∫
αf(x) dx

= α

∫
· · ·
∫
f(x) dx (6)

= α.

Thus, the so-called F -test has the correct Type I error rate when the explanatory variables
are random (assuming the model is conditionally correct), even though the test statistic
does not have an F distribution.

It might be suspected that if the explanatory variables are random and we assume
they are fixed, the resulting estimators and tests might be of generally low quality, even
though the estimators are unbiased and the tests have the right Type I error probability.
Now we will see that given a fairly reasonable set of assumptions, this fear is unfounded.

Denoting the explanatory variable values by X and the response variable values by Y,
suppose the joint distribution of X and Y has the following structure. The distribution
of X depends on a parameter vector θ1. Conditionally on X = x, the distribution of
Y depends on a parameter vector θ2, and θ1 and θ2 are not functionally related. For a
standard regression model this means that the distribution of the explanatory variables
does not depend upon the values of β or σ2 in any way. This is surely not too hard to
believe.

Please notice that the model just described is not at all limited to linear regression. It
is very general, covering almost any conceivable regression-like method including logistic
regression and other forms of non-linear regression, generalized linear models and the like.

Because likelihoods are just joint densities or probability mass functions viewed as
functions of the parameter, the notation of Appendix A.6.8 may be stretched just a little
bit to write the likelihood function for the unconditional model (with X random) in terms
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of conditional densities as

L(θ1,θ2,x,y) = fθ1,θ2(x,y)

= fθ2(y|x) fθ1(x)

= L2(θ2,x,y)L1(θ1,x) (7)

Now, take the log and partially differentiate with respect to the elements of θ2. The
marginal likelihood L1(θ1,x) disappears, and θ̂2 is exactly what it would have been for a
conditional model.

In this setting, likelihood ratio tests are also identical under conditional and uncondi-
tional models. Suppose the null hypothesis concerns θ2, which is most natural. Note that
the structure of (7) guarantees that the MLE of θ1 is the same under the null and alter-

native hypotheses. Letting θ̂0,2 denote the restricted MLE of θ2 under H0, the likelihood
ratio for the unconditional model is

λ =
L2(θ̂0,2,x,y)L1(θ̂1,x)

L2(θ̂2,x,y)L1(θ̂1,x)

=
L2(θ̂0,2,x,y)

L2(θ̂2,x,y)
,

which again is exactly what it would have been under a conditional model. While this
holds only because the likelihood has the nice structure in (7), it’s a fairly reasonable set
of assumptions.

Thus in terms of both estimation and hypothesis testing, the fact that explanatory
variables are usually random variables presents no difficulty, regardless of what the distri-
bution of those explanatory variables may be. In fact, the conditional nature of the usual
regression model is a strength. In all the calculations above, the joint distribution of the
explanatory variables is written in a very general way. It really doesn’t matter what it is,
because it disappears. So one might say that with respect to the explanatory variables,
the usual linear regression model is distribution free.

In spite of the virtues of the conditional regression model, in this book we will focus
on unconditional regression models, in which the explanatory variables are random. The
reason is that ultimately, the explanatory variables themselves may be influenced by
other variables. The easiest way to represent this is to admit from the outset that they
are random variables.

0.3 Unconditional regression with observed variables

Example 0.3.1 Simple Regression

Suppose that the covariance between two random variables arises from a regression. In-
dependently for i = 1, . . . , n, let

Yi = β0 + β1Xi + εi (8)

where
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• Xi is has expected value µx and variance φ > 0

• εi has expected value zero and variance σ2 > 0

• Xi and εi are independent.

The pairs (Xi, Yi) have a joint distribution that is unspecified, except for the expected
value

E

(
Xi

Yi

)
= µ =

(
µ1

µ2

)
=

(
µx

β0 + β1µx

)
,

and variance-covariance matrix

cov

(
Xi

Yi

)
= Σ = [σi,j] =

(
φ β1φ
β1φ β2

1φ+ σ2

)
.

The linear property of the covariance (Expression 1 on page 9) is useful for calculating
the covariance between the explanatory and response variables.

Cov(Xi, Yi) = Cov(Xi, β0 + β1Xi + εi)

= Cov(Xi, β1Xi + εi)

= β1Cov(Xi, Xi) + Cov(Xi, εi)

= β1V ar(Xi) + 0

= β1φ

Since φ is a variance, it is greater than zero. Thus the sign of the covariance is the sign of
the regression coefficient. Positive regression coefficients produce positive relationships,
negative regression coefficients produce negative relationships, and zero corresponds to no
relationship as measured by the covariance.

While the sign of the covariance (and hence the direction of the relationship) is de-
termined by β1, the magnitude of the covariance is jointly determined by the magnitude
of β1 and the magnitude of φ, the variance of Xi. Consequently the covariance of Xi and
Yi depends on the scale of measurement of Xi. If Xi is measured in centimeters instead
of meters, its variance is 1002 = 10, 000 times as great, and Cov(Xi, Yi) is ten thousand
times as great, as well. This makes raw covariances difficult to interpret, except for the
sign.

A solution is to put the variables on a standard common scale by looking at correlations
instead of covariances. Denoting the correlation of any two random variables X and Y
by Greek letter “rho,” which is a common notation,

ρxy =
Cov(X, Y )

SD(X)SD(Y )
(9)

=
E {(X − µx)(Y − µy)}√

V ar(X)
√
V ar(Y )

= E

{(
X − µx
σx

)(
Y − µy
σy

)}
.
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That is, the correlation between two random variables is the covariance between versions of
the variables that have been standardized to have mean zero and variance one. Using (9),
the correlation for Example 0.3.1 is

ρ =
β1φ√

φ
√
β2

1φ+ σ2

=
β1

√
φ√

β2
1φ+ σ2

. (10)

This may not look like much, but consider the following. In any regression, the response
variable is likely to represent the phenomenon of primary interest, and explaining why
it varies from unit to unit is an important scientific goal. For example, if Yi is academic
performance, we want to know why some students do better than others. If Yi is the crime
rate in neighbourhood i, we want to know why there is more crime in some neighbourhoods
than in others. If there were no variation in some phenomenon (the sum rises in the East)
there might still be something to explain, but it would not be a statistical question.
Because Xi and εi are independent,

V ar(Yi) = V ar(β1Xi + εi)

= β2
1V ar(Xi) + V ar(εi)

= β2
1φ+ σ2.

Thus the variance of Yi is separated into two parts4, the part that comes from Xi and the
part that comes from εi. The part that comes from Xi is β2

1φ, and the part that comes
from εi (that is, everything else) is σ2. From (10) the squared correlation between Xi and
Yi is

ρ2 =
β2

1φ

β2
1φ+ σ2

, (11)

the proportion of the variance in Yi that comes from Xi. This quantity does not depend
on the scale of Xi or the scale of Yi, because both variables are standardized.

Example 0.3.2 Multiple Regression

Now consider multiple regression. In ordinary multiple regression (the conditional
model), one speaks of the relationship between and explanatory variable and the response
variable “controlling” for other variables in the model5. This really refers to the condi-
tional expectation of Y as a function of xj for fixed values of the other x variables, say
in the sense of a partial derivative. In unconditional regression with random explanatory
variables one talks about it in the same way, but the technical version is a bit different
and perhaps easier to understand. Here is an example with two explanatory variables.

4The word “analysis” means splitting into parts, so this is literally analysis of variance.
5One can also speak of “correcting” for the other variables, or “holding them constant,” or “allowing”

for them, or “taking them into account.” These are all ways of saying exactly the same thing.
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Independently for i = 1, . . . , n, let Yi = β0 + β1Xi,1 + β2Xi,2 + εi, where E(Xi,1) = µ1,
E(Xi,2) = µ2, E(εi) = 0, V ar(εi) = σ2, εi is independent of both Xi,1 and Xi,2, and

cov

(
Xi,1

Xi,2

)
=

(
φ11 φ12

φ12 φ22

)
.

Figure 3 shows a path diagram for this model. The explanatory and response variables are
all observed, so they are enclosed in boxes. The double-headed curved arrow between the
explanatory variables represents a possibly non-zero covariance. This covariance might
arises from interesting and important processes including common influences on the X
variables, but those processes are not part of the model. Curved double-headed arrows
represent unanalyzed covariances between explanatory variables.

The straight arrows from the explanatory to response variables represent direct influ-
ence, or at least that we are interested in predicting y from x rather than the other way
around. There is a regression coefficient β on each straight arrow, and a covariance φ12

on the curved double-headed arrow.

Figure 3: Unconditional multiple regression
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For this model, the covariance of Xi,1 and Yi is

Cov(Xi,1, Yi) = Cov(Xi,1, β0 + β1Xi,1 + β2Xi,2 + εi)

= Cov(Xi,1, β1Xi,1 + β2Xi,2 + εi)

= β1Cov(Xi,1, Xi,1) + β2Cov(Xi,1, Xi,2) + Cov(Xi,1, εi)

= β1V ar(Xi,1) + β2Cov(Xi,1, Xi,2) + 0

= β1φ11 + β2φ12

This means that the relationship between X1 and Y has two sources. One is the direct
link from X1 to Y through the straight arrow represented by β1, and the other is through
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the curved arrow between X1 and X2 and then through the straight arrow linking X2 to
Y . Even if β1 = 0, there still will be a relationship provided that X1 is related to X2 and
X2 is related to Y 6. Furthermore, β2φ12 may overwhelm β1φ11, so that the covariance
between X1 and Y may be positive even though β1 is negative.

All this is true of the unconditional relationship between X1 and Y , but what if you
“control” for X2 by holding it constant at some fixed value? When the explanatory
variables are all random, the relationship between X1 and Y controlling for X2 simply
refers to a conditional distribution — the joint distribution of X1 and Y given X2 = x2.
In this case the regression equation is

Yi = β0 + β1Xi,1 + β2xi,2 + εi

= (β0 + β2xi,2) + β1Xi,1 + εi

= β′0 + β1Xi,1 + εi

The constant is simply absorbed into the intercept. It’s a little strange in that the
intercept is potentially different for i = 1, . . . , n, but that doesn’t affect the covariance.
Following the calculations in Example 0.3.1, the conditional covariance between Xi,1 and
Yi is β1φ11. Thus to test whether X1 is connected to Y controlling for X2 (or correcting
for it, or allowing for it or some such term), it is appropriate to test H0 : β1 = 0. If
the null hypothesis is rejected, the sign of the estimated regression coefficient guides
your conclusion as to whether the conditional relationship is positive or negative. These
considerations extend immediately to multiple regression.

In terms of interpreting the regression coefficients, it is helpful to decompose (analyze)
the variance of Yi.

V ar(Yi) = V ar(β1Xi,1 + β2Xi,2 + εi)

= β2
1φ11 + β2

2φ22 + 2β1β2φ12 + σ2

The explanatory variables contribute to the variance of the response individually through
their variances and squared regression coefficients, and also jointly through their regression
coefficients and their covariance. This joint effect is not an interaction in the ordinary
sense of the term; the model of Example 0.3.2 has no product term. The null hypothesis
H0 : β1 = 0 means that X1 does not contribute at all to the variance of Y , either directly
or through its covariance with X2.

Estimation

Here is some useful terminology, repeated from Appendix A.

Definition 0.1 Moments of a distribution are quantities such E(X), E(Y 2), V ar(X),
E(X2Y 2), Cov(X, Y ), and so on.

6Yes, body weight may be positively related to income because men are bigger on average and they
tend to make more money for the same work.
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Definition 0.2 Moment structure equations are a set of equations expressing moments of
the distribution of the data in terms of the model parameters. If the moments involved are
limited to variances and covariances, the moment structure equations are called covariance
structure equations.

For the simple (one explanatory variable) regression model of Example 0.3.1, the moments

are the elements of the mean vector µ = E

(
Xi

Yi

)
, and the unique elements of the

covariance matrix Σ = cov

(
Xi

Yi

)
. The moments structure equations are

µ1 = µx (12)

µ2 = β0 + β1µx

σ1,1 = φ

σ1,2 = β1φ

σ2,2 = β2
1φ+ ψ.

In this model, the parameters are µx, φ, β0, β1, ψ, and also the unknown distribution
functions of Xi and εi. Our interest is in the Greek-letter parameters, especially β0 and
β1. Method of Moments estimates (See Section A.6.2 in Appendix A) can be obtained
by solving the moment structure equations (12) for the unknown parameters and putting
hats on the result. The moment structure equations form a system of 5 equations in five
unknowns, and may be readily be solved to yield

β0 = µ2 −
σ1,2

σ1,1

µ1 (13)

µx = µ1

φ = σ1,1

β1 =
σ1,2

σ1,1

ψ = σ2,2 −
σ2

1,2

σ1,1

.

Thus, even though the distributions of Xi and εi are unknown, we have nice consistent7

estimators of the interesting part of the unknown parameter. Putting hats on the param-

7By the Law of Large Numbers and continuous mapping
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eters in Expression 13,

β̂0 = y − σ̂1,2

σ̂1,1

x

µ̂x = µ̂1 = x

φ̂ = σ̂1,1

β̂1 =
σ̂1,2

σ̂1,1

ψ̂ = σ̂2,2 −
σ̂2

1,2

σ̂1,1

.

It is very standard to assume that Xi and εi are normally distributed. In this case, the
existence of the solution (13) tells us that the parameters of the normal version of this
regression model stand in a one-to-one-relationship with the mean and covariance matrix
of the bivariate normal distribution posessed by the observable data. In fact, the two
sets of parameter values are 100% equivalent; they are just different ways of expressing
the same thing. For some purposes, the parameterization represented by the regression
model may be more informative.

Furthermore, the Invariance Principle of maximum likelihood estimation (see Sec-
tion A.6.5 in Appendix A) says that the MLE of a one-to-one function is just that func-
tion of the MLE. So, the Method of Moments estimates are also the Maximum Likelihood
estimates in this case. Recognizing the formula for β̂1 as a special case of Expression 4 on
Page 14 (from the centered multiple regression model), we see that β̂1 is also the ordinary
least-squares estimate.

The calculations just shown are important, because they are an easy, clear example
of something that will be necessary again and again throughout the course. Here is the
process:

• Calculate the moments of the distribution (usually means, variances and covari-
ances) in terms of the model parameters, obtaining a system of moment structure
equations.

• Solve the moment structure equations for the parameters, expressing the parameters
in terms of the moments.

When the second step is successful, putting hats on all the parameters in the solution
yields Method of Moments estimators, even when these do not correspond to the MLEs8.

It turns out that for many reasonable models that go beyond ordinary multiple regres-
sion, a unique solution for the parameters is mathematically impossible. In such cases,
successful parameter estimation by any method is impossible as well. It is vitally im-
portant to verify the possibility of successful parameter estimation before trying it for a

8When there are the same number of moment structure equations and a unique sulution for the parame-
trers exists, the Mothod of Moments estimators and MLEs coincide. When there are more equations than
parameters they no longer coincide in general, but still the process of “putting hats on everything” yields
Method of Moments estimators.
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given data set (say, by maximum likelihood), and verification consists of a process like
the one you have just seen. Of course it is no surprise that estimating the parameters of
a regression model is technically possible.

Because the process is so important, let us take a look at the extension to multivariate
multiple regression — that is, to linear regression with multiple explanatory variables and
multiple response variables. This will illustrate the matrix versions of the calculations.

Example 0.3.3 Multivariate Regression

Independently for i = 1, . . . , n, let

yi = β0 + β>1 xi + εi (14)

where

yi is a q × 1 random vector of observable response variables, so the regression can
be multivariate; there are q response variables.

β0 is a q × 1 vector of unknown constants, the intercepts for the q regression equa-
tions. There is one for each response variable.

xi is a p × 1 observable random vector; there are p explanatory variables. xi has
expected value µx and variance-covariance matrix Φ, a p×p symmetric and positive
definite matrix of unknown constants.

β1 is a p×q matrix of unknown constants. These are the regression coefficients, with
one row for each explanatory variable and one column for each response variable.

εi is the error term of the latent regression. It is an q × 1 multivariate normal
random vector with expected value zero and variance-covariance matrix Ψ, a q × q
symmetric and positive definite matrix of unknown constants. εi is independent of
xi.

The parameter vector for this model could be written θ = (β0,µx,Φ,β1,Ψ, Fx, Fε), where
it is understood that the symbols for the matrices refer to their unique elements.

Figure 4 depicts a model with three explanatory variables and two response variables.
The explanatory and response variables are all observable, so they are enclosed in boxes.
Double-headed curved arrows between the explanatory variable represent possible non-
zero covariances. The straight arrows from the explanatory to response variables represent
direct influence, or at least that we are interested in predicting y from x rather than the
other way around. There is a regression coefficient βj,k on each arrow. The error terms
ε1 and ε2 represent all other influences on Y1 and Y2. Since there could be common
influences (omitted variables that affect both Y1 and Y2), the error terms are assumed to
be correlated. This is the reason for the curved double-headed arrow joining ε1 and ε2.
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Figure 4: Multivariate multiple regression
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There is one regression equation for each response variable. In scalar form, the model
equations are

Yi,1 = β0,1 + β1,1Xi,1 + β2,1Xi,2 + β3,1Xi,3 + εi,1

Yi,2 = β0.2 + β1,2Xi,1 + β2,2Xi,2 + β3,2Xi,3 + εi,2.

In matrix form,

yi = β0 + β>1 xi + εi

(
Yi,1
Yi,2

)
=

(
β1,0

β2,0

)
+

(
β1,1 β2,1 β3,1

β1,2 β2,2 β3,2

)  Xi,1

Xi,2

Xi,3

 +

(
εi,1
εi,2

)
Returning to the general case of Example 0.3.3, the observable data are the random

vectors Di =

(
xi
yi

)
, for i = 1, . . . , n. The notation indicates that Di is a partitioned

random vector, with xi stacked directly on top of yi. Using the notation E(Di) = µ and
cov(Di) = Σ, one may write µ and Σ as partitioned matrices (matrices of matrices).

µ =

(
E(xi)
E(yi)

)
=

(
µ1

µ2

)
and

Σ = cov

(
xi

yi

)
=

(
cov(xi) cov(xi,yi)

cov(xi,yi)
> cov(yi)

)
=

(
Σ11 Σ12

Σ>12 Σ22

)
As in the univariate case, the maximum likelihood estimators may be obtained by solving
the moment structure equations for the unknown parameters. The moment structure
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equations are obtained by calculating expected values and covariances in terms of the
model parameters. All the calculations are immediate except possibly

Σ12 = cov(xi,yi)

= cov
(
xi , β0 + β>1 xi + εi

)
= cov

(
xi , β

>
1 xi + εi

)
= cov (xi,xi)β1 + cov(xi, εi)

= cov(xi)β1 + 0

= Φβ1

Thus, the moment structure equations are

µ1 = µx (15)

µ2 = β0 + β>1 µx
Σ11 = Φ

Σ12 = Φβ1

Σ22 = β>1 Φβ1 + Ψ.

Solving for the parameter matrices is routine.

β0 = µ2 −Σ−1
11 Σ12µ1

µx = µ1

Φ = Σ11 (16)

β1 = Σ−1
11 Σ12

Ψ = Σ22 −Σ>12Σ
−1
11 Σ12

As in the univariate case, the Method of Moments estimates are obtained by putting hats
on all the parameters in Expression (16). If the distributions of xi and εi are multivariate
normal, the Invariance Principle implies that these Method of Moments estimates are also
the maximum likelihood estimates.

Least Squares Recall that in the proof of consistency for ordinary least squares with
random explanatory variables, we centered the explanatory variables and obtained For-

mula (4) on Page 14: β̂n = Σ̂
−1

x Σ̂xy. Compare this to the estimate of the slopes ob-

tained from the solution (16) above: β̂1 = Σ̂
−1

11 Σ̂12. The formulas are almost the same.

Σ̂11 = Σ̂x, the sample variance-covariance matrix of the explanatory variables. Σ̂12 and
Σ̂xy are both matrices of sample covariances between explanatory and response variables,

except that Σ̂12 is p × q while Σ̂xy is p × 1. Σ̂12 has one column for each response vari-
able. So, in addition to being a method of moments estimate and a maximum likelihood
estimate under normality β̂1 is a p× q matrix of least-squares estimates,
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0.4 Omitted Variables

Some very serious problems can arise when standard regression methods are applied to
non-experimental data. Note that regression methods are applied to non-experimental
data all the time, and we teach students how to do it in almost every statistics class where
regression is mentioned. Without an understanding of the technical issues involved, the
typical applications can be misleading.

The trouble is not the explanatory variables are random. As we saw in Section 0.2,
that’s fine. But when the random explanatory variables have non-zero correlations with
other explanatory variables that are missing from the regression equation and are related
to the response variable, things can get ugly. In this section, we will see how omitting
important explanatory variables from a regression equation can cause the error term to be
correlated with the explanatory variables that remain, and how that can produce incorrect
results.

To appreciate the issue, it is necessary to understand what the error term in a regres-
sion equation really represents. When we write something like

Yi = β0 + β1Xi,1 + εi, (17)

we are saying that Xi,1 contributes to Yi, but there are also other, unspecified influences.
Those other influences are all rolled together into εi.

The words “contributes” and “influences” are used deliberately. They should be setting
off alarm bells, because they imply a causal connection between Xi and Yi. Regression
models with random explanatory variables are applied mostly to observational data, in
which explanatory variables are merely recorded rather than being manipulated by the
investigator. The correlation-causation issue applies. That is, if X and Y are related,
there is in general no way to tell whether X is influencing Y , or Y is influencing X, or if
other variables are influencing both X and Y .

It could be argued that a conditional regression model (the usual model in which
the explanatory variable values are fixed constants) is just a convenient way to represent
dependence between X and Y by specifying a generic, more or less reasonable conditional
distribution for Y given X = x. In this case, the correlation-causation issue can be
set aside, and taken up when it is time to interpret the results. But if the explanatory
variables are explicitly random, it is harder to avoid the obvious. In the simple regression
model (17), the random variable Yi is a function of the random variables Xi and εi. It
is being directly produced by them. If this is taken seriously as a scientific model as
well as a statistical model9, it is inescapably causal; it is a model of what affects what.
That’s why the straight arrows in path diagrams are directional. The issue of whether X
is influencing Y , or Y is influencing X or both is a modelling issue that will mostly be
decided based on subject-matter theory.

It is natural to ask whether the data can be used to decide which way the arrows should
be pointing. The answer is usually no, but it can be yes with certain other restrictions

9In structural equation modelling, the models are both statistical models and primitive scientific
models of the data. Once the general linear structural model is introduced, you will see that regression
is a special case.
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on the model. We will return to this issue later in the book. In the meantime, regression
models with random explanatory variables, like the general structural equation models
that are their extensions, will be recognized as causal models.

Again, Equation (17) says that Xi is influencing Yi. All other influences are represented
by εi. It is common practice to assume that Xi,1 and εi are independent, or at least
uncorrelated. But that does not mean the assumption can be justified in practice. Prepare
yourself for a dose of reality.

Example 0.4.1 Omitted Explanatory Variables

Suppose that the variables X2 and X3 have an impact on Y and are correlated with X1,
but they are not part of the data set. The values of the response variable are generated
as follows:

Yi = β0 + β1Xi,1 + β2Xi,2 + β3Xi,3 + εi, (18)

independently for i = 1, . . . , n, where εi ∼ N(0, σ2). The explanatory variables are
random, with expected value and variance-covariance matrix

E

 Xi,1

Xi,2

Xi,3

 =

 µ1

µ2

µ3

 and cov

 Xi,1

Xi,2

Xi,3

 =

 φ11 φ12 φ13

φ22 φ23

φ33

 ,

where εi is independent of Xi,1, Xi,2 and Xi,3. Values of the variables Xi,2 and Xi,3 are
latent, and are not included in the data set.

Figure 5 shows a path diagram of this model. Because the explanatory variables Xi,2

and Xi,3 are not observable, they are latent variables, and so they are encolsed by ovals
in the path diagram. Their covariances with Xi,1 and each other are represented by
two-headed curved arrows.

Figure 5: Omitted explanatory variables
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Since X2 and X3 are not available, we use what we have, and consider a model with
X1 only. In this case X2 and X3 are absorbed by the intercept and error term, as follows.

Yi = β0 + β1Xi,1 + β2Xi,2 + β3Xi,3 + εi

= (β0 + β2µ2 + β3µ3) + β1Xi,1 + (β2Xi,2 + β3Xi,3 − β2µ2 − β3µ3 + εi)

= β′0 + β1Xi,1 + ε′i.

The primes just denote a new β0 and a new ε; the addition and subtraction of β2µ2 +
β3µ3 serve to make E(ε′i) = 0. And of course there could be any number of omitted
variables. They would all get swallowed by the intercept and error term, the garbage bins
of regression analysis.

Notice that although the original error term εi is independent of Xi,1, the new error
term ε′i is not.

Cov(Xi,1, ε
′
i) = Cov(Xi,1, β2Xi,2 + β3Xi,3 − β2µ2 − β3µ3 + εi)

= β1Cov(Xi,1, Xi,2) + β3Cov(Xi,1, Xi,3) + 0

= β2φ12 + β3φ13 (19)

So, when explanatory variables are omitted from the regression equation and those ex-
planatory variables have non-zero covariance with variables that are in the equation, the
result is non-zero covariance between the error term and the explanatory variables in the
equation10.

Response variables are almost always affected by more than one explanatory variable,
and in observational data, explanatory variables usually have non-zero covariances with
one another. So, the most realistic model for a regression with just one explanatory
variable should include a covariance between the error term and the explanatory variable.
The covariance comes from the regression coefficients and covariances of some unknown
number of omitted variables; it will be represented by a single quantity because there is
no hope of estimating all those parameters individually. We don’t even know how many
there are.

We have arrived at the following model, which will be called the true model in the
discussion that follows. It may not be the ultimate truth of course, but for observational
data it is almost always closer to the truth than the usual model. Independently for
i = 1, . . . , n,

Yi = β0 + β1Xi + εi, (20)

where E(Xi) = µx, V ar(Xi) = σ2
x, E(εi) = 0, V ar(εi) = σ2

ε , and Cov(Xi, εi) = c. A
path diagram of the true model is given in Figure 6. The covariance c is indicated on
the curved arrow connecting the explanatory variable and the error term. Consider a
data set consisting of pairs (X1, Y1), . . . , (Xn, Yn) coming from the true model, and the
interest is in the regression coefficent β1. Who will try to estimate the parameters of
the true model? Almost no one. Practically everyone will use ordinary least squares, as

10The effects of the omitted variables could offset each other. In this example, it is possible that
β2φ12 + β3φ13 = 0, but that is really too much to hope.
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Figure 6: Omitted explanatory variables have been swallowed by ε
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described in countless textbooks and implemented in countless computer programs and
even statistical calculators.

The model underlying ordinary least squares is Yi = β0 +β1xi+εi, where x1, . . . , xn are
fixed constants, and conditionally on x1, . . . , xn, the error terms ε1, . . . , εn are independent
normal random variables with mean zero and variance σ2. It may not be immediately
obvious, but this model implies independence of the explanatory variable and the error
term. It is a conditional model, and the distribution of the error terms is the same for
every fixed set of values x1, . . . , xn. Using a loose but understandable notation for densities
and conditional densities,

f(εi|xi) = f(εi)

⇔ f(εi, xi)

f(xi)
= f(εi)

⇔ f(εi, xi) = f(εi)f(xi),

which is the definition of independence. So, the usual regression model makes a hidden
assumption. It assumes that any explanatory variable that is omitted from the equation
has zero covariance with the variables that are in the equation.

Surprisingly, this does not depend on the assumption of any particular distribution for
the error terms. All you need is the stipulation E(εi) = 0 in a fixed-x regression model.
It’s worth doing this in generality, so consider the multivariate multiple regression model
of Example 0.3.3 on page 24:

Yi = β0 + β>1 Xi + εi.

If the Xi values are considered fixed constants, the statement E(εi) = 0 actually means
E(εi|Xi = xi) = 0 for all p× 1 constant vectors xi in the support of Xi. Then,

E(εi) = E{E(εi|Xi)} = E{0} = 0,
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and

cov(Xi, εi) = E(Xiε
>
i )− E(Xi)E(εi)

>

= E(Xiε
>
i )− 0

= E{E(Xiε
>
i |Xi)}.

The inner expected value is a multiple integral or sum with respect to the conditional
distribution of εi given Xi, so Xi may be moved through the inner expected value sign.
To see this, it may help to write the double expectation in terms of integrals of a general
kind11. Continuing the calculation,

E{E(Xiε
>
i |Xi)} =

∫ (∫
xε>dP

ε|X(ε)

)
dP

X
(x)

=

∫
x

(∫
ε>dP

ε|X(ε)

)
dP

X
(x)

= E{XiE(ε>i |Xi)}
= E{Xi0

>}
= E{0}
= 0

Unconditional (random X) regression models typically assume zero covariance between
error terms and explanatory variables. It is now clear that conditional (fixed x) regression
models smuggle this same assumption in by making the seemingly reasonable and harmless
assertion that E(εi) = 0.

Zero covariance between error terms and explanatory variables means that any poten-
tial explanatory variable not in the model must have zero covariance with the explanatory
variables that are in the model. Of course this is almost never realistic without random
assignment to experimental conditions, so that almost every application of regression
methods to non-experimental data makes an assumption that cannot be justified. Now
we will see the consequences.

For a simple regression, both ordinary least squares and an unconditional regression
model like the true model on Page 29 with c = 0 lead to the same standard formula:

β̂1 =

∑n
i=1(Xi −X)(Yi − Y )∑n

i=1(Xi −X)2

=
1
n

∑n
i=1(Xi −X)(Yi − Y )
1
n

∑n
i=1(Xi −X)2

=
σ̂x,y
σ̂2
x

,

11These are Lebesgue integrals with respect to probability measures and conditional probability mea-
sures. They include multiple sums and ordinary Reimann integrals as special cases.
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where σ̂x,y is the sample covariance between X and Y , and σ̂2
x is the sample variance of X.

These are maximum likelihood estimates of Cov(X, Y ) and V ar(X) respectively under
the assumption of normality. If the denominators were n− 1 instead of n, they would be
unbiased.

By the strong consistency of the sample variance and covariance (see Section A.5 in
Appendix A), σ̂x,y converges almost surely to Cov(X, Y ) and σ̂2

x converges almost surely
to V ar(X) as n→∞. Under the true model,

Cov(X, Y ) = Cov(Xi, β0 + β1Xi + εi)

= β1Cov(Xi, Xi) + Cov(Xi, εi)

= β1σ
2
x + c

So by continuity,

β̂1 =
σ̂x,y
σ̂2
x

a.s.→ β1 +
c

σ2
x

. (21)

Since the estimator is converging to quantity that is off by a fixed amount, it may be
called asymptotically biased. Thus, while the usual teaching is that sample regression
coefficients are unbiased estimators, we see here that β̂1 is biased as n→∞. Regardless
of the true value β1, the estimate β̂1 could be absolutely anything, depending on the value
of c, the covariance between Xi and εi. The only time β̂1 behaves properly is when c = 0.

What’s going on here is that the calculation of β̂1 is based on a model that is mis-
specified. That is, it’s not the right model. The right model is what we’ve been calling
the true model. And to repeat, the true model is the most reasonable model for simple
regression, at least for most non-experimental data.

The lesson is this. When a regression model fails to include all the explanatory variables
that contribute to the response variable, and those omitted explanatory variables have
non-zero covariance with variables that are in the model, the regression coefficients are
inconsistent. In other words, with more and more data they do not approach the right
answer. Instead, they get closer and closer to a specific wrong answer.

If you think about it, this fits with what happens frequently in practical regrssion
analysis. When you add a new explanatory variable to a regression equation, the coeffi-
cients of the variables that are already in the equation do not remain the same. Almost
anything can happen. Positive coefficients can turn negative, negative ones can turn posi-
tive, statistical significance can appear where it was previously absent or disappear where
it was previously present. Now you know why.

Notice that if the values of one or more explanatory variables are randomly assigned,
the random assignment guarantees that these variables are independent of any and all
variables that are omitted from the regression equation. Thus, the variables in the equa-
tion have zero covariance with those that are omitted, and all the trouble disappears. So,
well-controlled experimental studies are not subject to the kind of problems described here.

Actually, the calculations in this section support a familiar point, the correlation-
causation issue, which is often stated more or less as follows. If A and B are related to
one another, one cannot necessarily infer that A affects B. It could be that B affects A,
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or that some third variable C is affecting both A and B. To this we can now add the
possibility that the third variable C affects B and is merely correlated with A.

Variables like C are often called confounding variables, or more rarely, lurking vari-
ables. The usual advice is that the only way to completely rule out their action is to
randomly assign subjects in the study to the various values of A, and then assess the
relationship of A to B. Again, now you know why.

It should be pointed out that while the correlation-causation issue presents grave
obstacles to interpreting the results of observational studies, there is no problem with
pure prediction. If you have a data set with x and y values and your interest is predicting
y from the x values for a new set of data, a regression equation will be useful, provided
that there is a reasonably strong relationship between x and y. From the standpoint
of prediction, it does not really matter whether y is related to x directly, or indirectly
through unmeasured variables that are related to x. You have x and not the unmeasured
variables, so use it. An example would be an insurance company that seeks to predict
the amount of money that you will claim next year (so they can increase your premiums
accordingly now). If it turns out that this is predictable from the type of music you
download, they will cheerfully use the information, and not care why it works.

Also, the convergence of β̂1 to the wrong answer in (21) may be misleading, but it does
not necessarily yield the wrong conclusion. In much of the social and biological sciences,
the theories are not detailed and sophisticated enough to make predictions about the
actual values of regression coefficients, just whether they should be positive, negative or
zero. So, if the variable being tested and the omitted variables are pulling in the same
direction (that is, if β1 and c in Model (20) on Page 29 are either both positive or both
negative), the study will come to the “right” conclusion. The trouble is that you can’t
tell, because you don’t even know what the omitted variables are. All you can do is hope,
and that’s not a recipe for good science.

Trying to fit the true model We have seen that serious trouble arises from adopting
a mis-specified model with c = Cov(Xi, εi) = 0, when in fact because of omitted variables,
c 6= 0. It is natural, therefore, to attempt estimation and inference for the true model
Yi = β0 + β1Xi + εi (see Page 29) in the case where c = Cov(Xi, εi) need not equal
zero. For simplicity, assume that Xi and εi have a bivariate normal distribution, so that
the observable data pairs (Xi, Yi) for i = 1, . . . , n are a random sample from a bivariate
normal distribution with mean vector µ and variance-covariance matrix Σ.

It is straightforward to calculate µ and Σ from the equation and assumptions of the
true model (20). The result is

µ =

(
µ1

µ2

)
= E

(
Xi

Yi

)
=

(
µx

β0 + β1µx

)
(22)

and

Σ =

(
σ11 σ12

σ12 σ22

)
= cov

(
Xi

Yi

)
=

(
σ2
x β1σ

2
x + c

β1σ
2
x + c β2

1σ
2
x + 2β1c+ σ2

ε

)
. (23)

This shows the way in which the parameter vector θ = (µx, σ
2
x, β0, β1, σ

2
ε , c) determines µ

and Σ, and hence the probability distribution of the data.
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Our primary interest is in β1. Because the data pairs (Xi, Yi) come from a bivariate
normal distribution, all you can ever learn from the data are the approximate values of µ
and Σ. With larger and larger samples, all you get is better and better approximations
of µ and Σ. That’s all there is to know. But even if you knew µ and Σ exactly, could
you know β1? Formulas (22) and (23) yield a system of five equations in six unknown
parameters.

µ1 = µx

µ2 = β0 + β1µx

σ11 = σ2
x (24)

σ12 = β1σ
2
x + c

σ22 = β2
1σ

2
x + 2β1c+ σ2

ε

The problem of recovering the parameter values from µ and Σ is exactly the problem
of solving these five equations in six unknowns. µx = µ1 and σ2

x = σ11 are easy. The
remaining 3 equations in 4 unknowns have infinitely many solutions. That is, infinitely
many sets of parameter values yield exactly the same distribution of the sample data.
Distinguishing among them based on sample data is impossible in principle.

To see this in detail, substitute µ1 for µx and σ11 for σ2
x in (24), obtaining

µ2 = β0 + β1µ1

σ12 = β1σ11 + c (25)

σ22 = β2
1σ11 + 2β1c+ σ2

ε

Letting the moments µj and σij remain fixed, we will now write the other parameters as
functions of c, the covariance between Xi and εi. Then, moving c will move the other
parameters (except for µx = µ1 and σ2

x = σ11), tracing out a one-dimensional subset of
the 6-dimensional parameter space where

• All the equations in (24) are satisfied,

• The values of µ and Σ remain constant, and

• The distribution of (Xi, Yi)
> is N2(µ,Σ).

First solve for β1 in the second equation, obtaining β1 = σ12−c
σ11

. Substituting this expres-
sion for β1 and simplifying, we are able to write all the other model parameters in terms
of c, as follows.

µx = µ1

σ2
x = σ11

β0 = µ2 − µ1

(
σ12 − c
σ11

)
(26)

β1 =
σ12 − c
σ11

σ2
ε = σ22 +

c2 − σ2
12

σ11
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The parameters µx and σ2
x are constant functions of c, while β0 and β1 are linear functions,

and σ2
ε is a quadratic function. The equations (26) define a one-dimensional surface in

the six-dimensional parameter space, a kind of curved thread in R6. Moving c from −∞
to ∞ traces out the points on the thread. Importantly, as c ranges from −∞ to +∞ the
regression coefficient β1 ranges from +∞ to −∞. This means that β1 might be positive,
it might be negative, or it might be zero. But you really can’t tell, because all real values
of β1 on the surface yield the same population mean and population variance-covariance
matrix, and hence the same distribution of the sample data. There is no way to distinguish
between the possible values of β1 based on sample data.

One technical detail needs to be resolved. Can c really range from −∞ to ∞? If
not, the possible values of β1 would be restricted as well. Two conditions need to be
checked. First, the covariance matrix of (Xi, εi)

>, like all covariance matrices, has a non-
negative determinant. For the bivariate normal density to exist (not a bad assumption),
the determinant must be non-zero, and hence it must be strictly positive. Second, σ2

ε

must be greater than zero. For points on the thread, the first condition is

0 <

∣∣∣∣ σ2
x c
c σ2

ε

∣∣∣∣
= σ2

xσ
2
ε − c2

= σ11

(
σ22 +

c2 − σ2
12

σ11

)
− c2

= σ11σ22 + c2 − σ2
12 − c2

= σ11σ22 − σ2
12

= |Σ|.

This imposes no restriction on c at all. We also need to check whether σ2
ε > 0 places any

restriction on c — for points on the thread, of course.

σ2
ε > 0

⇔ σ22 +
c2 − σ2

12

σ11

> 0

⇔ σ11σ22 + c2 − σ2
12 > 0

⇔ |Σ|+ c2 > 0

which is true since |Σ| > 0. Again, the inequality places no restriction on c.
Let me beat this point into the ground a bit, because it is important. Since the

data are bivariate normal, their probability distribution corresponds uniquely to the pair
(µ,Σ). All you can ever learn from any set of sample data is the probability distribution
from which they come. So all you can ever get from bivariate normal data, no matter
what the sample size, is a closer and closer approximation of µ and Σ. If you cannot find
out whether β1 is positive, negative or zero from µ and Σ, you will never be able to make
reasonable estimates or inferences about β1 from any set of sample data.

What would happen if you tried to estimate the parameters by maximum likelihood?
For every µ ∈ R2 and every 2×2 symmetric positive definite Σ, there is a surface (thread)
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in R6 defined by (26). This includes (µ̂, Σ̂). On that particular thread, the likelihood is
highest. Picture a surface with a curvy ridge at the top. The surface has infinitely many
maxima, all at the same height, forming a connected set. If you take partial derivatives
of the log likelihood and set all six of them equal to zero, there will be infinitely many
solutions. If you do numerical maximum likelihood, good software will find a point on the
ridge, stop, detect that the surface is not fully concave down there, and complain. Less
sophisticated software will just find a point on the ridge, and stop. The stopping place,
that is, the maximum likelihood estimate, will depend entirely on where the numerical
search starts.

To summarize, if explanatory variables are omitted from a regression equation and
those variables have non-zero covariance c with explanatory variables that are not omitted,
the result is non-zero covariance between explanatory variables and the error term. And,
if there is a non-zero covariance between the error term an an explanatory variable in a
regression equation, the false assumption that c = 0 can easily lead to false results. But
allowing c to be non-zero means that infinitely many parameter estimates will be equally
plausible, given any set of sample data. In particular, no set of data will be able to
provide a basis for deciding whether regression coefficients are positive, negative or zero.
The problem is fatal if all you have is Xi and Yi.

The trouble here is lack of parameter identifiability. If a parameter is a function of
the distribution of the observable data, it is said to be identifiable. The idea is that the
parameter is potentially knowable if you knew the distribution of the observable data. If
the parameter is not knowable based on the data, they naturally there will be trouble
with estimation and inference. Parameter identifiability is a central theme of this book,
and will be taken up again in Section 0.9 on Page 58.

0.5 Instrumental Variables

The method of instrumental variables was introduced by the economist Phillip Wright in
the appendix a 1928 book The Tariff on Animal and Vegetable Oils [71]. Phillip Wright
was the father of Sewell Wright, the biologist whose work on path analysis led to modern
structural equation modeling as well as much of Econometrics. The story is told in a 2003
paper by Stock and Trebbi [62].

An instrumental variable for an explanatory is a variable that is correlated with that
explanatory variable, but is not correlated with any error terms or other explanatory
variables, and has no direct connection to the response variable. In Econometrics, the in-
strumental variable usually influences the explanatory variable. An instrumental variable
is usually not the main focus of attention; it’s just a tool.

Example 0.5.1 Credit Card Debt

Suppose we want to know the contribution of income to credit card debt. Because of
omitted variables, the model

Yi = α + βXi + εi,



0.5. INSTRUMENTAL VARIABLES 37

is guaranteed to fail. Many things influence both income and credit card debt, such as
personal style of money management, education, number of children, expenses caused by
illness . . . . The list goes on. As a result, Xi and εi have non-zero covariance. The least
squares estimate of β is inconsistent, and so is every other possible estimate12. We can’t
possibly measure all the variables that affect both income and debt; we don’t even know
what they all are. Instead, let’s add an instrumental variable.

Definition 0.3 An instrumental variable for an explanatory variable is another random
variable that has non-zero covariance with the explanatory variable, and no direct con-
nection with any other variable in the model.

Focus the study on real estate agents in many cities, and include median price of resale
home for each agent along with income and credit card debt. Median price of resale home
qualifies an an instrumental variable according to the definition. Since real estate agents
typically receive a percentage of the selling price, it is definitely related to income. Also,
housing prices are determined by external economic forces that have little to do with all
the personal, individual-level variables that affect the income and debt of individual real
estate agents. So, we have the following:

• Wi is median price of resale home in agent i’s district.

• Xi is annual income of real estate agent i.

• Yi is agent i’s credit card debt.

The model equations are

Xi = α1 + β1Wi + εi1

Yi = α2 + β2Xi + εi2,

and Figure 7 shows the path diagram. The main interest is in β2, the link between income
and credit card debt. The covariance between ε1 and ε2 represents all the omitted variables
that affect both income and credit card debt.

Denoting the expected value of the data vector Di = (Wi, Xi, Yi)
> by µ = [µj] and its

covariance matrix by Σ = [σij], we have

Σ =

W X Y

W σ2
w β1σ

2
w β1β2σ

2
w

X · β2
1σ

2
w + σ2

1 β2(β2
1σ

2
w + σ2

1) + c

Y · · β2
1β

2
2σ

2
w + β2

2σ
2
1 + 2β2c+ σ2

2

(27)

The lower triangle of the covariance matrix is omitted to make it less cluttered. The
notation in (27) is self-explanatory except possibly for V ar(εi1) = σ2

1 and V ar(εi2) = σ2
2.

12This is strictly true if the data are normal. For non-normal data consistent estimation might be
possible, but one would have to know the specific non-normal distribution(s).
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Figure 7: W is median price of resale home, X is income, Y is credit card debt
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It is immediately apparent that the critical parameter β2 can be recovered from Σ by
β2 = σ13

σ12
, provided β1 6= 0. A nice Method of Moments estimator in terms of the sample

covariances is β̂2 = σ̂13
σ̂12

.

The requirement that β1 6= 0 can be verified, by testing H0 : σ12 = 0 with an elemen-
tary test of the correlation between housing prices and income. We expect no problem,
because W is a good instrumental variable. Median resale price certainly should be re-
lated to the income of real estate agents, and furthermore the relationship is practically
guaranteed to be positive. This is a feature of good a instrumental variable. Its rela-
tionship to the explanatory variable should be clear, and so obvious that it is hardly
worth investigating. The usefulness of the instrumental variable is in the light it casts on
relationships that are not so obvious.

In this example, the instrumental variable works beautifully. All the model parame-
ters that appear in Σ can be recovered by simple substitution, µz = µ1, and then α1 and
α2 can be recovered from µ2 = E(Xi) and µ3 = E(Yi) respectively. The function from
(α1, α2, β1, β2, µw, σ

2
w, σ

2
1, σ

2
2, c) to (µ,Σ) is one-to one. Method of Moments estimates

are readily available, and they are consistent by the continuity of the functions involved.
Under the additional assumption of multivariate normality, the Method of Moments esti-
mates are also maximum likelihood by the invariance principle.

To test the central null hypothesis H0 : β2 = 0, fancy software is not required. Since
we have concluded with high confidence that β1 > 0, the covariance σ13 equals zero if
and only if β2 = 0, and the sign of σ13 is the same as the sign of β2. So it is necessary
only to test the correlation between housing price and real estate agents’ credit card
debt. Under the normal assumption, the usual test is exact, and a large sample is not
required. If the normal assumption is worrisome, the non-parametric test associated with
the Spearman rank correlation coefficient is a permutation test carried out on ranks, and
an exact small-sample p-value is available even though some software produces a large-
sample approximation by default.

The instrumental variable method saved the day in this example, but it does not solve
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the problem of omitted variables in every case, or even in most cases. This is because
good instrumental variables are not easy to find. They will not just happen to be in the
data set, except by a miracle. They really have to come from another universe, and still
have a strong, clear connection to the explanatory variable. Data collection has to be
planned, with a model that admits the existence of omitted variables explicitly in mind.

Measurement Error All models are inexact representations of reality, but I must
admit that the model in Figure 7 is seriously wrong. Our interest is in how true income
affects true credit card debt. But these variables are not observed. What we have in
the data file are reported income and reported credit card debt. For various reasons that
the reader can easily supply, what people report about financial details is not the same
thing as the truth. When we record median price of a resale home, that’s unlikely to
be perfectly accurate either. As we will see later in this chapter, measurement error in
the explanatory variables presents serious problems for regression analysis in general. We
will also see that instrumental variables can help with measurement error as well as with
omitted variables, but first it is helpful to introduce the topic of measurement error in an
organized way.

0.6 The Idea of Measurement Error

In a survey, suppose that a respondent’s annual income is “measured” by simply asking
how much he or she earned last year. Will this measurement be completely accurate?
Of course not. Some people will lie, some will forget and give a reasonable guess, and
still others will suffer from legitimate confusion about what constitutes income. Even
physical variables like height, weight and blood pressure are subject to some inexactness
of measurement, no matter how skilled the personnel doing the measuring. In fact, very
few of the variables in the typical data set are measured completely without error.

One might think that for experimentally manipulated variables like the amount of drug
administered in a biological experiment, laboratory procedures would guarantee that for
all practical purposes, the amount of drug a subject receives is exactly what you think
it is. But Alison Fleming (University of Toronto Psychology department) pointed out to
me that when hormones are injected into a laboratory rat, the amount injected is exactly
right, but due to tiny variations in needle placement, the amount actually reaching the
animal’s bloodstream can vary quite a bit. The same thing applies to clinical trials of drugs
with humans. We will see later, though, that the statistical consequences of measurement
error are not nearly as severe with experimentally manipulated variables, assuming the
study is well-controlled in other respects.

Random variables that cannot be directly observed are called latent variables. The ones
we can observe are sometimes called “manifest,” but here they will be called “observed”
or “observable,” which is also a common usage. Upon reflection, it is clear that most of
the time, we are interested in relationships among latent variables, but at best our data
consist only of their imperfect, observable counterparts. One is reminded of the allegory
of the cave in Plato’s Republic [46], where human beings are compared to prisoners in a
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cave, with their heads chained so that they can only look at a wall. Behind them is a fire,
which casts flickering shadows on the wall. They cannot observe reality directly; all they
can see are the shadows.

A simple additive model for measurement error

Measurement error can take many forms. For categorical variables, there is classification
error. Suppose a data file indicates whether or not each subject in a study has ever had
a heart attack. Clearly, the latent Yes-No variable (whether the person has truly had a
heart attack) does not correspond perfectly to what is in the data file, no matter how
careful the assessment is. Mis-classification can and does occur, in both directions.

Here, we will put classification error aside for now because it is technically difficult,
and focus on a very simple form of measurement error that applies to continuous variables.
There is a latent random variable X that cannot be observed, and a little random shock
e that pushes X up or down, producing an observable random variable W . That is,

W = X + e (28)

Let’s say E(X) = µx, E(e) = 0, V ar(X) = σ2
x, V ar(e) = σ2

e , and Cov(X, e) = 0. Figure 8
is a path diagram of this model.

Figure 8: Additive Measurement Error
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Because X and e are uncorrelated,

V ar(W ) = V ar(X) + V ar(e) = σ2
x + σ2

e .

Variance is an index of unit-to unit variation in a measurement. The simple calculation
above reveals that variation in the observable variable has two sources: variation in the
actual quantity of interest, and variation in the magnitude of the random shocks that
create error in measurement. To judge the quality of a measurement W , it is important
to assess how much of its variance comes from variation in the true quantity of interest,
and how much comes from random noise.
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In psychometric theory13, the reliability14 of a measurement is defined as the squared
correlation of the true score with the observed score. Here the “true score” is X and the
“observed score” is W . The reliability of the measurement W is

ρ2 =

(
Cov(X,W )

SD(X)SD(W )

)2

=

(
σ2
x√

σ2
x

√
σ2
x + σ2

e

)2

=
σ4
x

σ2
x(σ

2
x + σ2

e)

=
σ2
x

σ2
x + σ2

e

. (29)

That is, the reliability of a measurement is the proportion of the measurement’s variance
that comes from the true quantity being measured, rather than from measurement error15.

A reliability of one means there is no measurement error at all, while a reliability of zero
means the measurement is pure noise. In the social sciences, reliabilities above 0.9 could be
called excellent, from 0.8 to 0.9 good, and from 0.7 to 0.8 acceptable. Frequently, responses
to single questions have reliabilities that are much less than this. To see why reliability
depends on the number of questions that measure the latent variable, see Exercise 6 at
the end of this section.

Since reliability represents quality of measurement, estimating it is an important goal.
Using the definition directly is seldom possible. Reliability is the squared correlation
between a latent variable and its observable counterpart, but by definition, values of the
latent variable cannot be observed. On rare occasions and perhaps with great expense,
it may be possible to obtain perfect or near-perfect measurements on a subset of the
sample; the term gold standard is sometimes applied to such measurements. In that
case, the reliability of the usual measurement can be estimated by a squared sample
correlation between the usual measurement and the gold standard measurement. But even
measurements that are called gold standard are seldom truly free of measurement error.
Consequently, reliabilities that are estimated by correlating imperfect gold standards and
ordinary measurements are biased downward: See Exercise 4 at the end of this section.
It is clear that another approach is needed.

13Psychometric theory is the statistical theory of psychological measurement. The bible of psychometric
theory is Lord and Novick’s (1968) classic Statistical theories of mental test scores [44]. It is not too
surprising that measurement error would be acknowledged and studied by psychologists. A large sector
of psychological research employs “measures” of hypothetical constructs like neuroticism or intelligence
(mostly paper-and-pencil tests), but no sensible person would claim that true value of such a trait is
exactly the score on the test. It’s true there is a famous quote “Intelligence is whatever an intelligence
test measures.” I have tried unsuccessfully to track down the source of this quote, and I now suspect that
it is just an illustration of a philosophic viewpoint called Logical Positivism (which is how I first heard
it), and not a serious statement about intelligence measurement.

14In survival analysis and statistical quality control, reliability means something entirely different.
15It’s like the proportion of variance in the response variable explained by a regression, except that

here the explanatory variable is the latent true score. Compare Expression (11) on Page 19.
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Figure 9: Two independent measurements of a latent variable
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Test-retest reliability Suppose that it is possible to make the measurement of W
twice, in such a way that the errors of measurement are independent on the two occasions.
We have

W1 = X + e1

W2 = X + e2,

where E(X) = µx, V ar(X) = σ2
x, E(e1) = E(e2) = 0, V ar(e1) = V ar(e2) = σ2

e , and X, e1

and e2 are all independent. Because V ar(e1) = V ar(e2), W1 and W2 are called equivalent
measurements. That is, they are contaminated by error to the same degree. Figure 9 is a
path diagram of this model.
It turns out that the correlation between W1 and W2 is exactly equal to the reliability, and
this opens the door to reasonable methods of estimation. The calculation (like many in
this book) is greatly simplified by using the rule for covariances of linear combinations (1)
on Page 9.

Corr(W1,W2) =
Cov(W1,W2)

SD(W1)SD(W2)

=
Cov(X + e1, X + e2)√
σ2
x + σ2

e

√
σ2
x + σ2

e

=
Cov(X,X) + Cov(X, e2) + Cov(e1, X) + Cov(E1, e2))

σ2
x + σ2

e

=
V ar(X) + 0 + 0 + 0

σ2
x + σ2

e

=
σ2
x

σ2
x + σ2

e

, (30)

which is the reliability.
The calculation above is the basis of test-retest reliability16, in which the reliability of

a measurement such as an educational or psychological test is estimated by the sample

16Closely related to test-retest reliability is alternate forms reliability, in which you correlate two
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correlation between two independent administrations of the test. That is, the test is given
twice to the same sample of individuals, ideally with a short enough time between tests
so that the trait does not really change, but long enough apart so they forget how they
answered the first time.

Correlated measurement error Suppose participants remembered their wrong an-
swers or lucky guesses from the first time they took a test, and mostly gave the same
answer the second time. The result would be a positive correlation between the measure-
ment errors e1 and e2. Omitted variables (see Section 0.4) like level of test anxiety for
educational tests or desire to make a favourable impression for attitude questionnaires can
also produce a positive covariance between errors of measurement. Whatever the source,
positive covariance between e1 and e2 is an additional source of positive covariance be-
tween W1 and W2 that does not come from the latent variable X being measured. The
result is an inflated estimate of reliability and an unduly rosy picture of the quality of
measurement. Figure 10 shows this situation.

Figure 10: Correlated Measurement Error
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We will return more than once to the issue of correlated errors of measurement. For
now, just notice how careful planning of the data collection (in this case, the time lag
between the two administrations of the test) can eliminate or at least reduce the correla-
tion between errors of measurement. In general, the best way to take care of correlated
measurement error is with good research design17.

Sample Test-retest Reliability Again, suppose it is possible to measure a variable of
interest twice, in such a way that the errors of measurement are uncorrelated and have

equivalent versions of the test. In split-half reliability, you split the items of the test into two equivalent
subsets and correlate them. There are also internal consistency estimates of reliability based on corre-
lations among items. Assuming independent errors of measurement for split half reliability and internal
consistency reliability is largely a fantasy, because both measurements are affected in the same way by
short-term situational influences like mood, amount of sleep the night before, noise level, behaviour of
the person administering the test, and so on.

17Indeed, one could argue that most principles of good research design are methods for minimizing the
variance and covariance of measurement errors.
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equal variance. Then the reliability may be estimated by doing this for a random sample
of individuals. Let X1, . . . , Xn be a random sample of latent variables (true scores), with
E(Xi) = µ and V ar(Xi) = σ2

x. Independently for i = 1, . . . , n, let

Wi,1 = Xi + ei,1

Wi,2 = Xi + ei,2,

where E(ei,1) = E(ei,2) = 0, V ar(ei,1) = V ar(ei,2) = σ2
e , and Xi, ei,1 and ei,2 are all inde-

pendent for i = 1, . . . , n. Then the sample correlation between the pairs of measurements
is

Rn =

∑n
i=1(Wi,1 −W 1)(Wi,2 −W 2)√∑n

i=1(Wi,1 −W 1)2

√∑n
i=1(Wi,2 −W 2)2

=
1
n

∑n
i=1(Wi,1 −W 1)(Wi,2 −W 2)√

1
n

∑n
i=1(Wi,1 −W 1)2

√
1
n

∑n
i=1(Wi,2 −W 2)2

a.s.→ Cov(Wi,1,Wi,2)√
V ar(Wi,1)

√
V ar(Wi,2)

=
σ2
x

σ2
x + σ2

e

= ρ2,

where the convergence follows from continuous mapping and the fact that sample vari-
ances and covariances are strongly consistent estimators of the corresponding population
quantities; see Section A.5.2 in Appendix A. The conclusion is that Rn is a strongly con-
sistent estimator of the reliability. That is, for a large enough sample size, Rn will get
arbitrarily close to the true reliability, and this happens with probability one.

0.7 Ignoring measurement error

Standard regression models make no provision at all for measurement error, so when we
apply such models to real data, we are effectively ignoring any measurement error that
may be present; we are pretending it’s not there. This section will show that the result
can be a real disaster, featuring incorrect estimates of regression parameters and Type I
error probabilities approaching one as the sample size increases. Much of this material,
including the history of the topic (warnings go back to at least 1936) can be found in a
2009 paper by Brunner and Austin [14].

Measurement error in the response variable

While ignoring measurement error in the explanatory variables can have very bad con-
sequences, it turns out that under some conditions, measurement error in the response
variable is a less serious problem.
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Example 0.7.1 Measurement Error in Y Only

Independently for i = 1, . . . , n, let

Yi = β0 + β1Xi + εi

Vi = ν + Yi + ei,

where V ar(Xi) = σ2
x, V ar(ei) = σ2

e , V ar(εi) = σ2
ε , and Xi, ei, εi are all independent.

Figure 11 is a path diagram of this model.

Figure 11: Measurement error in the response variable
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In Example 0.7.1, the explanatory variable Xi is observable, but the response variable
Yi is latent. Instead of Yi, we can see Vi, which is Yi plus a piece of random noise, and also
plus a constant ν that represents the difference between the expected value of the latent
random variable and the expected value of its observable counterpart. This constant term
could be called measurement bias. For example, if Y is true amount of exercise in minutes
and V is reported exercise, the measurement bias ν is population mean exaggeration, in
minutes.

Since Yi cannot be observed, Vi is used in its place, and the data analyst fits the naive
model

Vi = β0 + β1Xi + εi.

Studying Mis-specified Models The “naive model” above is an example of a model
that is mis-specified. That is, the model says that the data are being generated in a
particular way, but this is not how the data are actually being produced. Generally
speaking, correct models will usually yield better results than incorrect models, but it’s
not that simple. In reality, most statistical models are imperfect. The real question is
how much any given imperfection really matters. As Box and Draper (1987, p. 424) put
it, “Essentially all models are wrong, but some are useful.” [11]

So, it is not enough to complain that a statistical model is incorrect, or unrealistic.
To make the point convincingly, one must show that being wrong in a particular way
causes the model to yield misleading results. To do this, it is necessary to have a specific
true model in mind; typically the so-called true model is one that is obviously more
believable than the model being challenged. Then, one can examine estimators or test



46 CHAPTER 0. REGRESSION WITH MEASUREMENT ERROR

statistics based on the mis-specified model, and see how they behave when the true model
holds. We have already done this in Section 0.4 in connection with omitted variables; see
Example 0.4.1 starting on Page 28.

Under the true model of Example 0.7.1 (measurement error in the response variable
only), we have Cov(Xi, Vi) = β1σ

2
x and V ar(Xi) = σ2

x. Then,

β̂1 =

∑n
i=1(Xi −X)(Vi − V )∑n

i=1(Xi −X)2

=
σ̂x,v
σ̂2
x

a.s.→ Cov(Xi, Vi)

V ar(Xi)
(31)

=
β1σ

2
x

σ2
x

= β1.

Even when the model is mis-specified by assuming that the response variable is measured
without error, the ordinary least squares estimate of the slope is consistent. There is a
general lesson here about mis-specified models. Mis-specification (using the wrong model)
is not always a problem; sometimes everything works out fine.

Let’s see why the naive model works so well here. The response variable under the
true model may be re-written

Vi = ν + Yi + ei

= ν + (β0 + β1Xi + εi) + ei

= (ν + β0) + β1Xi + (εi + ei)

= β′0 + β1Xi + ε′i (32)

What has happened here is a re-parameterization (not a one-to-one re-parameterization),
in which the pair (ν, β0) is absorbed into β′0, and V ar(εi + ei) = σ2

ε + σ2
e is absorbed into

a single unknown variance that will probably be called σ2. It is true that ν and β0 will
never be knowable separately, and also σ2

ε and σ2
e will never be knowable separately. But

that really doesn’t matter, because the true interest is in β1.
In this book and in standard statistical practice, there are many models where the

response variable appears to be measured without error. But error-free measurement
is a rarity at best, so these models should be viewed as re-parameterized versions of
models that do acknowledge the reality of measurement error in the response variable. A
critical feature of these re-parameterized models is that the measurement error is assumed
independent of everything else in the model. When this fails, there is usually trouble.

Measurement error in the explanatory variables

Example 0.7.2 Measurement error in a single explanatory variable



0.7. IGNORING MEASUREMENT ERROR 47

Independently for i = 1, . . . , n, let

Yi = β0 + β1Xi + εi

Wi = Xi + ei,

where V ar(Xi) = σ2
x, V ar(ei) = σ2

e , V ar(εi) = σ2
ε , and Xi, ei, εi are all independent.

Figure 12 is a path diagram of the model.

Figure 12: Measurement error in the explanatory variable
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Unfortunately, the explanatory variable Xi cannot be observed; it is a latent variable.
So instead Wi is used in its place, and the data analyst fits the naive model

Yi = β0 + β1Wi + εi.

Under the naive model of Example 0.7.2, the ordinary least squares estimate of β1 is

β̂1 =

∑n
i=1(Wi −W )(Yi − Y )∑n

i=1(Wi −W )2
=
σ̂w,y
σ̂2
w

.

Regardless of what model is correct, σ̂w,y
a.s.→ Cov(W,Y ) and σ̂2

w
a.s.→ V ar(W )18, so that by

the continuous mapping property of ordinary limits19, β̂1
a.s.→ Cov(W,Y )

V ar(W )
.

Let us assume that the true model holds. In that case,

Cov(W,Y ) = β1σ
2
x and V ar(W ) = σ2

x + σ2
e .

18This is true because sample variances and covariances are strongly consistent estimators of the cor-
responding population quantities; see Section A.5.2 in Appendix A.

19Almost sure convergence acts like an ordinary limit, applying to all points in the underlying sample
space, except possibly a set of probability zero. If you wanted to do this problem strictly in terms of
convergence in probability, you could use the Weak Law of Large Numbers and then use Slutsky Lemma 7a
of Appendix A.5.
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Consequently,

β̂1 =

∑n
i=1(Wi −W )(Yi − Y )∑n

i=1(Wi −W )2

=
σ̂w,y
σ̂2
w

a.s.→ Cov(W,Y )

V ar(W )

= β1

(
σ2
x

σ2
x + σ2

e

)
. (33)

So when the fuzzy explanatory variable Wi is used instead of the real thing, β̂1 con-
verges not to the true regression coefficient, but to the true regression coefficient multiplied
by the reliability of Wi. That is, it’s biased, even as the sample size approaches infin-
ity. It is biased toward zero, because reliability is between zero and one. The worse the
measurement of X, the more the asymptotic bias.

What happens to β̂1 in (33) is sometimes called attenuation, or weakening, and in
this case that’s what happens. The measurement error weakens the apparent relationship
between X1 and Y . If the reliability of W can be estimated from other data (and psychol-
ogists are always trying to estimate reliability), then the sample regression coefficient can
be “corrected for attentuation.” Sample correlation coefficients are sometimes corrected
for attenuation too.

Now typically, social and biological sientists are not really interested in point estimates
of regression coefficients. They only need to know whether the coefficients are positive,
negative or zero. So the idea of attenuation sometimes leads to a false sense of security.
It’s natural to over-generalize from the case of one explanatory variables, and think that
measurement error just weakens what’s really there. Therefore, the reasoning goes, if you
can reject the null hypothesis and conclude that a relationship is present even with mea-
surement error, you would have reached the same conclusion if the explanatory variables
had not been measured with error.

Unfortunately, it’s not so simple. With two or more explanatory variables the effects
of measurement error are far more serious and potentially misleading.

Measurement error in more than one explanatory variable

In this example, there are two explanatory variables, both measured with error.

Example 0.7.3 Measurement Error in Two Explanatory Variables

Independently for i = 1, . . . , n,

Yi = β0 + β1Xi,1 + β2Xi,2 + εi

Wi,1 = Xi,1 + ei,1

Wi,2 = Xi,2 + ei,2,
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Figure 13: Two explanatory variables measured with error
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where E(Xi,1) = µ1, E(Xi,2) = µ2, E(εi) = E(ei,1) = E(ei,2) = 0, V ar(εi) = ψ,
V ar(ei,1) = ω1, V ar(ei,2) = ω2, the errors εi, ei,1 and ei,2 are all independent, Xi,1 is
independent of εi, ei,1 and ei,2, Xi,2 is independent of εi, ei,1 and ei,2, and

cov

(
Xi,1

Xi,1

)
=

(
φ11 φ12

φ12 φ22

)
.

Figure 13 shows the path diagram.
Again, because the actual explanatory variables Xi,1 and Xi,2 are latent variables that

cannot be observed, Wi,1 and Wi,2 are used in their place. The data analyst fits the naive
model

Yi = β0 + β1Wi,1 + β2Wi,2 + εi.

An attractive feature of multiple regression is its ability to represent the relationship
of one or more explanatory variables to the response variable, while controlling for other
explanatory varables. In fact, this may be the biggest appeal of multiple regression and
similar methods for non-experimental data. In Example 0.7.3, our interest is in the
relationship of X2 to Y controlling for X1. The main objective is to test H0 : β2 = 0, but
we are also interested in the estimation of β2.

The argument that follows illustrates a general way to see what happens as n → ∞
for mis-specified (that is, incorrect) regression models. We have already seen special cases
of this, three times. In Example 0.4.1 on omitted explanatory variables, the regression
coefficient converged to the wrong target in Expression 21 on page 32. In Example 0.7.1
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on measurement error in the response variable, the regression coefficient converged to the
correct target in Expression 31 on page 46. In Example 0.7.2 on measurement error in a
single explanatory variable, the regression coefficient converged to the target multiplied
by the reliability of the measurement, in Expression 33 on page 48.

Here is the recipe. Assume some “true” model for how the data are produced, and
a mis-specified model corresponding to a natural way that people would analyze the
data with a regression model. First, write the regression coefficients in terms of sample

variances and covariances. The general answer is given on page 14: β̂n = Σ̂
−1

x Σ̂xy. Then,
because sample variances and covariances are consistent estimators of their population
counterparts, we have the convergence β̂n

a.s.→ Σ−1
x Σxy from Page 15. This convergence

follows from the formula for the least-squares estimator, and does not depend in any way
on the correctness of the model. So, if you can derive Σx and Σxy under the true model, it
is easy to calculate the large-sample target of the ordinary least squares estimates under
the mis-specified model.

In the present application, there is just a minor notational issue. Under the naive
model, the explanatory variables are called w instead of x. Adopting a notation that will
be used throughout the book, denote one of the n vectors of observable data by Di. Here,

Di =

 Wi,1

Wi,2

Yi

 .

Then, let Σ = [σi,j] = cov(Di). Corresponding to Σ is the sample variance covariance

matrix Σ̂ = [σ̂i,j], with n rather than n − 1 in the denominators. To make this setup
completely explicit,

Σ = cov

 Wi,1

Wi,2

Yi

 =

 σ1,1 σ1,2 σ1,3

σ1,2 σ2,2 σ2,3

σ1,3 σ2,3 σ3,3


Then, we calculate the regression coefficients under the naive model.

β̂n =

(
β̂1

β̂2

)
(34)

= Σ̂
−1

w Σ̂wy

=

(
σ̂1,1 σ̂1,2

σ̂1,2 σ̂2,2

)−1(
σ̂1,3

σ̂2,3

)

=


σ̂22σ̂13−σ̂12σ̂23
σ̂11σ̂22−σ̂2

12

σ̂11σ̂23−σ̂12σ̂13
σ̂11σ̂22−σ̂2

12

 .
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Our primary interest is in the estimation of β2. Because sample variances and covariances
are strongly consistent estimators of the corresponding population quantities,

β̂2 =
σ̂11σ̂23 − σ̂12σ̂13

σ̂11σ̂22 − σ̂2
12

a.s.→ σ11σ23 − σ12σ13

σ11σ22 − σ2
12

. (35)

This convergence holds provided that the denominator σ11σ22−σ2
12 6= 0. The denominator

is a determinant:

σ11σ22 − σ2
12 =

∣∣∣∣cov( Wi,1

Wi,2

)∣∣∣∣ .
It will be non-zero provided at least one of

cov

(
Xi,1

Xi,2

)
=

(
φ11 φ12

φ12 φ22

)
and cov

(
ei,1
ei,2

)
=

(
ω1 0
0 ω2

)
is positive definite – not a lot to ask.

The convergence of β̂2 in Expression 35 applies regardless of what model is correct. To
see what happens when the true model of Example 0.7.3 holds, we need to write the σij
quantities in terms of the parameters of the true model. A straightforward set of scalar
variance-covariance calculations yields

Σ = cov

 Wi,1

Wi,2

Yi


=

 σ1,1 σ1,2 σ1,3

σ1,2 σ2,2 σ2,3

σ1,3 σ2,3 σ3,3


=

 ω1 + φ11 φ12 β1φ11 + β2φ12

φ12 ω2 + φ22 β1φ12 + β2φ22

β1φ11 + β2φ12 β1φ12 + β2φ22 β2
1φ11 + 2 β1β2φ12 + β2

2φ22 + ψ


Subsituting into expression 35 and simplifying20, we obtain

β̂2 =
σ̂11σ̂23 − σ̂12σ̂13

σ̂11σ̂22 − σ̂2
12

a.s.→ σ11σ23 − σ12σ13

σ11σ22 − σ2
12

=
β1ω1φ12 + β2(ω1φ22 + φ11φ22 − φ2

12)

(φ1,1 + ω1)(φ2,2 + ω2)− φ2
12

= β2 +
β1ω1φ12 + β2ω2(φ11 − ω1)

(φ1,1 + ω1)(φ2,2 + ω2)− φ2
12

(36)

By the asymptotic normality of sample variances and covariances and the multivariate
delta method (see Appendix A.5), β̂2 has a distribution that is approximately normal for

20The simplification may be elementary, but that does not make it easy. I used Sage; see Appendix B.
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large samples, with approximate mean given by expression (36). Thus, it makes sense
to call the second term in (36) the asymptotic bias. It is also the amount by which the
estimate of β2 will be wrong as n→∞.

Clearly, this situation is much more serious than the bias toward zero detected for
the case of one explanatory variable. With two explanatory variables, the bias can be
positive, negative or zero depending on the values of other unknown parameters.

In particular, consider the problems associated with testing H0 : β2 = 0. The purpose
of this test is to determine whether, controlling for X1, X2 has any relationship to Y . The
supposed ability of multiple regression to answer questions like this is the one of the main
reasons it is so widely used in practice. So when measurement error makes this kind of
inference invalid, it is a real problem.

Suppose that the null hypothesis is true, so β2 = 0. In this case, Expression (36)
becomes

β̂2
a.s.→ β1ω1φ12

(φ1,1 + ω1)(φ2,2 + ω2)− φ2
12

. (37)

Recall that β1 is the link between X1 and Y , ω1 = V ar(e1) is the variance of measurement
error in X1, and φ12 is the covariance between X1 and X2. Thus, when H0 : β2 = 0 is
true, β̂2 converges to a non-zero quantity unless

• There is no relationship between X1 and Y , or

• There is no measurement error in W1, or

• There is no correlation between X1 and X2.

Brunner and Austin [14] have shown that whether H0 is true or not, the standard error

of β̂2 goes to zero, and when the large-sample target of β̂2 is non-zero, the p-value goes
almost surely to zero. That is, the probability of making a Type I error goes to one
because of measurement error in an explanatory variable — not the one being tested, but
the one for which one is “controlling.”

This is potentially a disaster, because the primary function of statistical hypothesis
testing in the social and biological sciences is to filter out results that might be just ran-
dom noise, and keep them from reaching the published research literature. Holding down
the probability of a Type I error is critical. The preceding calculations show that in the
very reasonable scenario where one needs to control for an explanatory variable but the
measurement of that variable is imperfect (which is always the case), standard regression
methods do not work as advertised. Instead, the probability of getting statistically sig-
nificant results can go to one even when the null hypothesis is true and there is nothing
real to discover. You should be appalled.

A large-scale simulation study All this is true as the sample size goes to infinity, but
in reality no sample size can approach infinity. So it is important to see what happens
for realistic sample sizes. The idea is to use computer-generated pseudo-random numbers
to generate data sets in which the true parameter values are known, because actually
those true parameter values are inputs to the program. Applying statistical methods to
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such simulated data allows one to investigate the performance of the methods empirically
as well mathematically. Ideally, empirical and mathematical investigations of statistical
questions are complementary, and usually reinforce one another.

Brunner and Austin [14] took this approach to the topic under discussion. They report
a large simulation study in which random data sets were generated according to a factorial
design with six factors. The factors were

• Sample size: n = 50, 100, 250, 500, 1000

• Corr(X1, X2): φ12 = 0.00, 0.25, 0.75, 0.80, 0.90

• Proportion of variance in Y explained by X1: 0.25, 0.50, 0.75

• Reliability of W1: 0.50, 0.75, 0.80, 0.90, 0.95

• Reliability of W2: 0.50, 0.75, 0.80, 0.90, 0.95

• Distribution of the latent variables and error terms: Normal, Uniform, t, Pareto.

Thus there were 5×5×3×5×5×4 = 7,500 treatment combinations. Ten thousand random
data sets were generated within each treatment combination, for a total of 75 million data
sets. All the data sets were generated according to the true model of Example 0.7.3, with
β2 = 0, so that H0 : β2 = 0 was true in each case. For each data set, we fit the naive
model (no measurement error), and tested H0 : β2 = 0 at α = 0.05. The proportion of
times H0 is rejected is a Monte Carlo estimate of the Type I Error Probability.

The study yielded 7,500 estimated Type I error probabilities, and even looking at all
of them is a big job. Table 1 shows a small but representative part of the results. In
this table, all the variables and error terms are normally distributed, and the reliability
of both explanatory variables was equal to 0.90. This means that 90% of the variance
came from the real thing as opposed to random noise – a stellar value. The values of the
regression coefficients were β0 = 1, β1 = 1 and of course β2 = 0.

Remember that we are trying to test the effect of X1 on Y controlling for X2, and since
we don’t have X1 and X2, we are using W1 and W2 instead. In fact, because H0 : β2 = 0 is
true, X2 is conditionally independent of Y given X1 = x1. This means that the estimated
Type I error probabilities in Table 1 should all be around 0.05 if the test is working
properly.

When the correlation between X1 and X2 is zero (the first column of Table 1), none
of the estimated Type I error probabilites is significantly different from 0.05. This is
consistent with Equation (37), where β̂2 converges to the right target when the covariance
betweenX1 andX2 is zero. But as the correlation between explanatory variables increases,
so does the Type I error probability – especially when the X1 and Y is strong and the
sample size is large. Look at the intermediate case in which 50% of variance in Y is
explained by X1 (admittedly a strong relationship, at least in the social sciences) and
n = 250. As the correlation between X1 and X2 increases from zero to 0.90, the Type I
error probability increases from 0.05 to about 0.60. With the strongest relationship beween
X1 and Y , and the largest sample size, the test of X2’s relationship to Y controlling for
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Table 1: Estimated Type I Error

Correlation between X1 and X2

n 0.00 0.25 0.75 0.80 0.90
25% of variance in Y is explained by X1

50 0.0491† 0.0505† 0.0663 0.0740 0.0838
100 0.0541† 0.0527† 0.0896 0.0925 0.1227
250 0.0479† 0.0577† 0.1364 0.1688 0.2585
500 0.0510† 0.0588† 0.2399 0.2887 0.4587

1000 0.0489† 0.0734 0.4175 0.4960 0.7391
50% of variance in Y is explained by X1

50 0.0518† 0.0535† 0.0949 0.1081 0.1571
100 0.0501† 0.0541† 0.1512 0.1763 0.2710
250 0.0487† 0.0710 0.3065 0.3765 0.5994
500 0.0518† 0.0782 0.5499 0.6487 0.8740

1000 0.0500† 0.1132 0.8260 0.9120 0.9932
75% of variance in Y is explained by X1

50 0.0504† 0.0554† 0.1669 0.2072 0.3361
100 0.0510† 0.0599 0.3019 0.3791 0.5943
250 0.0487† 0.0890 0.6399 0.7542 0.9441
500 0.0496† 0.1296 0.9058 0.9599 0.9987

1000 0.0502† 0.2157 0.9969 0.9992 1.0000
†Not Significantly different from 0.05, Bonferroni corrected for 7,500 tests.

X1 was significant 10,000 times out of 10,000. Again, this is when the null hypothesis is
true, and Y is conditionally independent of X2, given X1.

Again, this simulation study was a 6-factor experiment with 7,500 treatment combi-
nations. A rough way to see general trends is to look at marginal means, averaging the
estimated Type I error probabilities over the other factors, for each factor in the study.
Table 2 is actually six subtables, showing marginal estimated Type I error probabilities
for each factor. The only one that may not be self-explanatory is “Base distribution.”
This is the distribution of X1, X2, e1 and e2, shifted when necessary to have expected
value zero, and scaled to have variance for the particular treatment condition.

The inescapable conclusion is that ignoring measurement error in the explanatory
variables can seriously inflate Type I error probabilities in multiple regression. To repeat,
ignoring measurement error is what people do all the time. The poison combination
is measurement error in the variable for which you are “controlling,” and correlation
between latent explanatory variables. If either is zero, there is no problem. Factors
affecting severity of the problem are

• As the correlation between X1 and X2 increases, the problem gets worse.

• As the correlation between X1 and Y increases, the problem gets worse.
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Table 2: Marginal Type I Error Probabilities                   Marginal Mean Type I Error Rates
        

              Base Distribution
normal        Pareto     t Distr     uniform
0.38692448  0.36903077  0.38312245  0.38752571  

        Explained Variance
0.25         0.50         0.75         
0.27330660   0.38473364   0.48691232   

     Correlation between Latent Independent Variables
0.00         0.25         0.75         0.80         0.90         
0.05004853   0.16604247   0.51544093   0.55050700   0.62621533        

                      Sample Size n
50           100          250          500          1000         
0.19081740   0.27437227   0.39457933   0.48335707   0.56512820     

                      Reliability of W1

0.50         0.75         0.80         0.90         0.95         
0.60637233   0.46983147   0.42065313   0.26685820   0.14453913          

                      Reliability of W2

0.50         0.75         0.80         0.90         0.95         
0.30807933   0.37506733   0.38752793   0.41254800   0.42503167                

2

• As the amount of measurement error in X1 increases, the problem gets worse.

• As the amount of measurement error in X2 increases, the problem gets less severe.

• As the sample size increases, the problem gets worse.

• Distribution of the variables does not matter much.

It is particularly noteworthy that the inflation of Type I error probability gets worse
with increasing sample size. Generally in statistics, things get better as the sample size
increases. This is an exception. For a large enough sample size, no amount of measurement
error in the explanatory variables is safe, assuming that the latent explanatory variables
are correlated.

It might be objected that null hypotheses are never exactly true in observational
studies, so that estimating Type I error probability is a meaningless exercise. However,
look at expression (36), the large-sample target of β̂2 when the true value of β2 (the
parameter being tested) is not necessarily zero. Suppose that the true value of β2 is
negative, the true value of β1 is positive, and the covariance between X1 and X2 is
positive. This is a perfectly natural scenario. Depending on the values of the variances
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and covariances, it is quite possible for the second term in (36) to be a larger positive

value, overwhelming β2 and making the large-sample target of β̂2 positive. Brunner and
Austin report a smaller-scale simulation of this situation in which measurement error
leads to rejection of the null hypothesis in the wrong direction nearly 100% of the time.
This is a particularly nasty possibility, because findings that are opposite of the truth
(especially if they are published) can only serve to muddy the waters and make scientific
progress slower and more difficult.

Brunner and Austin go on to show that the inflation of Type I error probability
arising from measurement error is not limited to multiple regression and measurement
error of a simple additive type. It applies to other kinds of regression and other types
of measurement error, including logistic regression, proportional hazards regression in
survival analysis, log-linear models (for testing conditional independence in the presence
of classification error, and median splits on explanatory variables, which is a kind of
measurement error created by the data analyst. Even converting X1 to ranks inflates
Type I Error probability.

This is a serious problem, but only if one is interested in interpreting the results of
statistical analyses to find out more about the world. If the only interest is in prediction,
you just use the variables you have. You might wish your predictors were measured with
less error, because that might make the predictions more accurate. But it doesn’t really
matter whether a given regression coefficient is positive or negative. On the other hand,
if this is science, then it matters.

It’s worth observing that the news about true experimental studies is good. The first
column of Table 1, where the covariance of explanatory variables is zero, illustrates the
primary virtue of random assignment: it erases any relationship between experimental
treatment and potential confounding variables. Thinking of X2 as the treatment and X1

as a covariate, it is apparent that in an experimental study, the Type I error probability
is not inflated by measurement error in the treatment, the covariate, or both – as long
as random assignment has made the latent versions of these variables independent, and
the experimental procedure has been of sufficiently high quality that the corresponding
measurement errors are uncorrelated.

This example also illustrates that assignment to experimental conditions need not
be random to be effective. All that’s needed is to somehow break up the relationship
between the treatment and any possible confounding variables. In a clinical trial, for
example, suppose that patients coming in to a medical clinic are assigned to experimental
and control conditions alternately, and not randomly. There is no serious problem with
this, because treatment condition would still be unrelated to any characteristic of the
patients.

The whole issue of measurement error in the predictors is really just a sentence or
two in the narrative about correlation versus causation. It goes like this. If X is related
to Y , it could be that X is influencing Y , or that Y is influencing X, or that some
confounding variables related to X are influencing Y . You might think that if you have
an idea what those confounding variables are, you can control for them with regression
methods. Unfortunately, if potential confounding variables are measured with error, the
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standard ways of controlling for them do not quite work (Brunner and Austin, 2009)21.
The last two sentences are the addition to the standard narrative. It’s only a couple

of sentences, but it’s still a big deal, because correlation-causation is a fundamental issue
in research design. What’s the solution? Surely it must be to admit that measurement
error exists, and incorporate it directly into the statistical model.

0.8 Modeling measurement error

Ignoring measurement error in regression can yield conclusions that are very misleading.
But as soon as we try building measurement error into the statistical model, we encounter
a technical issue that will occupy a central role in this book: parameter identifiability.

A first try at including measurement error

Example 0.8.1 Model Includes Measurement Error

The following is basically the true model of Example 0.7.2, with everything normally
distributed. Independently for i = 1, . . . , n, let

Yi = β0 + β1Xi + εi (38)

Wi = ν +Xi + ei,

where

• Xi is normally distributed with mean µx and variance φ > 0

• εi is normally distributed with mean zero and variance ψ > 0

• ei is normally distributed with mean zero and variance ω > 0

• Xi, ei, εi are all independent.

The intercept term ν could be called “measurement bias.” If Xi is true amount of exercise
per week and Wi is reported amount of exercise per week, ν is the average amount by
which people exaggerate.

Data from Model (38) are just the pairs (Wi, Yi) for i = 1, . . . , n. The true explanatory
variable Xi is a latent variable whose value cannot be known exactly. The model implies
that the (Wi, Yi) are independent bivariate normal with

E

(
Wi

Yi

)
= µ =

(
µ1

µ2

)
=

(
µx + ν

β0 + β1µx

)
,

21I could not resist citing the paper. There is no claim that Brunner and Austin discovered the problem
with measurement error in the predictors. The ill effects of measurement error on estimation have been
known since the 1930s, though the issue has been mostly ignored by mainstream statisticians and other
users of statistical methods. What Brunner and Austin did was to review the literature and document
the effect of measurement error on significance testing.
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and variance covariance matrix

cov

(
Wi

Yi

)
= Σ = [σi,j] =

(
φ+ ω β1φ
β1φ β2

1φ+ ψ

)
.

There is a big problem here, and the moment structure equations reveal it.

µ1 = µx + ν (39)

µ2 = β0 + β1µx

σ1,1 = φ+ ω

σ1,2 = β1φ

σ2,2 = β2
1φ+ ψ.

It is impossible to solve these five equations for the seven model parameters22. That is,
even with perfect knowledge of the probability distribution of the data (for the multivari-
ate normal, that means knowing µ and Σ, period), it would be impossible to know the
model parameters.

To make the problem clearer, look at the table below. It shows two diferent set of
parameter values θ1 and θ2 that both yield the same mean vector and covariance matrix,
and hence the exact same distribution of the observable data.

µx β0 ν β1 φ ω ψ
θ1 0 0 0 1 2 2 3
θ2 0 0 0 2 1 3 1

Both θ1 and θ2 imply a bivariate normal distribution with mean zero and covariance
matrix

Σ =

(
4 2
2 5

)
,

and thus the same distribution of the sample data.
No matter how large the sample size, it will be impossible to decide between θ1 and

θ2, because they imply exactly the same probability distribution of the observable data.
The problem here is that the parameters of Model (38) are not identifiable. This calls for
a brief discussion of identifiability, a topic of central importance in structural equation
modeling.

0.9 Parameter Identifiability

The Basic Idea Suppose we have a vector of observable data D = (D1, . . . , Dn), and
a statistical model (a set of assertions implying a probability distribution) for D. The
model depends on a parameter θ, which is usually a vector. If the probability distribution
of D corresponds uniquely to θ, then we say that the parameter vector is identifiable.

22That’s a strong statement, and a strong theorem is coming to justify it.
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But if any two different parameter values yield the same probability distribution, then
the parameter vector is not identifiable. In this case, the data cannot be used to decide
between the two parameter values, and standard methods of parameter estimation will
fail. Even an infinite amount of data cannot tell you the true parameter values.

Definition 0.4 A Statistical Model is a set of assertions that partly23 specify the proba-
bility distribution of a set of observable data.

Definition 0.5 Suppose a statistical model implies D ∼ Pθ,θ ∈ Θ. If no two points in
Θ yield the same probability distribution, then the parameter θ is said to be identifiable.
On the other hand, if there exist θ1 and θ2 in Θ with Pθ1 = Pθ2, the parameter θ is not
identifiable.

A good example of non-identifiability appears in Example 0.4.1 in Section 0.4 on omitted
variables in regression. There, the correct model has a set of infinitely many parameter
values that imply exactly the same probability distribution of the observed data.

Theorem 0.1 If the parameter vector is not identifiable, consistent estimation for all
points in the parameter space is impossible.

In Figure 14, θ1 and θ2 are two distinct sets of parameter values for which the distribution
of the observable data is the same.

Figure 14: Two parameters values yielding the same probability distribution

&%
'$qθ1

&%
'$qθ2

Let Tn be a estimator that is consistent for both θ1 and θ2. What this means is that if
θ1 is the correct parameter value, eventually as n increases, the probability distribution of
Tn will be concentrated in the circular neighborhood around θ1. And if θ1 is the correct
parameter value, it the probability distribution will be concentrated around θ2.

But the probability distribution of the data, and hence of Tn (a function of the data)
is identical for θ1 and θ2. This means that for a large enough sample size, most of Tn’s
probability distribution must be concentrated in the neighborhood around θ1, and at the
same time it must be concentrated in the neighborhood around θ2. This is impossible,
since the two regions do not overlap. Hence there can be no such consistent estimator Tn.

23Suppose that the distribution is assumed known except for the value of a parameter vector θ. So the
distribution is “partly” specified.
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Theorem 0.1 says why parameter identifiability is so important. Without it, even an
infinite amount of data cannot reveal the values of the parameters.

Surprisingly often, whether a set of parameter values can be recovered from the dis-
tribution depends on where in the parameter space those values are located. That is, the
parameter vector may be identifiable at some points but not others.

Definition 0.6 The parameter is said to be identifiable at a point θ0 if no other point in
Θ yields the same probability distribution as θ0.

If the parameter is identifiable at at every point in Θ, it is identifiable.

Definition 0.7 The parameter is said to be locally identifiable at a point θ0 if there
is a neighbourhood of points surrounding θ0, none of which yields the same probability
distribution as θ0.

Obviously, local identifiability at a point is a necessary condition for global identifiability
there.

It is possible for individual parameters (or other functions of the parameter vector) to
be identifiable even when the entire parameter vector is not.

Definition 0.8 Let g(θ) be a function of the parameter vector. If g(θ0) 6= g(θ) implies
Pθ0 6= Pθ for all θ ∈ Θ, then the function g(θ) is said to be identifiable at the point θ0.

For example, let D1, . . . , Dn be i.i.d. Poisson random variables with mean λ1 + λ2,
where λ1 > 0 and λ1 > 0. The parameter is the pair θ = (λ1, λ2). The parameter is not
identifiable because any pair of λ values satisfying λ1 + λ2 = c will produce exactly the
same probability distribution. Notice also how maximum likelihood estimation will fail
in this case; the likelihood function will have a ridge, a non-unique maximum along the
line λ1 + λ2 = D, where D is the sample mean. The function g(θ) = λ1 + λ2, of course,
is identifiable.

The failure of maximum likelihood for the Poisson example is very typical of situations
where the parameter is not identifiable. Collections of points in the parameter space yield
the same probability distribution of the observable data, and hence identical values of
the likelihood. Often these form connected sets of infinitely many points, and when
a numerical likelihood search reaches such a higher-dimensional ridge or plateau, the
software checks to see if it’s a maximum, and (if it’s good software) complains loudly
because the maximum is not unique. The complaints might take unexpected forms, like a
statement that the Hessian has negative eigenvalues. But in any case, maximum likelihood
estimation fails.

The idea of a function of the parameter vector covers a lot of territory. It includes
individual parameters and sets of parameters, as well as things like products and ratios of
parameters. Look at the moment structure equations (39) of Example 0.8.1 on page 57.
If σ1,2 = 0, this means β1 = 0, because φ is a variance, and is greater than zero. Also
in this case ψ = σ2,2 and β0 = µ2. So, the function g(θ) = (β0, β1, ψ) is identifiable at
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all points in the parameter space where β1 = 0. The other four parameters are still not
identifiable.

Recall how for the regression model of Example 0.8.1, the moment structure equa-
tions (39) consist of five equations in seven unknown parameters. It was shown by a
numerical example that there were two different sets of parameter values that produced
the same mean vector and covariance matrix, and hence the same distribution of the
observable data. Actually, infinitely many parameter values produce the same distribu-
tion, and it happens because there are more unknowns than equations. Theorem 0.2 is a
strictly mathematical theorem24 that provides the necessary details.

Theorem 0.2 Let

y1 = f1(x1, . . . , xp)

y2 = f2(x1, . . . , xp)
...

...

yq = fq(x1, . . . , xp),

If the functions f1, . . . , fq are analytic (posessing a Taylor expansion) and p > q, the set
of points (x1, . . . , xp) where the system of equations has a unique solution occupies at most
a set of volume zero in Rp.

The following corollary to Theorem 0.2 is the fundamental necessary condition for param-
eter identifiability. It will be called the Parameter Count Rule.

Rule 1: The Parameter Count Rule. Suppose identifiability is to be decided based on
a set of moment structure equations. If there are more parameters than equations, the
parameter vector is identifiable on at most a set of volume zero in the parameter space.

When the data are multivariate normal (and this will frequently be assumed), then
the distribution of the sample data corresponds exactly to the mean vector and covariance
matrix, and to say that a parameter value is identifiable means that is can be recovered
from elements of the mean vector and covariance matrix. Most of the time, that involves
trying to solve the moment structure equations or covariance structure equations for the
model parameters.

Even when the data are not assumed multivariate normal, the same process makes
sense. Classical structural equation models, including models for regression with mea-
surement error, are based on systems of simultaneous linear equations. Assuming simple
random sampling from a large population, the observable data are independent and iden-
tically distributed, with a mean vector µ and a covariance matrix Σ that may be written
as functions of the model parameters in a straightforward way. If it is possible to solve
uniquely for a given model parameter in terms of the elements of µ and Σ, then that

24The core of the proof may be found in Appendix 5 of Fisher’s (1966) The identification problem in
econometrics. [27]
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parameter is a function of µ and Σ, which in turn are functions of the probability dis-
tribution of the data. A function of a function is a function, and so the parameter is a
function of the probability distribution of the data. Hence, it is identifiable.

Another way to reach this conclusion is to observe that if it is possible to solve for
the parameters in terms of moments, simply “putting hats on everything” yields Method
of Moments estimator. These estimators, though they may be less than ideal in some
ways, will still usually be consistent by the Law of Large Numbers and continuous map-
ping. Theorem 0.1 tells us consistency would be impossible if the parameters were not
identifiable.

To summarize, we have arrived at the standard way to check parameter identifiability
for any linear simultaneous equation model, not just measurement error regression. First,
calculate the expected value and covariance matrix of the observable data, as a function of
the model parameters. If it is possible to solve uniquely for the model parameters in terms
of the means, variances and covariances of the observable data, then the model parameters
are identifiable.

If two distinct parameter vectors yield the same pair (µ,Σ) and the distribution is mul-
tivariate normal, the parameter vector is clearly not identifiable. When the distribution is
not multivariate normal this conclusion does not necessarily follow; the parameters might
be recoverable from higher moments, or possibly from the moment-generating function or
characteristic function.

But this would require knowing exactly what the non-normal distribution of the data
might be. When it comes to analyzing actual data using linear models like the ones in this
book, there are really only two alternatives. Either the distribution is assumed25 normal,
or it is acknowledged to be completely unknown. In both cases, parameters will either be
identifiable from the mean and covariance matrix (usually just the covariance matrix), or
they will not be identifiable at all.

The conclusion is that in practice, “identifiable” means identifiable from the moments.
This explains why the parameter count rule (Rule 1) is frequently used to label parameters
“not identifiable” even when there is no assumption of normality.

0.10 Double measurement

Consider again the model of Example 0.8.1, a simple regression with measurement error in
the single explanatory variable. This represents something that occurs all too frequently
in practice. The statistician or scientist has a data set that seems relevant to a particular
topic, and a model for the observable data that is more or less reasonable. But the
parameters of the model cannot be identified from the distribution of the data. In such
cases, valid inference is very challenging, if indeed it is possible at all.

The best way out of this trap is to avoid getting trapped in the first place. Plan the
statistical analysis in advance, and ensure identifiability by collecting the right kind of
data. Double measurement is a straightforward way to get the job done. The key is to

25Even when the the data are clearly not normal, methods – especially likelihood ratio tests – based
on a normal model can work quite well.
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measure the explanatory variables twice, preferably using different methods or measuring
instruments26.

0.10.1 A scalar example

Example 0.10.1

Instead of measuring the explanatory variable only once, suppose we had a second, inde-
pendent measurement; “independent” means that the measurement errors are statistically
independent of one another. Perhaps the two measurements are taken at different times,
using different instruments or methods. Then we have the following model. Independently
for i = 1, . . . , n, let

Wi,1 = ν1 +Xi + ei,1 (40)

Wi,2 = ν2 +Xi + ei,2

Yi = β0 + β1Xi + εi,

where

• Xi is normally distributed with mean µx and variance φ > 0

• εi is normally distributed with mean zero and variance ψ > 0

• ei,1 is normally distributed with mean zero and variance ω1 > 0

• ei,2 is normally distributed with mean zero and variance ω2 > 0

• Xi, ei,1, ei,2 and εi are all independent.

The model implies that the triples Di = (Wi,1,Wi,2, Yi)
> are multivarate normal with

E(Di) = E

 Wi,1

Wi,1

Yi

 =

 µx + ν1

µx + ν2

β0 + β1µx

 ,

26The reason for different instruments or methods is to ensure (or try to ensure) that the errors of
measurements are independent. For example, suppose a questionnaire is designed to measure racism.
Respondents differ in their actual, true unobservable level of racism. They also differ in the extent to
which they wish to be perceived as non-racist. If you give people two similar questionnaires in which
they agree or disagree with various statements that are obviously about racism, the individuals who fake
good on one questionnaire will also fake good on the other one. The result is that if e1 and e2 are the
measurement errors in the two questionnaires, then e1 and e2 will surely have positive covariance. If the
unknown covariance is assumed zero, the result will almost surely be incorrect estimation and inference.
If the unknown covariance is a parameter in the model, it usually will create problems with identifiability.
This all may seem quite technical, but there is a common-sense version. Problems with identifiability
almost always correspond to shortcomings in research design. If data are collected in a way that is poorly
thought out, the data analysis is unlikely to yield valid conclusions. Taking two measurements that are
likely to be contaminated in the same way is just not very smart.
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and variance covariance matrix

cov(Di) = Σ = [σi,j] =

 φ+ ω1 φ β1φ
φ+ ω2 β1φ

β2
1φ+ ψ

 . (41)

Here are some comments.

• There are now nine moment structure equations in nine unknown parameters. This
model passes the test of the parameter count rule, meaning that identifiability is
possible, but not guaranteed.

• Notice that the model dictates σ1,3 = σ2,3. This model-induced constraint upon Σ
is testable. If H0 : σ1,3 = σ2,3 were rejected, the correctness of the model would be
called into question27. Thus, the study of parameter identifiability leads to a useful
test of model fit.

• The constraint σ1,3 = σ2,3 allows two solutions for β1 in terms of the moments:
β1 = σ13/σ12 and β1 = σ23/σ12. Does this mean the solution for β1 is not “unique?”
No; everything is okay. Because σ1,3 = σ2,3, the two solutions are actually the same.
If a parameter can be recovered from the moments in any way at all, it is identifiable.

• For the other model parameters appearing in the covariance matrix, the additional
measurement of the explanatory variable also appears to have done the trick. It is
easy to solve for φ, ω1, ω2 and ψ in terms of σi,j values. Thus, these parameters are
identifiable.

• On the other hand, the additional measurement did not help with the means and
intercepts at all. Even assuming β1 known because it can be recovered from Σ, the
remaining three linear equations in four unknowns have infinitely many solutions.
There are still infinitely many solutions if ν1 = ν2.

Maximum likelihood for the parameters in the covariance matrix would work up to a
point, but the lack of unique values for µx, ν1, ν2 and β0 would cause numerical problems.
A good solution is to re-parameterize the model, absorbing µx+ν1 into a parameter called
µ1, µx + ν2 into a parameter called µ2, and β0 + β1µx into a parameter called µ3. The
parameters in µ = (µ1, µ2, µ3)> lack meaning and interest28, but we can estimate them
with the vector of sample means D and focus on the parameters in the covariance matrix.

27Philosophers of science agree that falsifiability – the possibility that a scientific model can be chal-
lenged by empirical data – is a very desirable property. The Wikipedia has a good discussion under
Falsifiability — see http://en.wikipedia.org/wiki/Falsifiable. Statistical models may be viewed as primi-
tive scientific models, and should be subject to the same scrutiny. It would be nice if scientists who use
statistical methods would take a cold, clear look at the statistical models they are using, and ask “Is this
a reasonable model for my data?”

28If Xi is true amount of exercise, µx is the average amount of exercise in the population; it’s very
meaningful. Also, the quantity ν1 is interesting; it’s the average amount people exaggerate how much
they exercise using Questionnaire One. But when you add these two interesting quantities together, you
get garbage. The parameter µ in the re-parametrerized model is a garbage can.

http://en.wikipedia.org/wiki/Falsifiable
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Here is the multivariate normal likelihood from Appendix A.4, simplified so that it’s
clear that the likelihood depends on the data only through the MLEs D and Σ̂. This is
just a reproduction of expression (A.20) from Appendix A.

L(µ,Σ) = |Σ|−n/2(2π)−np/2 exp−n
2

{
tr(Σ̂Σ

−1
) + (D− µ)>Σ−1(D− µ)

}
(42)

Notice that if Σ is positive definite then so is Σ−1, and so for any positive definite Σ
the likelihood is maximized when µ = D. In that case, the last term just disappears.
So, re-parameterizing and then letting µ̂ = D leaves us free to conduct inference on the
model parameters in Σ.

Just to clarify, after re-parameterization and estimation of µ with Dn, the likelihood
function may be written

L(θ) = |Σ(θ)|−n/2(2π)−np/2 exp−n
2

{
tr(Σ̂Σ(θ)−1)

}
, (43)

where θ is now a vector of just those parameters appearing in the covariance matrix.
This formulation is general. For the specific case of the scalar double measurement Ex-
ample 0.10.1, θ = (φ, ω1, ω2, β1, ψ)>, and Σ(θ) is given by Expression (41). Maximum
likelihood estimation is numerical, and the full range of large-sample likelihood methods
described in Section A.6.3 of Appendix A is available.

Testing goodness of model fit

When there are more covariance structure equations than unknown parameters and the
parameters are identifiable, the parameters are said to be over-identified. In this case,
the model implies functional connections between some variances and covariances. In
the small example we are considering, it is clear from Expression (41) on page 64 that
σ13 = σ23, because they both equal β1φ. This is a testable null hypothesis, and if it is
rejected, the model is called into question.

The traditional way to do the test29 is to compare the fit of the model to the fit of a
completely unrestricted multivariate normal using the test statistic

G2 = −2 ln
L
(
D,Σ(θ̂)

)
L(D, Σ̂)

= n
(
tr
(
Σ̂Σ(θ̂)−1

)
− ln

∣∣∣Σ̂Σ(θ̂)−1
∣∣∣− p) , (44)

where Σ̂ is the ordinary sample variance-covariance matrix with n in the denominator,
and L(·, ·) is the multivariate normal likelihood (42) on page 65. The degrees of freedom
equals the number of covariance structure equations minus the number of parameters.
The idea is that if there are r parameters and m unique variances and covariances, the

29The test is documented on page 447 of Jöreskog’s classic (1978) article [37] in Psychometrika, but I
believe it had been in Jöreskog and Sörbom’s LISREL software for years before that.
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model imposes m − r equality constraints on the variances and covariances30. Those
are the constraints being tested, even when we don’t know exactly what they are. The
goodness of fit test is examined more closely in Chapter 7.

The matrix Σ(θ̂) is called the reproduced covariance matrix. It is the covariance matrix
of the observable data, written as a function of the model parameters and evaluated at
the MLE. For the present example,

Σ(θ̂) =

 φ̂+ ω̂1 φ̂ β̂1φ̂

φ̂+ ω̂2 β̂1φ̂

β̂2
1 φ̂+ ψ̂


The reproduced covariance matrix obeys all model-induced constraints, while Σ̂ does not.
However, they should be close if the model is right. In the limiting case where Σ̂ = Σ(θ̂),
the G2 statistic in (44) equals zero.

When the parameter vector is identifiable and there are more unique variances and
covariances than parameters, we call the parameter vector over-identifiable. An alterna-
tive terminology is to say that the “model is over-identified.” The equality restrictions on
Σ imposed by the model are called over-identifying restrictions. The likelihood ratio test
for goodness of fit is testing the null hypothesis that the over-identifying restrictions are
true.

Suppose that the entire parameter vector is identifiable, and m = k. That is, the
number of parameters is equal to the number of unique variances and covariances. In this
case, identifiability is established by solving k equations in k unknowns. The function
from parameters to the variances and covariances is one-to-one (injective), and the model
imposes no constraints on the variances and covariances. In this case the parameter
vector is said to be just identifiable. Alternatively, the model is often said to be “just
identified,” or saturated. In this case, Σ̂ = Σ(θ̂) by the invariance principle, and the
likelihood ratio test statistics for goodness of fit automatically equals zero. The degrees
of freedom m − k = 0 also. These values are usually displayed by software, which could
be confusing unless you know why. It means the model is not testable. It is incapable of
being challenged by any data set, at least using this technology.

0.10.2 Computation with lavaan

A variety of commercial software is available for fitting structural equation models, in-
cluding LISREL, EQS, Amos and Mplus. I myself have used mostly SAS proc calis

until recently. In keeping with the open-source philosophy of this text, we will use the
free, open-source R package lavaan; the name is short for LAtent VAriable ANalysis. The

30Here’s why. In most cases, it is possible to choose just r of the m variances and covariances, and
establish identifiability by solving r equations in r unknowns. In this case, there are m − r unused,
redundant equations. Each sets a variance or covariance equal to some function of the model parameters.
Substituting the solutions for the parameters in terms of σij back into the unused equations will yield
m− r equality constraints on the variances and covariances.
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software is described very well by Rosseel [48] in his 2012 article in the Journal of Statis-
tical Software. The capabilities of lavaan have grown since the article was published. A
nice tutorial is available at http://lavaan.ugent.be/tutorial.

This first illustration of lavaan will use a data set simulated from the model of Exam-
ple 0.10.1, the same little double measurement example we have been studying. It may
be a toy example, but it’s an educational toy. Readers familiar with lavaan will notice
that for now, I am using synax that favours explicitness over brevity. R input and output
will be interspersed with explanation.

When I begin an R session, I like to clear the deck with rm(list=ls()), removing any
existing R objects that may be in the workspace. The statement options(scipen=999)

suppresses scientific notation. This is just a matter of taste.
The lavaan package may be installed with the install.packages command. You

only need to do this once, which is why it’s commented out below. library(lavaan) is
necessary to load the package, every time.

> rm(list=ls()); options(scipen=999)

> # install.packages("lavaan", dependencies = TRUE)

> library(lavaan)

This is lavaan 0.6-7

lavaan is BETA software! Please report any bugs.

Next, we read the data, look at the first few lines, and obtain a summary and correlation
matrix. Notice that that the data file has only observable variables (obviously), and that
their means are certainly not zero. In practice, we would examine the data much more
carefully. This vital step in data analysis will not be mentioned again.

> babydouble = read.table("http://www.utstat.toronto.edu/~brunner/openSEM

/data/Babydouble.data.txt")

> head(babydouble)

W1 W2 Y

1 9.94 12.24 15.23

2 12.42 11.32 14.55

3 10.43 10.40 12.40

4 9.07 9.85 17.09

5 11.04 11.98 16.83

6 10.40 10.85 15.04

> summary(babydouble)

W1 W2 Y

Min. : 6.190 Min. : 6.76 Min. : 3.98

1st Qu.: 8.932 1st Qu.: 9.11 1st Qu.:10.97

Median : 9.720 Median :10.05 Median :13.22

Mean : 9.809 Mean :10.06 Mean :13.10

3rd Qu.:10.655 3rd Qu.:10.99 3rd Qu.:15.46

Max. :12.830 Max. :13.57 Max. :21.62

http://www.jstatsoft.org/v48/i02
http://lavaan.ugent.be/tutorial/index.html
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> cor(babydouble)

W1 W2 Y

W1 1.0000000 0.5748331 0.1714324

W2 0.5748331 1.0000000 0.1791539

Y 0.1714324 0.1791539 1.0000000

Notice that the sample correlations of W1 with Y and W2 with Y are very close. This is
consistent with the model-induced constraint σ13 = σ23, especially if ω1 = ω2.

Next comes specification of the model to be fit. Again, this is the model of Exam-
ple 0.10.1 on page 63. The entire model specification is in a model string, assigned to
the string variable dmodel1. If the model is big and you are using it repeatedly, you can
compose the model string in a separate file and bring it in with readlines.

> dmodel1 = ’Y ~ beta1*X # Latent variable model (even though Y is observed)

X =~ 1*W1 + 1*W2 # Measurement model

# Variances (covariances would go here too)

X~~phi*X # Var(X) = phi

Y~~psi*Y # Var(epsilon) = psi

W1~~omega1*W1 # Var(e1) = omega1

W2~~omega2*W2 # Var(e2) = omega2

’

It’s best to discuss the model string line by line.

Y ∼ beta1*X: This is reminiscent of R’s lm syntax. The translation is Y = β1X + ε. No-
tice that there is no β0. Though you can specify intercepts and expected values in lavaan

if you wish, by default they are invisible. Thus the whole process of re-parameterization
and swallowing all the non-identifiable expected values and intercepts into µ (see page 65)
is implicit.

X =∼ 1*W1 + 1*W2: This looks like X is being produced by W1 and W2, when actually
it’s the other way around. However, if you read ∼ and =∼ as two different flavours of “is
modelled as,” it makes more sense. The statment stands for two model equations:

W1 = 1 ∗X + e1

W2 = 1 ∗X + e2

These two statements constitute the measurement model for this simple example. The
observable variables W1 and W2 are called indicators of X. An indicator of a latent vari-
able is an observable variable that arises from only that latent variable plus an error term.
In lavaan, a latent variable must have indicators. Otherwise, it is assumed observable
even if it’s not in the input data set. The explicit “1∗” syntax is necessary if you want
the coefficients to equal one. Otherwise, lavaan will assume you want coefficients that
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are free parameters in the model, but you don’t feel like naming them. It will try to be
helpful, with results that are unfortunate in this case31.

X∼∼ phi*X: As the comment statement says, this means V ar(X) = φ. The double tilde
is a way of naming variances, or setting them equal to numeric constants if that’s what
you want to do. Notice that the symbol X appears on both sides. If you had two different
variable names, the statement would specify a covariance. Since a variance may be viewed
as the covariance of a random variable with itself, this is good notation. Also be aware
that if a covariance is not specified, it equals zero.

Y∼∼ psi*Y: In contrast to the preceding statement, this one is not saying that V ar(Y ) =
ψ. It is saying V ar(ε) = ψ. Here’s the rule. If a variable appears on the left side of any
model equation, then the ∼∼ notation specifies the variance or covariance of the error
term in the equation. If the variable appears only on the right side (possibly in more
than one equation), the ∼∼ notation specifies the variance or covariance of the variable
itself. In this way, though error terms are never named in lavaan, you can name their
variances, and you can name their covariances with other variables and error terms.

W1∼∼omega1*W1: V ar(e1) = ω1

W2∼∼omega2*W2: V ar(e2) = ω2

A covariance between the measurement errors e1 and e2 would be specified with something
like W1∼∼omega12*W2. A covariance of c between X and ε would be specified with
X∼∼c*Y.

Next, we fit the model and look at a summary. We use the lavaan function32 (same name
as the lavaan package).

> dfit1 = lavaan(dmodel1, data=babydouble)

> summary(dfit1)

lavaan 0.6-7 ended normally after 23 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 5

Number of observations 150

Model Test User Model:

31lavaan’s “helpful” behaviour really is helpful for many users under many circumstances. It is based
on rules for parameter identifiability that will be developed later in this text.

32Model fitting can also be accomplished with the sem and cfa functions. With these “user friendly”
alternatives, the model specification in the model string is less elaborate, and the software makes choices
about the model for you. These choices are intended to be helpful, and may or may not be what you
want.
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Test statistic 0.007

Degrees of freedom 1

P-value (Chi-square) 0.933

Parameter Estimates:

Standard errors Standard

Information Expected

Information saturated (h1) model Structured

Latent Variables:

Estimate Std.Err z-value P(>|z|)

X =~

W1 1.000

W2 1.000

Regressions:

Estimate Std.Err z-value P(>|z|)

Y ~

X (bet1) 0.707 0.290 2.442 0.015

Variances:

Estimate Std.Err z-value P(>|z|)

X (phi) 1.104 0.181 6.104 0.000

.Y (psi) 9.775 1.153 8.481 0.000

.W1 (omg1) 0.834 0.158 5.265 0.000

.W2 (omg2) 0.800 0.156 5.123 0.000

We first learn that the numerical parameter estimation converged in 23 iterations, n =
150, and estimation was by maximum likelihood – the default. Under “Model Test

User Model,” the Test statistic is exactly the G2 statistic given in expression (44) on
page 65: the likelihood ratio test for goodness of model fit. The small value of G2 and the
correspondingly large p-value indicate that the model passes this test, and is not called
into question.

The next section in the output is entitled Latent Variables, saying that X is man-
afested by the indicators W1 and W2. The “estimates” are the fixed numerical constants
of 1.000, specified in the model string. More generally, this section would include all the
latent variables in a model. If coefficients (factor loadings) linking the latent variables to
their indicators were not pre-specified, their estimates would appear here, together with
tests of difference from zero.

The next section of the summary is Regressions. These correspond to all the model
equations using the ∼ rather than the ∼= notation, whether the variables involved are
latent or observed. Here, we have maximum likelihood estimates, standard errors, Z-tests
for whether the parameter equals zero, and two-sided p-values. The standard errors are
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what you would expect. They are square roots of the diagonal elements of the inverse of
the Hessian of the minus log likelihood. If this does not make sense, see the maximum
likelihood review in Appendix A. Also, observe that in the summary display, the parameter
names are abbreviated to four characters.

The last section of the summary is Variances. Covariances would go here too, if any
had been specified in the model. We have maximum likelihood estimates of the variance
parameters, standard errors, and two-sided Z-tests for whether the parameter equals zero.
When the variance in question is the variance of an error term rather than of the variable
itself, the variable name is preceded by a dot, as in .Y, .W1 and .W2.

Testing whether variances equal zero It might seem strange to test whether vari-
ances equal zero, when they are automatically greater than zero according to the model.
It’s not as silly as you might think. Look at Equation (41) on page 64, which gives the
covariance matrix of the observable variables for this model, in terms of the model param-
eters. The covariance σ1,2 equals φ, which is a variance. That means that the covariance
between W1 and W2 must be greater than zero if the model is correct; this would not
necessarily be true for an arbitrary covariance matrix.

The other variance parameters, because they are identifiable, can also be written as
functions of the variances and covariances σi,j. This means that they also correspond to
functions of the variances and covariances — functions that must be greater than zero if
the model is correct. In this way, we see that the model also imposes inequality constraints
on the covariance matrix Σ. The most obvious of these constraints33 can be tested by
looking at the estimates of the variance parameters in the model. If the variance estimates
are less than zero, particularly if they are significantly less than zero, the model is thrown
into question.

The conclusion is that testing whether variances equal zero is another way to test
model fit. A good practice is to check the equality constraint first with the likelihood
ratio test for goodness of fit, and then worry about inequality constraints provided that
the first test is non-significant. It is quite common for inequality violations to disappear
once the equality violations have been fixed.

The R object created by the lavaan function contains a large amount of additional
information. The parameterEstimates function returns a data frame that gives more
detail about the parameter estimates, including confidence intervals.

> parameterEstimates(dfit1)

lhs op rhs label est se z pvalue ci.lower ci.upper

1 Y ~ X beta1 0.707 0.290 2.442 0.015 0.140 1.275

2 X =~ W1 1.000 0.000 NA NA 1.000 1.000

3 X =~ W2 1.000 0.000 NA NA 1.000 1.000

4 X ~~ X phi 1.104 0.181 6.104 0.000 0.750 1.459

5 Y ~~ Y psi 9.775 1.153 8.481 0.000 7.516 12.034

6 W1 ~~ W1 omega1 0.834 0.158 5.265 0.000 0.524 1.145

33It can be challenging to obtain all the inequality constraints in a useful form. See Chapter 7.
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7 W2 ~~ W2 omega2 0.800 0.156 5.123 0.000 0.494 1.105

The parTable function yields details about the model fitting, including the starting values
for the numerical search.

> parTable(dfit1)

id lhs op rhs user block group free ustart exo label plabel start est se

1 1 Y ~ X 1 1 1 1 NA 0 beta1 .p1. 0.000 0.707 0.290

2 2 X =~ W1 1 1 1 0 1 0 .p2. 1.000 1.000 0.000

3 3 X =~ W2 1 1 1 0 1 0 .p3. 1.000 1.000 0.000

4 4 X ~~ X 1 1 1 2 NA 0 phi .p4. 0.050 1.104 0.181

5 5 Y ~~ Y 1 1 1 3 NA 0 psi .p5. 5.164 9.775 1.153

6 6 W1 ~~ W1 1 1 1 4 NA 0 omega1 .p6. 0.968 0.834 0.158

7 7 W2 ~~ W2 1 1 1 5 NA 0 omega2 .p7. 0.953 0.800 0.156

A vector containing the parameter estimates may be obtained with the coef function.
This is useful when the parameter estimates are to be used in further calculations.

> coef(dfit1) # A vector of MLEs

beta1 phi psi omega1 omega2

0.707 1.104 9.775 0.834 0.800

The fitted function returns a list of two matrices. The first element is the reproduced
covariance matrix Σ(θ̂). The second element is what might be called the “reproduced

mean vector”µ(θ̂). It will be nonzero if means are specified in the model.

> fitted(dfit1) # Sigma(thetahat) and mu(thetahat)

$cov

W1 W2 Y

W1 1.939

W2 1.104 1.904

Y 0.781 0.781 10.327

$mean

W1 W2 Y

0 0 0

As usual with R, the vcov function returns the estimated asymptotic covariance matrix,
the inverse of the observed Fisher information (Hessian).

> vcov(dfit1)

beta1 phi psi omega1 omega2

beta1 0.084

phi -0.007 0.033

psi -0.035 0.002 1.328

omega1 0.003 -0.004 -0.002 0.025

omega2 0.003 -0.005 -0.002 -0.007 0.024
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Even though the upper triangular entries are not shown, that’s just a display method.
The whole symmetric matrix is available for furter calculation.

The logLik function returns the log likelihood evaluated at the MLE.

> logLik(dfit1)

’log Lik.’ -878.512 (df=5)

It would be possible to use logLik to compute likelihood ratio tests, but the anova

function is more convenient. One can fit a restricted model by specifying the constraints
in the lavaan statement.

> # Fit a restricted model (restricted by H0)

> dfit1r = lavaan(dmodel1, data=babydouble, constraints = ’omega1==omega2’)

> anova(dfit1r,dfit1)

Chi Square Difference Test

Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)

dfit1 1 1767 1782.1 0.0071

dfit1r 2 1765 1777.1 0.0262 0.019189 1 0.8898

To test a null hypothesis with multiple constraints, put the constraints on separate lines.
This is the code for testing H0 : ω1 = ω2, φ = 1.

> # Put multiple constraints on separate lines.

> dfit1r2 = lavaan(dmodel1, data=babydouble, constraints = ’omega1==omega2

+ phi==1’)

> anova(dfit1r2,dfit1)

Illustrating a Wald test34 of H9 : ω1 = ω2, we first define the publicly available Wtest

function, and then enter the L matrix and do the calculation.

> # For Wald tests: Wtest = function(L,Tn,Vn,h=0) # H0: L theta = h

> source("http://www.utstat.utoronto.ca/~brunner/Rfunctions/Wtest.txt")

> LL = cbind(0,0,0,1,-1); LL

[,1] [,2] [,3] [,4] [,5]

[1,] 0 0 0 1 -1

> Wtest(LL,coef(dfit1),vcov(dfit1))

W df p-value

0.01918586 1.00000000 0.88983498

It is only a little surprising that the Wald and likelihood ratio test statistics are so close.
The two tests are asymptotically equivalent under the null hypothesis, meaning that the

34The Wald test of the linear null hypothesis Lθ = h is given in Section A.6.7 of Appendix A, Equa-
tion (A.37) on page 600.
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difference between the two test statistic values goes to zero in probability when H0 is
true. In this case, the null hypothesis is exactly true (these are simulated data), and the
sample size of n = 150 is fairly large.

The lavaan software makes it remarkably convenient to estimate non-linear functions
of the parameters, along with standard errors calculated using the multivariate delta
method (see the end of Section A.5 in Appendix A). This is accomplished with the :=

operator, as shown below. In this example, two functions of the parameter vector are
specified. The first function is ω1 − ω2. Because this function is linear, the Z-test for
whether it equals zero is equivalent to the Wald test of H0 : ω1 = ω2 directly above. The
second function is the reliability of W1. Using Equation (29) on page 41, this is φ

φ+ω1
.

> # Non-linear functions of the parameters with :=

> dmodel1b = ’Y ~ beta1*X # Latent variable model

+ X =~ 1*W1 + 1*W2 # Measurement model

+ # Variances (covariances would go here too)

+ X~~phi*X # Var(X) = phi

+ Y~~psi*Y # Var(epsilon) = psi

+ W1~~omega1*W1 # Var(e1) = omega1

+ W2~~omega2*W2 # Var(e2) = omega2

+ diff := omega1-omega2

+ rel1 := phi/(omega1+phi)

+ ’

> dfit1b = lavaan(dmodel1b, data=babydouble)

> parameterEstimates(dfit1b)

lhs op rhs label est se z pvalue ci.lower ci.upper

1 Y ~ X beta1 0.707 0.290 2.442 0.015 0.140 1.275

2 X =~ W1 1.000 0.000 NA NA 1.000 1.000

3 X =~ W2 1.000 0.000 NA NA 1.000 1.000

4 X ~~ X phi 1.104 0.181 6.104 0.000 0.750 1.459

5 Y ~~ Y psi 9.775 1.153 8.481 0.000 7.516 12.034

6 W1 ~~ W1 omega1 0.834 0.158 5.265 0.000 0.524 1.145

7 W2 ~~ W2 omega2 0.800 0.156 5.123 0.000 0.494 1.105

8 diff := omega1-omega2 diff 0.035 0.252 0.139 0.890 -0.458 0.528

9 rel1 := phi/(omega1+phi) rel1 0.570 0.066 8.657 0.000 0.441 0.699

Apart from rounding error, the Z statistic of 0.139 for the null hypothesis ω1 − ω2 = 0
matches the Wald test of the same null hypothesis, with W = Z2.

> 0.139^2

[1] 0.019321

Trying to fit models with non-identifiable parameters This sub-section contains
more details about how lavaan works, and also some valuable material on the connec-
tion of identifiability to maximum likelihood estimation. The account of how double
measurement can help with identifiability is continued on page 83.
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Trying to estimate the parameters of a structural equation model without first checking
identifiability is like jumping out of an airplane without checking that your backpack
contains a parachute and not just a sleeping bag. You shouldn’t do it. Unfortunately,
people do it all the time. Sometimes it’s because they have little or no idea what parameter
identifiability is. Sometimes it’s because the model is a little non-standard, and checking
identifiability is too much work35. Sometimes, it’s because of coding errors. Typos in
the model string can easily specify a model that’s non-identifiable, because a mis-spelled
parameter name is assumed to represent a different parameter. Anyway, it’s interesting
to see how lavaan deals with models you know are not identified. The main lesson is
that sometimes it complains, and sometimes it just returns a meaningless answer with
no obvious indication that anything is wrong. This is not a criticism of lavaan. It’s a
reminder that you need to know what you are doing.

Example 0.10.2

In this first example, non-identifiability causes lavaan to complain loudly. The model is
obtained by taking dmodel1 (that’s the model of Example 0.10.1 on page 63) and adding
unknown coefficients λ1 and λ2 linking X to W1 and W2 respectively36. The result is that
there are now two more parameters, for a total of seven. There are still only six variances
and covariances, so the model fails the parameter count rule, and we know the parameters
can be identifiable on at most a set of volume zero in the parameter space.

> dmodel2 = ’Y ~ beta1*X # Latent variable model

+ X =~ lambda1*W1 + lambda2*W2 # Measurement model

+ # Variances (covariances would go here too)

+ X~~phi*X # Var(X) = phi

+ Y~~psi*Y # Var(epsilon) = psi

+ W1~~omega1*W1 # Var(e1) = omega1

+ W2~~omega2*W2 # Var(e2) = omega2

+ ’

When we try to fit the model, it’s clear that something is wrong.

> dfit2 = lavaan(dmodel2, data=babydouble)

Warning message:

In lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, :

lavaan WARNING: could not compute standard errors!

lavaan NOTE: this may be a symptom that the model is not identified.

In this case, lavaan correctly guessed that the parameters were not identifiable. Here’s
what happened.

35In later chapters, we will use Sage to ease the burden of symbolic calculation. See Appendix B.
36This is surely a more believable model.
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When lavaan does maximum likelihood estimation, it is minimizing a function propor-
tional to the minus log likelihood plus a constant37. If the parameter vector is massively
non-identifiable as in the present case, the typical parameter vector belongs to an infinite,
connected set whose members all yield exactly the same covariance matrix and hence the
same value of the function being minimized. The graph of the function does not look
like a high-dimensional bowl. Instead, it resembles a high-dimensional river valley. The
non-unique minimum is on the flat surface of the water at the bottom of the valley. The
numerical search starts somewhere up in the hills, and then trickles downhill, usually until
it comes to the river. Then it stops. The stopping place (the MLE) depends entirely on
where the search began.

The surface is not strictly concave up at the stopping point, so the Hessian matrix
(see Expression A.29 in Appendix A) is not positive definite. However, the valley func-
tion is convex, so that the Hessian has to be non-negative definite. Consequently all its
eigenvalues are greater than or equal to zero. They can’t all be positive, or the Hessian
would be positive definite. This means there must be at least one zero eigenvalue. Hence,
the determinant of the Hessian is zero and its inverse does not exist.

The standard errors of the MLEs are the square roots of the diagonal elements of the
estimated asymptotic variance-covariance matrix. This matrix is obtained by inverting
the Hessian of the minus log likelihood; see Expression (A.35) in Appendix A. Since the
inverse does not exist, the standard errors can’t be computed, and lavaan issues a warning
about it. This whole scenario is so common that lavaan also speculates – correctly in
this case – that the problem arises from lack of parameter identifiability.

This is not an error; it’s just a warning. A model fit object is created.

> summary(dfit2)

lavaan 0.6-7 ended normally after 26 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 7

Number of observations 150

Model Test User Model:

Test statistic NA

Degrees of freedom -1

P-value (Unknown) NA

Parameter Estimates:

37The constant is L(D, Σ̂), the multivariate normal likelihood evaluated at the unrestricted MLE of
µ and Σ. The function is also divided by n, which can help with numerical accuracy. When the search
finds a minimum, multiplication by 2n yields the test statistic given in Equation (44).
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Standard errors Standard

Information Expected

Information saturated (h1) model Structured

Latent Variables:

Estimate Std.Err z-value P(>|z|)

X =~

W1 (lmb1) 0.962 NA

W2 (lmb2) 0.998 NA

Regressions:

Estimate Std.Err z-value P(>|z|)

Y ~

X (bet1) 0.693 NA

Variances:

Estimate Std.Err z-value P(>|z|)

X (phi) 1.151 NA

.Y (psi) 9.776 NA

.W1 (omg1) 0.871 NA

.W2 (omg2) 0.761 NA

After “normal” convergence (hummm), the Minimum Function Test Statistic is NA,
or missing even though it could be computed. The degrees of freedom are -1, impossible
for a chi-squared statistic. The degrees of freedom are calculated as number of unique
variances and covariances minus number of parameters. When it’s negative, this is a sure
sign the model has failed the parameter count rule, and the parameter vector can’t be
identifiable. The software could check this and inform the user, but as of this writing it
does not. Parameter estimates (corresponding to the point where the search stopped) are
given, but standard errors are NA and there are no significance tests.

Example 0.10.3

In this next example, we modify the model of Example 0.10.1 again, keeping the unknown
factor loadings λ1 and λ2 that connect the latent explanatory variable F to its indicators
W1 and W2, but making the two measurement error variances equal: ω1 = ω2 = ω.
Everything else remains the same. The model has six unknown parameters and six unique
variances and covariances, so it passes the test of the parameter count rule. This means
identifiability is possible, but not guaranteed.

> # dmodel3 passes the parameter count rule, but its parameters are not identifiable.

> dmodel3 = ’Y ~ beta1*X # Latent variable model

+ X =~ lambda1*W1 + lambda2*W2 # Measurement model

+ X~~phi*X # Var(X) = phi
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+ Y~~psi*Y # Var(epsilon) = psi

+ W1~~omega*W1 # Var(e1) = omega

+ W2~~omega*W2 # Var(e2) = omega

+ ’

> dfit3 = lavaan(dmodel3, data=babydouble)

>

lavaan fits the model and generates a useful warning.

Warning message:

In lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, :

lavaan WARNING:

The variance-covariance matrix of the estimated parameters (vcov)

does not appear to be positive definite! The smallest eigenvalue

(= 1.121048e-18) is close to zero. This may be a symptom that the

model is not identified.

So, even though lavaan is able to numerically invert the Fisher information to get an
asymptotic covariance matrix of the MLEs, it correctly speculates that there is a problem
with identifiability, and the answer should not be trusted. Looking at summary,

> summary(dfit3)

lavaan 0.6-7 ended normally after 19 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 7

Number of equality constraints 1

Number of observations 150

Model Test User Model:

Test statistic 0.014

Degrees of freedom 0

Parameter Estimates:

Standard errors Standard

Information Expected

Information saturated (h1) model Structured

Latent Variables:

Estimate Std.Err z-value P(>|z|)

X =~
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W1 (lmb1) 0.987 0.085 11.575 0.000

W2 (lmb2) 0.975 0.085 11.443 0.000

Regressions:

Estimate Std.Err z-value P(>|z|)

Y ~

X (bet1) 0.693 0.264 2.624 0.009

Variances:

Estimate Std.Err z-value P(>|z|)

X (phi) 1.148 0.078 14.757 0.000

.Y (psi) 9.776 1.153 8.481 0.000

.W1 (omeg) 0.817 0.094 8.660 0.000

.W2 (omeg) 0.817 0.094 8.660 0.000

Except for the warning message, everything seems to be fine. However, it’s not fine! The
parameters of this model are not identifiable, and as in the previous example (Exam-
ple 0.10.2), the MLE is not unique. At first glance, it’s not obvious why.

The matrix equation (45) gives the covariance matrix of (Wi,1,Wi,2, Yi)
>, expressing

the six covariance structure equations in six unknowns, in a compact form. σ11 σ12 σ13

σ22 σ23

σ33

 =

 λ2
1φ+ ω λ1λ2φ λ1β1φ

λ2
2φ+ ω λ2β1φ

β2
1φ+ ψ

 . (45)

First, it is clear that if just one of λ1 = 0, λ2 = 0 or β1 = 0, the zero value would be
detectable from the covariance matrix, making that parameter identifiable. However, the
remaining four equations in five unknowns would fail the parameter count rule, so that
the other parameters would not be identifiable. If two or three of λ1, λ2 and β1 were equal
to zero, it would be impossible to tell which ones they were. Solving the remaining three
equations in six unknowns is a hopeless task, and the entire parameter vector would be
non-identifiable.

All these identifiability problems are local, and would have no effect on numerical
maximum likelihood unless the true parameter values in question were zero. So consider
points in the parameter space where λ1, λ2 and β1 are all non-zero. In this case, ω and ψ
are identifiable, because

ω = σ11 −
σ12σ13

σ23

and ψ = σ33 −
σ13σ23

σ12

.

In fact, ω is over-identified, and this imposes the testable constraint σ11 = σ22 on the
covariance matrix, even though the Model Test degrees of freedom equal zero in the
output. As for the other parameters, let θ1 be an arbitrary point in the parameter space.
Letting c 6= 0, consider the two parameter vectors

θ1 λ1 λ2 β1 φ ω ψ

θc cλ1 cλ2 cβ1
φ
c2

ω ψ
(46)
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It is clear that θ1 and θc both yield the same covariance matrix (45), and hence the same
value of the likelihood function. In fact, every point in the parameter space belongs to
an infinite family {θc : c 6= 0} whose members all have the same the same likelihood.
This means that if a numerical search locates a minimum, that point is just one of an
infinite number of points in the parameter space where that same minimum value is
attained. Furthermore the set is connected, and we are back to the river valley picture of
Example 0.10.2.

A good way to confirm this account of what’s happening is to choose a different set of
starting values. Then, the numerical search should trickle downhill into the valley until
it reaches a different point on the likelihood river. The estimated parameters should be
very different (except for ψ and ω), but the value of the likelihood function (the height of
the point on the river) should be the same. In the first test, I will try to start the search
exactly in the river, at a point fairly distant from the first MLE. If the map provided by
the table in (46) is correct, this should work.

To specify starting value of a regression coefficient in lavaan, one replaces the co-
efficient with start(number), where number is a numeric starting value. A generic
example is Y∼start(4.2)*X. This is excellent when you are letting lavaan name pa-
rameters automatically, but what if you want to also name the regression coefficient?
Somewhat oddly, you specify the connection between X and Y twice, and lavaan picks
up the information in two passes through the syntax. The generic example would look
like this: Y∼beta*X + start(4.2)*X. A similar syntax works for variances, like this:
Y∼∼sigmasq*Y + start(1.0)*Y.

Since the estimated β1 for model dmodel3 was positive, we will make it negative this
time. As far as I can tell, the starting values have to be literal numbers, and not R
variables.

> c = -2

> thetac = coef(dfit3); thetac

beta1 lambda1 lambda2 phi psi omega omega

0.693 0.987 0.975 1.148 9.776 0.817 0.817

> thetac[1] = c*thetac[1]; thetac[2] = c*thetac[2]; thetac[3] = c*thetac[3]

> thetac[4] = thetac[4]/c^2

> cat(thetac)

-1.386474 -1.974219 -1.949046 0.2870302 9.775661 0.816833 0.816833

The cat function was used to get more decimal places in the output, because I needed to
copy and paste the numbers into the model string. To start right in the river, we need as
much accuracy as possible.

> dmodel3b = ’Y ~ beta1*X + start(-1.386474)*X

+ X =~ lambda1*W1 + start(-1.974219)*W1 +

+ lambda2*W2 + start(-1.949046)*W2

+ # Variances (covariances would go here too)
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+ X~~phi*X + start(0.2870302)*X # Var(X) = phi

+ Y~~psi*Y + start(9.775661)*Y # Var(epsilon) = psi

+ W1~~omega*W1 + start(0.816833)*W1 # Var(e1) = omega

+ W2~~omega*W2 + start(0.816833)*W2 # Var(e2) = omega

+ ’

> dfit3b = lavaan(dmodel3b, data=babydouble)

There is a warning about a near-zero eigenvalue, similar to the last one. Then,

> show(dfit3b)

lavaan 0.6-7 ended normally after 2 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 7

Number of equality constraints 1

Number of observations 150

Model Test User Model:

Test statistic 0.014

Degrees of freedom 0

This time the search found a minimum in two iterations rather than 19. The value of
Test Statistic is the same as last time, suggesting that the height of the minus log
likelihood function is the same with the new starting values.

Binding the starting and ending values into a matrix for easy inspection, we see that
they are identical, at least to R’s accuracy of display. This means that essentially, we
started the numerical search at one of the infinitely many MLEs — as planned.

> rbind(thetac,coef(dfit3b))

beta1 lambda1 lambda2 phi psi omega omega

thetac -1.386474 -1.974219 -1.949046 0.2870302 9.775661 0.816833 0.816833

-1.386474 -1.974219 -1.949046 0.2870302 9.775661 0.816833 0.816833

Also as expected, the parameter estimates are quite different from the first set we located,
except for the estimates of the identifiable parameters ψ and ω.

> rbind(coef(dfit3),coef(dfit3b))

beta1 lambda1 lambda2 phi psi omega omega

[1,] 0.6932368 0.9871093 0.9745232 1.1481206 9.775661 0.816833 0.816833

[2,] -1.3864740 -1.9742186 -1.9490464 0.2870302 9.775661 0.816833 0.816833
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Though the locations of the MLEs are different, the log likelihood at those points is the
same. Again, the theoretical analysis is confirmed.

> c( logLik(dfit3), logLik(dfit3b) )

[1] -878.5155 -878.5155

In one last variation, the search starts fairly close to the river38 but not exactly on target,
and finds its way to yet another MLE. Here, starting values are provided for λ1, λ2, β1

and φ. lavaan provides starting values for ψ and ω.

> dmodel3c = ’Y ~ beta1*X + start(6)*X

X =~ lambda1*W1 + start(8)*W1 +

lambda2*W2 + start(8)*W2

# Variances (covariances would go here too)

X~~phi*X + start(1/64)*X # Var(X) = phi

Y~~psi*Y # Var(epsilon) = psi

W1~~omega*W1 # Var(e1) = omega

W2~~omega*W2 # Var(e2) = omega

’

> dfit3c = lavaan(dmodel3c, data=babydouble)

Warning message:

In lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, :

lavaan WARNING:

The variance-covariance matrix of the estimated parameters (vcov)

does not appear to be positive definite! The smallest eigenvalue

(= 1.285532e-12) is close to zero. This may be a symptom that the

model is not identified.

> c( logLik(dfit3), logLik(dfit3b), logLik(dfit3b) )

[1] -878.5155 -878.5155 -878.5155

> rbind( coef(dfit3), coef(dfit3b), coef(dfit3c) )

beta1 lambda1 lambda2 phi psi omega omega

[1,] 0.6932368 0.9871093 0.9745232 1.1481206 9.775661 0.816833 0.816833

[2,] -1.3864740 -1.9742186 -1.9490464 0.2870302 9.775661 0.816833 0.816833

[3,] 5.7803725 8.2307505 8.1258046 0.0165135 9.775661 0.816833 0.816833

So the search located another point with the same maximum log likelihood, fairly far from
the other two. For the parameters that are not identifiable, the answer depends on the
starting value.

When the parameters of a model are all identifiable, the minus log likelihood should
have a unique global minimum, and lavaan’s default starting values should be adequate

38To find a point that is “fairly close,” observe from (46) that the product λ1λ2φ must be constant for
all points on the river. The constant is pretty close to 1, and β1 should be around 3/4 of λ1. So β1 = 6,
λ1 = λ2 = 8 and φ = 1/64 should do it.
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most of the time. However even when the parameters are identifiable, local maxima
and minima are possible. If you suspect the search may have located a local minimum
(perhaps because some of the MLEs are extremely large), you may need to specify your
own starting values. Try several sets. The parTable function can be used to verify that
the starting values were the ones you intended. In the display below, ustart are the
starting values given by the user, some of which are NA because they were not specified.
The start column are the starting values used by the software, and the est column
(estimates) is where the search ended — at the parameter estimates.

> parTable(dfit3c)

id lhs op rhs user block group free ustart exo label plabel start est se

1 1 Y ~ X 1 1 1 1 6.000 0 beta1 .p1. 6.000 5.780 1.895

2 2 X =~ W1 1 1 1 2 8.000 0 lambda1 .p2. 8.000 8.231 0.822

3 3 X =~ W2 1 1 1 3 8.000 0 lambda2 .p3. 8.000 8.126 0.819

4 4 X ~~ X 1 1 1 4 0.016 0 phi .p4. 0.016 0.017 0.004

5 5 Y ~~ Y 1 1 1 5 NA 0 psi .p5. 5.164 9.776 1.153

6 6 W1 ~~ W1 1 1 1 6 NA 0 omega .p6. 0.968 0.817 0.094

7 7 W2 ~~ W2 1 1 1 7 NA 0 omega .p7. 0.953 0.817 0.094

8 8 .p6. == .p7. 2 0 0 0 NA 0 0.000 0.000 0.000

0.10.3 The Double Measurement Design in Matrix Form

Consider the general case of regression with measurement error in both the explanatory
variables and the response variables. Independently for i = 1, . . . , n, let

wi,1 = ν1 + xi + ei,1 (47)

vi,1 = ν2 + yi + ei,2

wi,2 = ν3 + xi + ei,3

vi,2 = ν4 + yi + ei,4,

yi = α+ βxi + εi

where

yi is a q × 1 random vector of latent response variables. Because q can be greater
than one, the regression is multivariate.

β is a q×p matrix of unknown constants. These are the regression coefficients, with
one row for each response variable and one column for each explanatory variable.

xi is a p×1 random vector of latent explanatory variables, with expected value zero
and variance-covariance matrix Φ, a p × p symmetric and positive definite matrix
of unknown constants.

εi is the error term of the latent regression. It is a q×1 random vector with expected
value zero and variance-covariance matrix Ψ, a q×q symmetric and positive definite
matrix of unknown constants.
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wi,1 and wi,2 are p×1 observable random vectors, each consisting of xi plus random
error and a set of constant terms that represent measurement bias39.

vi,1 and vi,2 are q× 1 observable random vectors, each consisting of yi plus random
error and measurement bias.

ei,1, . . . , ei,1 are the measurement errors in wi,1,vi,1,wi,2 and vi,2 respectively. Join-
ing the vectors of measurement errors into a single long vector ei, its covariance
matrix may be written as a partitioned matrix

cov(ei) = cov


ei,1
ei,2
ei,3
ei,4

 =


Ω11 Ω12 0 0

Ω>12 Ω22 0 0
0 0 Ω33 Ω34

0 0 Ω>34 Ω44

 = Ω.

The matrices of covariances between xi, εi and ei are all zero.

α, ν1, ν2, ν3 and ν4 are vectors of constants.

E(xi) = µx.

The main idea of the Double Measurement Design is that every variable is measured
by two different methods. Errors of measurement may be correlated within measurement
methods, but not between methods. So for example, farmers who overestimate their
number of pigs may also overestimate their number of cows. On the other hand, if
the number of pigs is counted once by the farm manager at feeding time and on another
occasion by a research assistant from an areal photograph, then it would be fair to assume
that the errors of measurement for the different methods are uncorrelated. In general,
correlation within measurement methods is almost unavoidable. The ability of the double
measurement model to admit the existence of correlated measurement error and still be
identifiable is a real advantage.

In symbolic terms, ei,1 is error in measuring the explanatory variables by method one,
and ei,2 is error in measuring the response variables by method one. cov(ei,1) = Ω11 need
not be diagonal, so method one’s errors of measurement for the explanatory variables
may be correlated with one another. Similarly, cov(ei,2) = Ω22 need not be diagonal, so
method one’s errors of measurement for the response variables may be correlated with one
another. And, errors of measurement using the same method may be correlated between
the explanatory and response variables. For method one, this is represented by the matrix
cov(ei,1, ei,2) = Ω12. The same pattern holds for method two. On the other hand, ei,1
and ei,2 are each uncorrelated with both ei,3 and ei,4.

To emphasize an important practical point, the matrices Ω11 and Ω33 must be of
the same dimension, just as Ω22 and Ω44 must be of the same dimension – but none of
the corresponding elements have to be equal. In particular, the corresponding diagonal

39For example, if one of the elements of wi,1 is reported amount of exercise, the corresponding element
of ν1 would be the average amount by which people exaggerate how much they exercise.
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Figure 15: The Double Measurement Model

��
��

��
��

yx

w1 v1

w2 v2

6 6

? ?

e1 e2

-

β
� ε

� �
? ?

Ω12

? ?

6 6

e3 e4

� �6 6

Ω34

elements may be unequal. This means that measurements of a variable by two different
methods do not need to be equally precise.

The model is depicted in Figure 15. It follows the usual conventions for path diagrams
of structural equation models. Straight arrows go from exogenous variables (that is,
explanatory variables, those on the right-hand side of equations) to endogenous varables
(response variables, those on the left side). Correlations among exogenous variables are
represented by two-headed curved arrows. Observable variables are enclosed by rectangles
or squares, while latent variables are enclosed by ellipses or circles. Error terms are not
enclosed by anything.

Parameter identifiability As usual in structural equation models, the moments (specif-
ically, the expected values and variance-covariance matrix) of the observable data are
functions of the model parameters. If the model parameters are also functions of the
moments, then they are identifiable40. For the double measurement model, the parame-
ters appearing in the covariance matrix of the observable variables are identifiable, but
the parameters appearing only in the mean vector are not. Accordingly, we split the job

40Meaning identifiable from the moments. For multivariate normal models and also in general practice,
a parameter is identifiable from the mean vector and covariance matrix, or not at all.
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into two parts, starting with the covariance matrix. The first part is typical of easier
proofs for structural equation models. The goal is to solve for the model parameters in
terms of elements of the variance-covariance matrix of the observable data. This shows
the parameters are functions of the distribution, so that no two distinct parameter values
could yield the same distribution of the observed data.

Collecting wi,1, vi,1, wi,2 and vi,2 into a single long data vector di, we write its variance-
covariance matrix as a partitioned matrix:

Σ =


Σ11 Σ12 Σ13 Σ14

Σ22 Σ23 Σ24

Σ33 Σ34

Σ44

 ,

where the covariance matrix of wi,1 is Σ11, the covariance matrix of vi,1 is Σ22, the matrix
of covariances between wi,1 and vi,1 is Σ12, and so on.

Now we express all the Σij sub-matrices in terms of the parameter matrices of Model (47)
by straightforward variance-covariance calculations. Students may be reminded that
things go smoothly if one substitutes for everything in terms of explanatory variables
and error terms before actually starting to calculate covariances. For example,

Σ12 = cov(wi,1,vi,1)

= cov (ν1 + xi + ei,1, ν2 + yi + ei,2)

= cov (ν1 + xi + ei,1, ν2 +α+ βxi + εi + ei,2)

= cov (xi + ei,1, βxi + εi + ei,2)

= cov(xi,βxi) + cov(xi, εi) + cov(xi, ei,2) + cov(ei,1,βxi) + cov(ei,1, εi) + cov(ei,1, ei,2)

= cov(xi,xi)β
> + 0 + 0 + 0 + 0 + Ω12

= Φβ> + Ω12.

In this manner, we obtain the partitioned covariance matrix of the observable data di =
(w>i,1,v

>
i,1,w

>
i,2,v

>
i,2)> as

Σ =


Σ11 Σ12 Σ13 Σ14

Σ22 Σ23 Σ24

Σ33 Σ34

Σ44

 (48)

=


Φ + Ω11 Φβ> + Ω12 Φ Φβ>

βΦβ> + Ψ + Ω22 βΦ βΦβ> + Ψ

Φ + Ω33 Φβ> + Ω34

βΦβ> + Ψ + Ω44


The equality (48) corresponds to a system of ten matrix equations in nine matrix un-
knowns. The unknowns are the parameter matrices of Model (47): Φ, β, Ψ, Ω11, Ω22,
Ω33, Ω44, Ω12, and Ω34. In the solution below, notice that once a parameter has been
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identified, it may be used to solve for other parameters without explicitly substituting in
terms of Σij quantities. Sometimes a full explicit solution is useful, but to show identifi-
ability all you need to do is show that the moment structure equations can be solved.

Φ = Σ13 (49)

β = Σ23Φ
−1 = Σ>14Φ

−1

Ψ = Σ24 − βΦβ>

Ω11 = Σ11 −Φ

Ω22 = Σ22 − βΦβ> −Ψ

Ω33 = Σ33 −Φ

Ω44 = Σ44 − βΦβ> −Ψ

Ω12 = Σ12 −Φβ>

Ω34 = Σ34 −Φβ>

The solution (49) shows that the parameters appearing in the covariance matrix Σ are
identifiable. This includes the critical parameter matrix β, which determines the connec-
tion between explanatory variables and response variables.

Intercepts

In Model (47), let µ = E(di). This vector of expected values may be written as a
partitioned vector, as follows.

µ =


µ1

µ2

µ3

µ4

 =


E(wi,1)
E(vi,1)
E(wi,2)
E(vi,2)

 =


ν1 + µx
ν2 +α+ βµx
ν3 + µx
ν4 +α+ βµx

 . (50)

The parameters that appear in µ but not Σ are contained in ν1, ν2, ν3, ν4, µx and
α. To identify these parameters, one would need to solve the equations in (50) uniquely
for these six parameter vectors. Even with β considered known and fixed because it is
identified in (49), this is impossible in most of the parameter space, because (50) specifies
2m+ 2p equations in 3m+ 3p unknowns.

It is tempting to assume the measuremant bias terms ν1 . . . ,ν4 to be zero; this would
allow identification of α and µx. Unfortunately, it is doubtful that such an assumption
could be justified very often in practice. Most of the time, all we can do is identify the
parameter matrices that appear in the covariance matrix, and also the functions µ1 . . . ,µ4

of the parameters as given in equation (50). This can be viewed as a re-parameterization
of the model. In practice, the functions µ1 . . . ,µ4 of the parameters are usually not
of much interest. They are estimated by the corresponding sample means, conveniently
forgotten, and almost never mentioned.
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To summarize, the parameters appearing in the covariance matrix are identifiable.
This includes β, the quantity of primary interest. Means and intercepts are not identi-
fiable, but they are absorbed in a re-parameterization and set aside. It’s no great loss.
In practice, if data are collected following the double measurement recipe, then the data
analysis may proceed with no worries about parameter identifiability.

For the double measurement model, there are more covariance structure equations
than unknowns. Thus the model is over-identified, and testable. Notice in the covariance
structure equations (48), that Σ14 = Σ>23. As in the scalar Example 0.10.1 (see page 63),
this constraint on the covariance matrix Σ arises from the model, and provides a way to
test whether the model is correct. These pq equalities are not the only ones implied by
the model. Because Σ13 = Φ, the p× p matrix of covariances Σ13 is actually a covariance
matrix, so it is symmetric. This implies p(p− 1)/2 more equalities.

Estimation and testing

Normal model As in Example 0.10.1, the (collapsed) expected values are estimated
by the corresponding vector of sample means, and then set aside. Under a multivari-
ate normal model, these terms literally disappear from the likelihood function (42) on
page 65. The resulting likelihood is (43) on page 65. The full range of large-sample likeli-
hood methods is available. Maximum likelihood estimates are asymptotically normal, and
asymptotic standard errors are convenient by-products of the numerical minimization as
described in Section A.6.3 of Appendix A; most software produces them by default. Di-
viding an estimated regression coefficient by its standard error gives a Z-test for whether
the coefficient is different from zero. My experience is that likelihood ratio tests can sub-
stantially outperform both these Z-tests and the Wald tests that are their generalizations,
especially when there is a lot of measurement error, the explanatory variables are strongly
related to one another, and the sample size is not huge.

Distribution-free In presenting models for regression with measurement error, it is
often convenient to assume that everything is multivariate normal. This is especially true
when giving examples of models where the parameters are not identifiable. But normality
is not necessary. Suppose Model (47) holds, and that the distributions of of the latent
explanatory variables and error terms are unknown, except that they possess covariance
matrices, with ei,1 and ei,2 having zero covariance with ei,3 and ei,4. In this case the
parameter of the model could be expressed as θ = (β, Φ, Ψ, Ω, Fx, Fε, Fe), where Fx,
Fε and Fe are the (joint) cumulative distribution functions of xi, εi and ei respectively.

Note that the parameter in this “non-parametric” problem is of infinite dimension,
but that presents no conceptual difficulty. The probability distribution of the observed
data is still a function of the parameter vector, and to show identifiability, we would have
to be able to recover the parameter vector from the probability distribution of the data.
While in general we cannot recover the whole thing, we certainly can recover a useful
function of the parameter vector, namely β. In fact, β is the only quantity of interest;
the remainder of the parameter vector consists only of nuisance parameters, whether it is
of finite dimension or not.
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To make the reasoning explicit, the covariance matrix Σ is a function of the probability
distribution of the observed data, whether that probability distribution is normal or not.
The calculations leading to (49) still hold, showing that β is a function of Σ, and hence
of the probability distribution of the data. Therefore, β is identifiable.

This is all very well, but can we actually do anything without knowing what the dis-
tributions are? Certainly! Looking at (49), one is tempted to just put hats on everything
to obtain Method-of-Moments estimators. However, we can do a little better. Note that
while Φ = Σ12 is a symmetric matrix in the population and Σ̂12 converges to a symmetric
matrix, Σ̂12 will be non-symmetric for any finite sample size (with probability one if the
distributions involved are continuous). A better estimator is obtained by averaging pairs
of off-diagonal elements:

Φ̂M =
1

2
(Σ̂13 + Σ̂

>
13), (51)

where the subscript M indicates a Method-of-Moments estimator. Using the second line
of (49), a reasonable though non-standard estimator of β is

β̂M =
1

2

(
Σ̂
>
14 + Σ̂23

)
Φ̂
−1

M (52)

Consistency follows from the Law of Large Numbers and a continuity argument. All this
assumes the existence only of second moments and cross-moments. With the assumption
of fourth moments (so that sample variances possess variances), Theorem A.1 in Ap-
pendix A, combined with the multivariate delta method, provides a basis for large-sample
interval estimation and testing.

However, there is no need to bother. As described in Chapter 5, the normal-theory
tests and confidence intervals for β can be trusted when the data are not normal. Note
that this does not extend to the other model parameters. For example, if the vector of
latent variables xi is not normal, then normal-theory inference about its covariance matrix
will be flawed. In any event, the estimation method of choice will maximum likelihood,
with interpretive focus on the regression coefficients in β rather than on the other model
parameters.

0.10.4 The BMI Health Study

Body mass index (BMI) is defined as weight in kilograms divided by height in meters
squared. It represents weight relative to height, and is a measure of how thick, or hefty
a person is. People with a BMI less than 18 are described as underweight, those over 25
are described as overweight, and those over 30 are described as obese. However, many
professional athletes have BMI numbers in the overweight range.

High BMI tends to be associated with poor health, and with indicators such as high
blood pressure and high cholesterol. However, people with high BMI also tend to be older
and fatter. Perhaps age and physical condition are responsible for the association of BMI
to health. The natural idea is to look at the connection of BMI to health indicators,
controlling for age and some indicator of physical condition like percent body fat. The
problem is that percent body fat (and to a lesser extent, age) are measured with error. As

https://en.wikipedia.org/wiki/Body_mass_index
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discussed in Section 0.7, standard ways of controlling for them with ordinary regression
are highly suspect. The solution is double measurement regression.

Example 0.10.4 The BMI health study41

In this study, there are five latent variables. Each one was were measured twice, by
different personnel at different locations and mostly by different methods. The variables
are age, BMI, percent body fat, cholesterol level, and diastolic blood pressure.

• In measurement set one, age was self report. In measurement set two, age was based
on a passport or birth certificate.

• In measurement set one, the height and weight measurements making up BMI were
conducted in a doctor’s office, following no special procedures. In measurement set
two, they were conducted by a lab technician. Patients had to remove their shoes,
and wore a hospital gown.

• In measurement set one, estimated percent body fat was based on measurements
with tape and calipers, conducted in the doctor’s office. In measurement set two,
percent body fat was estimated by submerging the participant in a water tank
(hydrostatic weighing).

• In measurement set one, serum (blood) cholesterol level was measured in lab 1.
In measurement set two, it was measured in lab 2. There is no known difference
between the labs in quality.

• In measurement set one, diastolic blood pressure was measured in the doctor’s
office using a standard manual blood pressure cuff. In measurement set two, blood
pressure was measured in the lab by a digital device, and was mostly automatic.

Measurement set two was of generally higher quality than measurement set one. Corre-
lation of measurement errors is possible within sets, but unlikely between sets.

Figure 16 shows a regression model for the latent variables. Because all the vari-
ables are latent, they are enclosed in ovals. There are two response variables, so this is
multivariate regression.
First, we read the data and take a look. The variables are self-explanatory. There are
500 cases.

> bmidata = read.table("http://www.utstat.toronto.edu/~brunner/openSEM/data/bmi.data.txt")

> head(bmidata)

age1 bmi1 fat1 cholest1 diastol1 age2 bmi2 fat2 cholest2 diastol2

1 63 24.5 16.5 195.4 38 60 23.9 20.1 203.5 66

2 42 13.0 1.9 184.3 86 44 14.8 2.6 197.3 78

3 32 22.5 14.6 354.1 104 33 21.7 20.4 374.3 73

41This study is fictitious, and the data come from a combination of random number generation and
manual editing. As far as I know, nothing like this has actually been done. I believe it should be.
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Figure 16: Latent variable model for the BMI health study

age

bmi

fat

diastol

ε
1cholest

ε
2

4 59 25.5 19.0 214.6 93 58 28.5 20.0 203.7 106

5 45 26.5 17.8 324.8 97 43 25.0 12.3 329.7 92

6 31 19.4 17.1 280.7 92 42 19.9 19.9 276.7 87

The standard, naive approach to analyzing these data is to ignore the possibility of mea-
surement error, and use ordinary linear regression. One could either use just the better
set of measurements (set 2), or average them. Averaging is a little better, because it
improves reliability.

> age = (age1+age2)/2; bmi = (bmi1+bmi2)/2; fat = (fat1+fat2)/2

> cholest = (cholest1+cholest2)/2; diastol = (diastol1+diastol2)/2

There are two response variables (cholesterol level and diastolic blood pressure), so we
fit a conventional multivariate linear model, and look at the multivariate test of BMI
controlling for age and percent body fat. The full model has age, percent body fat and
BMI, while the restricted model has just age and percent body fat.

> fullmod = lm( cbind(cholest,diastol) ~ age + fat + bmi)

> restrictedmod = update(fullmod, . ~ . - bmi) # Remove var(s) being tested

> anova(fullmod,restrictedmod) # Gives multivariate test.

Analysis of Variance Table

Model 1: cbind(cholest, diastol) ~ age + fat + bmi

Model 2: cbind(cholest, diastol) ~ age + fat

Res.Df Df Gen.var. Pillai approx F num Df den Df Pr(>F)

1 496 591.89

2 497 1 599.36 0.02869 7.3106 2 495 0.0007431 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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The conclusion is that controlling for age and percent body fat, BMI is related to choles-
terol, or diastolic blood pressure, or both. The summary function gives two sets of uni-
variate output. Primary interest is in the t-tests for bmi.

> summary(fullmod) # Two sets of univariate output

Response cholest :

Call:

lm(formula = cholest ~ age + fat + bmi)

Residuals:

Min 1Q Median 3Q Max

-148.550 -34.243 2.626 33.661 165.582

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 220.0610 21.0109 10.474 < 0.0000000000000002 ***

age -0.2714 0.2002 -1.356 0.17578

fat 2.2334 0.5792 3.856 0.00013 ***

bmi 0.5164 1.0154 0.509 0.61128

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 52.43 on 496 degrees of freedom

Multiple R-squared: 0.09701,Adjusted R-squared: 0.09155

F-statistic: 17.76 on 3 and 496 DF, p-value: 0.00000000005762

Response diastol :

Call:

lm(formula = diastol ~ age + fat + bmi)

Residuals:

Min 1Q Median 3Q Max

-44.841 -7.140 -0.408 7.612 41.377

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 49.69194 4.52512 10.981 < 0.0000000000000002 ***

age 0.12648 0.04311 2.934 0.003504 **

fat 0.64056 0.12474 5.135 0.000000406 ***

bmi 0.82627 0.21869 3.778 0.000177 ***

---
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Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 11.29 on 496 degrees of freedom

Multiple R-squared: 0.3333,Adjusted R-squared: 0.3293

F-statistic: 82.67 on 3 and 496 DF, p-value: < 0.00000000000000022

For cholesterol, we have t = 0.509 and p = 0.61128. The conclusion is that controlling for
age and percent body fat, there is no evidence of a connection between body mass index
and serum cholesterol level.

For diastolic blood pressure, the test of BMI controlling for age and percent body fat is
t = 3.778 and p = 0.000177. This time the conclusion is that even controlling for age and
percent body fat, higher BMI is associated with higher average diastolic blood pressure
– a bad sign for health. However, this “even controlling for” conclusion is exactly the
kind of mistake that is often caused by ignoring measurement error; see Section 0.7. So,
we specify a proper double measurement regression model. The names of latent variables
begin with L. I did this because I’d already used the natural names like age, bmi and
cholest earlier, and I wanted to avoid accidental conflicts.

bmimodel1 =

########################################################

# Latent variable model

# ---------------------

’Lcholest ~ beta11*Lage + beta12*Lbmi + beta13*Lfat

Ldiastol ~ beta21*Lage + beta22*Lbmi + beta23*Lfat

#

# Measurement model

# -----------------

Lage =~ 1*age1 + 1*age2

Lbmi =~ 1*bmi1 + 1*bmi2

Lfat =~ 1*fat1 +1*fat2

Lcholest =~ 1*cholest1 + 1*cholest2

Ldiastol =~ 1*diastol1 + 1*diastol2

#

# Variances and covariances

# -------------------------

# Of latent explanatory variables

Lage ~~ phi11*Lage; Lage ~~ phi12*Lbmi; Lage ~~ phi13*Lfat

Lbmi ~~ phi22*Lbmi; Lbmi ~~ phi23*Lfat

Lfat ~~ phi33*Lfat

# Of error terms in latent the regression (epsilon_ij)

Lcholest ~~ psi11*Lcholest; Lcholest ~~ psi12*Ldiastol

Ldiastol ~~ psi22*Ldiastol

# Of measurement errors (e_ijk) for measurement set 1

age1 ~~ w111*age1; age1 ~~ w112*bmi1; age1 ~~ w113*fat1;

age1 ~~ w114*cholest1; age1 ~~ w115*diastol1

bmi1 ~~ w122*bmi1; bmi1 ~~ w123*fat1; bmi1 ~~ w124*cholest1; bmi1 ~~ w125*diastol1

fat1 ~~ w133*fat1; fat1 ~~ w134*cholest1; fat1 ~~ w135*diastol1

cholest1 ~~ w144*cholest1; cholest1 ~~ w145*diastol1

diastol1 ~~ w155*diastol1

# Of measurement errors (e_ijk) for measurement set 2
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age2 ~~ w211*age2; age2 ~~ w212*bmi2; age2 ~~ w213*fat2;

age2 ~~ w214*cholest2; age2 ~~ w215*diastol2

bmi2 ~~ w222*bmi2; bmi2 ~~ w223*fat2; bmi2 ~~ w224*cholest2; bmi2 ~~ w225*diastol2

fat2 ~~ w233*fat2; fat2 ~~ w234*cholest2; fat2 ~~ w235*diastol2

cholest2 ~~ w244*cholest2; cholest2 ~~ w245*diastol2

diastol2 ~~ w255*diastol2

’ ################# End of bmimodel1 #################

When we try to fit this perfectly nice model, there is trouble.

> # install.packages("lavaan", dependencies = TRUE) # Only need to do this once

> library(lavaan)

This is lavaan 0.6-7

lavaan is BETA software! Please report any bugs.

> fit1 = lavaan(bmimodel1, data=bmidata)

Warning message:

Warning messages:

1: In lav_model_estimate(lavmodel = lavmodel, lavpartable = lavpartable, :

lavaan WARNING: the optimizer warns that a solution has NOT been found!

2: In lav_model_estimate(lavmodel = lavmodel, lavpartable = lavpartable, :

lavaan WARNING: the optimizer warns that a solution has NOT been found!

3: In lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, :

lavaan WARNING:

Could not compute standard errors! The information matrix could

not be inverted. This may be a symptom that the model is not

identified.

4: In lav_object_post_check(object) :

lavaan WARNING: some estimated lv variances are negative

We are warned that a numerical solution has not been found, and that the information
matrix (that’s the Fisher Information, the Hessian of the minus log likelihood) could
not be inverted. This means that the minus log likelihood is not strictly concave up in
every direction at the point where the search stopped, so the search has not located a
local minimum. lavaan speculates that “this may be a symptom that the model is not
identified,” but the guess is wrong. This is standard double measurement regression, and
we have proved that all the parameters are identifiable. At the end of the red warnings,
we are also informed that some estimated latent variable variances are negative. This
means that the numerical search for the MLE has left the parameter space.

The output of summary(fit1) is quite voluminous. There are 45 parameters, and
everything we do will generate a lot of output. It starts like this.

lavaan 0.6-7 ended normally after 4241 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 45
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Number of observations 500

Model Test User Model:

Test statistic 89.369

Degrees of freedom 10

P-value (Chi-square) 0.000

That’s a lot of iterations, and the criteria for “normal” convergence appear to be quite
forgiving. The output goes on. The last section gives variance estimates; as the warning
message said, one of them is negative.

Variances:

Estimate Std.Err z-value P(>|z|)

Lage (ph11) 146.720 NA

Lbmi (ph22) 12.318 NA

Lfat (ph33) 42.615 NA

.Lcholst (ps11) 169.820 NA

.Ldiastl (ps22) -2785.532 NA

.age1 (w111) 18.767 NA

.bmi1 (w122) 9.177 NA

.fat1 (w133) 18.669 NA

.cholst1 (w144) 200.123 NA

.diastl1 (w155) 204.316 NA

.age2 (w211) 8.326 NA

.bmi2 (w222) 2.460 NA

.fat2 (w233) 9.975 NA

.cholst2 (w244) 344.031 NA

.diastl2 (w255) 59.441 NA

Besides being negative, the value of ψ̂22 is very large in absolute value compared to the
other variances. This, combined with the large number of iterations, suggests that the
numerical search wandered off and gotten lost somewhere far from the actual MLE.

The minus log likelihood functions for structural equation models are characterized by
hills and valleys. There can be lots of local maxima and minima. While there will be a deep
hole somehere for a sufficiently large sample is the model is correct, the only guarantee of
finding it is to start the search close to the hole, where the surface is already sloping down
in the right direction. Otherwise, what happens will depend on the detailed topography
of the minus log likelihood, and finding the correct MLE is far from guaranteed.

Here, it seems that that lavaan’s default starting values, which often work quite well,
were fairly far from the global minimum. The search proceeded downhill, but only slightly
downhill after a while42, off into the distance in an almost featureless plain. It was never

42The verbose = TRUE option on the lavaan statement generated thousands of lines of output, not
shown here. The decrease in the minus log likelihood was more and more gradual near the end.



96 CHAPTER 0. REGRESSION WITH MEASUREMENT ERROR

going to arrive anywhere meaningful.
I tried setting boundaries to prevent variances from becoming negative, hoping the

search would bounce off the barrier into a better region of the parameter space. I added
the following to the model string bmimodel1,

# Bounds (Variances are positive)

# ------

phi11 > 0; phi22 > 0 ; phi33 > 0

psi11 > 0; psi22 > 0

w111 > 0; w122 > 0; w133 > 0; w144 > 0; w155 > 0;

w211 > 0; w222 > 0; w233 > 0; w244 > 0; w255 > 0

and then re-ran lavaan. The search converged “normally” after 1,196 iterations. This
time ψ̂22 was (just barely) positive, but we get this warning.

lavaan WARNING: covariance matrix of latent variables

is not positive definite;

use lavInspect(fit, "cov.lv") to investigate.

The lavInspect function is very useful and powerful. See help(lavInspect) for details.
Following their suggestion,

> lavInspect(fit1, "cov.lv")

Lage Lbmi Lfat Lchlst Ldistl

Lage 146.667

Lbmi 3.021 11.672

Lfat 24.479 21.887 43.473

Lcholest 21.588 65.420 121.015 2893.067

Ldiastol 37.581 26.730 54.471 109.211 140.689

That’s the estimated covariance matrix of the latent variables – very nice! It does not
really tell me much, except that the estimated variance of latent cholesterol level is sus-
piciously large compared to the other numbers in the matrix. To see that the matrix not
positive definite, one can look at the eigenvalues.

lvcov = lavInspect(fit1, "cov.lv"); eigen(lvcov)$values

[1] 2904.4720798211 198.2045328588 111.6623591169 21.2286105008 -0.0003796765

Sure enough, there’s a negative eigenvlue, so the matrix is not positive definite.
The only cure for this disease is better starting values. Commercial software for struc-

tural equation modeling uses a deep and sophisticated bag of tricks to pick starting values,
and SAS proc calis has no trouble with this model and these data model. However, as
of this writing, lavaan’s automatic starting values work okay only most of the time43.

43I’m not complaining. I am deeply grateful for lavaan, and if I want better starting values I should
develop the software myself. To me, this is not the most interesting project in the world, so it is on the
back burner.
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Here is a way to obtain good starting values for any structural equation model, pro-
vided the parameters are identifiable. Recall how the proof of identifiability goes. For
any model, the covariance matrix is a function of the model parameters: Σ = g(θ).
This equality represents the covariance structure equations. The parameters that ap-
pear in Σ are identifiable if the covariance structure equations can be solved to yield
θ = g−1(Σ). Provided the solution is available explicitly44, a method of moments estima-

tor is θ̂M = g−1(Σ̂), where Σ̂ denotes the sample variance-covariance matrix. Typically,
the function g−1 is continuous in most of the parameter space. In this case, the method
of moments estimator is guaranteed to be consistent by the Law of Large Numbers and
continuous mapping. Since the MLE is also consistent, it will be close to θ̂M for large
samples, and θ̂M should provide an excellent set of starting values.

For double measurement regression, the solution (49) represents θ = g−1(Σ). One

may start with Expression (51) for Φ̂M and Expression (52) for β̂M (see page 89), and
then use (49) for the rest of the parameters. This is done in the R work below.

> # Obtain the MOM estimates to use as starting values.

> head(bmidata)

age1 bmi1 fat1 cholest1 diastol1 age2 bmi2 fat2 cholest2 diastol2

1 63 24.5 16.5 195.4 38 60 23.9 20.1 203.5 66

2 42 13.0 1.9 184.3 86 44 14.8 2.6 197.3 78

3 32 22.5 14.6 354.1 104 33 21.7 20.4 374.3 73

4 59 25.5 19.0 214.6 93 58 28.5 20.0 203.7 106

5 45 26.5 17.8 324.8 97 43 25.0 12.3 329.7 92

6 31 19.4 17.1 280.7 92 42 19.9 19.9 276.7 87

> W1 = as.matrix(bmidata[,1:3]) # age1 bmi1 fat1

> V1 = as.matrix(bmidata[,4:5]) # cholest1 diastol1

> W2 = as.matrix(bmidata[,6:8]) # age2 bmi2 fat2

> V2 = as.matrix(bmidata[,9:10]) # cholest2 diastol2

> var(W1,W2) # Matrix of sample covariances

age2 bmi2 fat2

age1 148.220782 3.621581 25.29808

bmi1 5.035726 13.194016 21.42201

fat1 23.542289 20.613490 45.13296

> # Using S as short for Sigmahat, and not worrying about n vs. n-1,

> S11 = var(W1); S12 = var(W1,V1); S13 = var(W1,W2); S14 = var(W1,V2)

> S22 = var(V1); S23 = var(V1,W2); S24 = var(V1,V2)

> S33 = var(W2); S34 = var(W2,V2)

> S44 = var(V2)

> # The matrices below should all have "hat" in the name, because they are estimates

44For some models, an explicit solution is hard to obtain, even if you can prove it exists. That’s the
main obstacle to automating this process.
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> Phi = (S13+t(S13))/2

> rownames(Phi) = colnames(Phi) = c(’Lage’,’Lbmi’,’Lfat’); Phi

Lage Lbmi Lfat

Lage 148.220782 4.328654 24.42019

Lbmi 4.328654 13.194016 21.01775

Lfat 24.420185 21.017749 45.13296

> Beta = 0.5*(t(S14)+S23) %*% solve(Phi)

> rownames(Beta) = c(’Lcholest’,’Ldiastol’)

> colnames(Beta) = c(’Lage’,’Lbmi’,’Lfat’); Beta

Lage Lbmi Lfat

Lcholest -0.3851327 -0.1885072 2.968322

Ldiastol 0.0224190 -0.3556138 1.407425

> Psi = S24 - Beta %*% Phi %*% t(Beta)

> rownames(Psi) = colnames(Psi) = c(’Lcholest’,’Ldiastol’) # epsilon1, epsilon2

> Psi

Lcholest Ldiastol

Lcholest 2548.17303 -44.56069

Ldiastol -28.70087 57.64153

> # Oops, it should be symmetric.

> Psi = ( Psi+t(Psi) )/2; Psi

Lcholest Ldiastol

Lcholest 2548.17303 -36.63078

Ldiastol -36.63078 57.64153

> Omega11 = S11 - Phi; Omega11

age1 bmi1 fat1

age1 19.640040 4.610807 1.634183

bmi1 4.610807 8.699533 8.754484

fat1 1.634183 8.754484 15.033932

> Omega12 = S12 - ( S14+t(S23) )/2; Omega12

cholest1 diastol1

age1 4.499017 12.164192

bmi1 -1.517733 10.671443

fat1 3.888565 -2.196681

> Omega22 = S22-S24 # A little rough but consistent

> Omega22 = (Omega22 + t(Omega22) )/2

> Omega22

cholest1 diastol1

cholest1 213.76117 11.24971
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diastol1 11.24971 196.44520

> Omega33 = S33 - Phi; Omega33

age2 bmi2 fat2

age2 5.862661 -1.219843 -2.155736

bmi2 -1.219843 1.146991 -1.714769

fat2 -2.155736 -1.714769 10.033984

> Omega34 = S34 - ( S14+t(S23) )/2; Omega34

cholest2 diastol2

age2 -2.978041 0.7795992

bmi2 -1.206256 2.1081739

fat2 -6.422983 -4.9125882

> Omega44 = S44 - S24 ; Omega44 = ( Omega44 + t(Omega44) )/2

> Omega44

cholest2 diastol2

cholest2 333.45335 -21.65923

diastol2 -21.65923 47.23065

> round(Beta,3)

Lage Lbmi Lfat

Lcholest -0.385 -0.189 2.968

Ldiastol 0.022 -0.356 1.407

Please look at the last set of numbers. It is worth noting how far these method-of-moments
estimates are from the stopping place of the first numerical search. Here is a piece of the
output from the first summary(fit1), not shown before.

Estimate Std.Err z-value P(>|z|)

Lcholest ~

Lage (bt11) -26.391 NA

Lbmi (bt12) -354.932 NA

Lfat (bt13) 203.432 NA

Ldiastol ~

Lage (bt21) -28.583 NA

Lbmi (bt22) -390.464 NA

Lfat (bt23) 221.685 NA

While the method-of-moments estimates are promising as starting values, there is no
doubt that entering them all manually is a major pain. I was motivated and I was
confident it would work, so I did it. The model string is given below. As in Example 0.10.3,
variables appear twice, once to specify the parameter name and a second time to specify
the starting value.

> bmimodel2 =
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+ #

+ # Latent variable model

+ # ---------------------

+ ’Lcholest ~ beta11*Lage + beta12*Lbmi + beta13*Lfat +

+ start(-0.385)*Lage + start(-0.189)*Lbmi + start(2.968)*Lfat

+ Ldiastol ~ beta21*Lage + beta22*Lbmi + beta23*Lfat +

+ start(0.022)*Lage + start(-0.356)*Lbmi + start(1.407)*Lfat

+ #

+ # Measurement model

+ # -----------------

+ Lage =~ 1*age1 + 1*age2

+ Lbmi =~ 1*bmi1 + 1*bmi2

+ Lfat =~ 1*fat1 +1*fat2

+ Lcholest =~ 1*cholest1 + 1*cholest2

+ Ldiastol =~ 1*diastol1 + 1*diastol2

+ #

+ # Variances and covariances

+ # -------------------------

+ # Of latent explanatory variables

+ Lage ~~ phi11*Lage + start(148.220782)*Lage

+ Lage ~~ phi12*Lbmi + start(4.328654)*Lbmi

+ Lage ~~ phi13*Lfat + start(24.42019)*Lfat

+ Lbmi ~~ phi22*Lbmi + start(13.194016)*Lbmi

+ Lbmi ~~ phi23*Lfat + start(21.01775)*Lfat

+ Lfat ~~ phi33*Lfat + start(45.13296)*Lfat

+ # Of error terms in latent the regression (epsilon_ij)

+ Lcholest ~~ psi11*Lcholest + start(2548.17303)*Lcholest

+ Lcholest ~~ psi12*Ldiastol + start(-36.63078)*Ldiastol

+ Ldiastol ~~ psi22*Ldiastol + start(57.64153)*Ldiastol

+ # Of measurement errors (e_ijk) for measurement set 1

+ age1 ~~ w111*age1 + start(19.640040)*age1

+ age1 ~~ w112*bmi1 + start(4.610807)*bmi1

+ age1 ~~ w113*fat1 + start(1.634183)*fat1

+ age1 ~~ w114*cholest1 + start(4.499017)*cholest1

+ age1 ~~ w115*diastol1 + start(12.164192)*diastol1

+ bmi1 ~~ w122*bmi1 + start(8.699533)*bmi1

+ bmi1 ~~ w123*fat1 + start(8.754484)*fat1

+ bmi1 ~~ w124*cholest1 + start(-1.517733)*cholest1

+ bmi1 ~~ w125*diastol1 + start(10.671443)*diastol1

+ fat1 ~~ w133*fat1 + start(15.033932)*fat1

+ fat1 ~~ w134*cholest1 + start(3.888565)*cholest1

+ fat1 ~~ w135*diastol1 + start(-2.196681)*diastol1

+ cholest1 ~~ w144*cholest1 + start(213.76117)*cholest1

+ cholest1 ~~ w145*diastol1 + start(11.24971)*diastol1
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+ diastol1 ~~ w155*diastol1 + start(196.44520)*diastol1

+ # Of measurement errors (e_ijk) for measurement set 2

+ age2 ~~ w211*age2 + start(5.862661)*age2

+ age2 ~~ w212*bmi2 + start(-1.219843)*bmi2

+ age2 ~~ w213*fat2 + start(-2.155736)*fat2

+ age2 ~~ w214*cholest2 + start(-2.978041)*cholest2

+ age2 ~~ w215*diastol2 + start(0.7795992)*diastol2

+ bmi2 ~~ w222*bmi2 + start(1.146991)*bmi2

+ bmi2 ~~ w223*fat2 + start(-1.714769)*fat2

+ bmi2 ~~ w224*cholest2 + start(-1.206256)*cholest2

+ bmi2 ~~ w225*diastol2 + start(2.1081739)*diastol2

+ fat2 ~~ w233*fat2 + start(10.033984)*fat2

+ fat2 ~~ w234*cholest2 + start(-6.422983)*cholest2

+ fat2 ~~ w235*diastol2 + start(-4.9125882)*diastol2

+ cholest2 ~~ w244*cholest2 + start(333.45335)*cholest2

+ cholest2 ~~ w245*diastol2 + start(-21.65923)*diastol2

+ diastol2 ~~ w255*diastol2 + start(47.23065)*diastol2

+ # Bounds (Variances are positive)

+ # ------

+ phi11 > 0; phi22 > 0 ; phi33 > 0

+ psi11 > 0; psi22 > 0

+ w111 > 0; w122 > 0; w133 > 0; w144 > 0; w155 > 0;

+ w211 > 0; w222 > 0; w233 > 0; w244 > 0; w255 > 0

+ ’ ################# End of bmimodel2 #################

> fit2 = lavaan(bmimodel2, data=bmidata)

> summary(fit2)

lavaan 0.6-7 ended normally after 327 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 45

Number of inequality constraints 15

Number of observations 500

Model Test User Model:

Test statistic 4.654

Degrees of freedom 10

P-value (Chi-square) 0.913

Parameter Estimates:

Standard errors Standard
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Information Expected

Information saturated (h1) model Structured

Latent Variables:

Estimate Std.Err z-value P(>|z|)

Lage =~

age1 1.000

age2 1.000

Lbmi =~

bmi1 1.000

bmi2 1.000

Lfat =~

fat1 1.000

fat2 1.000

Lcholest =~

cholest1 1.000

cholest2 1.000

Ldiastol =~

diastol1 1.000

diastol2 1.000

Regressions:

Estimate Std.Err z-value P(>|z|)

Lcholest ~

Lage (bt11) -0.320 0.228 -1.404 0.160

Lbmi (bt12) 0.393 1.708 0.230 0.818

Lfat (bt13) 2.774 0.980 2.829 0.005

Ldiastol ~

Lage (bt21) 0.020 0.050 0.407 0.684

Lbmi (bt22) -0.480 0.419 -1.145 0.252

Lfat (bt23) 1.480 0.235 6.312 0.000

Covariances:

Estimate Std.Err z-value P(>|z|)

Lage ~~

Lbmi (ph12) 4.161 2.141 1.944 0.052

Lfat (ph13) 23.321 3.986 5.851 0.000

Lbmi ~~

Lfat (ph23) 20.976 1.584 13.244 0.000

.Lcholest ~~

.Ldiastl (ps12) -45.870 24.969 -1.837 0.066

.age1 ~~

.bmi1 (w112) 3.998 0.945 4.231 0.000

.fat1 (w113) 2.389 1.505 1.587 0.112
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.cholst1 (w114) 2.705 9.091 0.297 0.766

.diastl1 (w115) 10.562 3.824 2.762 0.006

.bmi1 ~~

.fat1 (w123) 8.968 0.956 9.382 0.000

.cholst1 (w124) -0.888 4.178 -0.212 0.832

.diastl1 (w125) 10.060 2.274 4.424 0.000

.fat1 ~~

.cholst1 (w134) 7.916 6.741 1.174 0.240

.diastl1 (w135) -2.928 3.409 -0.859 0.390

.cholest1 ~~

.diastl1 (w145) -0.107 16.907 -0.006 0.995

.age2 ~~

.bmi2 (w212) -0.661 0.735 -0.899 0.369

.fat2 (w213) -2.703 1.369 -1.974 0.048

.cholst2 (w214) -1.964 8.962 -0.219 0.827

.diastl2 (w215) 2.274 2.710 0.839 0.401

.bmi2 ~~

.fat2 (w223) -1.849 0.705 -2.624 0.009

.cholst2 (w224) -2.650 3.476 -0.762 0.446

.diastl2 (w225) 2.652 1.487 1.784 0.074

.fat2 ~~

.cholst2 (w234) -11.370 6.546 -1.737 0.082

.diastl2 (w235) -4.839 2.536 -1.908 0.056

.cholest2 ~~

.diastl2 (w245) -8.964 12.605 -0.711 0.477

Variances:

Estimate Std.Err z-value P(>|z|)

Lage (ph11) 147.330 9.699 15.190 0.000

Lbmi (ph22) 13.341 0.986 13.528 0.000

Lfat (ph33) 44.485 3.101 14.345 0.000

.Lcholst (ps11) 2534.507 171.258 14.799 0.000

.Ldiastl (ps22) 56.169 9.221 6.092 0.000

.age1 (w111) 18.584 2.914 6.378 0.000

.bmi1 (w122) 8.665 0.708 12.239 0.000

.fat1 (w133) 16.124 1.659 9.717 0.000

.cholst1 (w144) 200.103 57.422 3.485 0.000

.diastl1 (w155) 195.040 14.323 13.617 0.000

.age2 (w211) 6.861 2.701 2.540 0.011

.bmi2 (w222) 1.089 0.491 2.220 0.026

.fat2 (w233) 9.332 1.539 6.065 0.000

.cholst2 (w244) 344.454 60.290 5.713 0.000

.diastl2 (w255) 48.350 8.246 5.864 0.000
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Constraints:

|Slack|

phi11 - 0 147.330

phi22 - 0 13.341

phi33 - 0 44.485

psi11 - 0 2534.507

psi22 - 0 56.169

w111 - 0 18.584

w122 - 0 8.665

w133 - 0 16.124

w144 - 0 200.103

w155 - 0 195.040

w211 - 0 6.861

w222 - 0 1.089

w233 - 0 9.332

w244 - 0 344.454

w255 - 0 48.350

With these starting values, the maximum likelihood search converged after 327 iterations.
The likelihood ratio chi-squared test of model fit indicated no problems: G2 = 4.654, df =
10, p = 0.913. Primary interest is in the relationship of latent (true) BMI to latent
cholesterol level and latent blood pressure, controlling for latent age and latent percent
body fat. When measurement error was taken into account using double measurement,
neither relationship was statistically significant at the 0.05 level. For cholesterol, Z =
0.230 and p = 0.818. For diastolic blood pressure, Z = −1.145 and p = 0.252. This is in
contrast to the conclusion from naive ordinary least squarees regression, which was that
controlling for age and percent body fat, higher BMI was associated with higher average
diastolic blood pressure. Brunner and Austin (1992; also see Section 0.7) have shown how
this kind of “even controlling for” conclusion is the kind of error that tends to creep in
with ordinary regression, when the explanatory variables are measured with error. Double
measurement regression has more credibility.

Plenty more tests based on this model are possible and worthwhile, but BMI controlling
for age and percent body fat is the main issue. Just as a demonstration, let’s look
at one more test, a likelihood ratio test of BMI controlling for age and percent body
fat, for cholesterol and diastolic blood pressure simultaneously. The null hypothesis is
H0 : β21 = β22 = 0. We begin by fitting a restricted model45. Note that each constraint
has to go on a separate line.

> nobmi = lavaan(bmimodel2, data=bmidata,

+ constraints = ’beta12 == 0

+ beta22 == 0’)

45It is a relief that the non-zero starting values for β21 and β22 in bmimodel2 do not conflict with the
constraint that sets them equal to zero.
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>

> anova(nobmi,fit2)

Chi Square Difference Test

Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)

fit2 10 35758 35947 4.6537

nobmi 12 35755 35936 6.1457 1.492 2 0.4743

Again, the conclusion is that allowing for age and percent body fat, there is no evidence
of a connection between BMI and either health indicator.

0.11 Extra Response Variables

Sometimes, double measurement is not a practical alternative. Perhaps the data are
already collected, and the study was designed without planning for a latent variable
analysis. The guilty parties might be academic or private sector researchers who do not
know what a parameter is, much less parameter identifiability. Or, the data might have
been collected for some purpose other than research. For example, a paper mill might
report the amount and concentrations of poisonous chemicals they dump into a nearby
river. They take the measurements because they have agreed to do so, or because they
are required to do it by law — but they certainly are not going to do it twice. Much
economic data and public health data is of this kind.

In such situations, all one can do is to use what information happens to be available.
While most research studies will not contain multiple measurements of the explanatory
variables, they often will have quite a few possible response variables. These variables
might already be part of the data set, or possibly the researchers could go back and collect
them without an unbearable amount of effort. It helps if these extra response variables
are from a different domain than the response variable of interest, so one can make a case
that the extra variables and the response variables of interest are not affected by common
omitted variables. In the path diagrams, this is represented by the absence of curved,
double-headed arrows connecting error terms. It is a critical part of the recipe.

One explanatory variable

In a simple measurement error regression model like the one in Example 0.8.1, suppose
that we have access to data for a second response variable that depends on the latent
explanatory variable Xi. Our main interest is still in the response variable Yi. The other
response variable may or may not be interesting in its own right; it is included as a way
of getting around the identifiability problem.

Example 0.11.1 One Extra Response Variable
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Figure 17: Y2 is an extra response variable
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Here is the expanded version of the model. The original response variable Yi is now called
Yi,1. Independently for i = 1, . . . , n.

Wi = ν +Xi + ei (53)

Yi,1 = α1 + β1Xi + εi,1

Yi,2 = α2 + β2Xi + εi,2

where ei, εi,1 and εi,2 are all independent, V ar(Xi) = φ, V ar(εi,1) = ψ1, V ar(εi,2) = ψ2,
V ar(ei) = ω, E(Xi) = µx, and the expected values of all error terms are zero. Figure 17
shows a path diagram of this model.

It is usually helpful to check the parameter count rule (Rule 1) before doing detailed
calculations. For this model, there are ten parameters: θ = (ν, α1, α2, β1, β2, µx, φ, ω, ψ1, ψ2).
Writing the vector of observable data for case i as Di = (Wi, Yi,1, Yi,2)>, we see that
µ = E(Di) has three elements and Σ = cov(Di) has 3(3 + 1)/2 = 6 unique elements.
Thus identifiability of the entire parameter vector is ruled out in most of the parameter
space. However, it turns out that useful functions of the parameter vector are identifiable,
and this includes β1, the parameter of primary interest.

Based on our experience with the double measurement model, we are pessimistic
about identifying expected values and intercepts. So consider first the covariance matrix.
Elements of Σ = cov(Di) may be obtained by elementary one-variable calculations, like
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V ar(Wi) = V ar(ν +Xi + ei) = V ar(Xi) + V ar(ei) = φ+ ω, and

Cov(Wi, Yi,i) = Cov(Xi + ei, β1Xi + εi,1)

= β1Cov(Xi, Xi) + Cov(Xi, εi,1) + β1Cov(ei, Xi) + Cov(ei, εi,1)

= β1V ar(X) + 0 + 0 + 0

= β1φ

In this way we obtain

Σ =

 σ11 σ12 σ13

σ22 σ23

σ33

 =

 φ+ ω β1φ β2φ
β2

1φ+ ψ1 β1β2φ
β2

2φ+ ψ2

 ,

which is a nice compact way to look at the six covariance structure equations in six
unknown parameters. The fact that there are the same number of equations and unknowns
does not guarantee the existence of a unique solution; it merely tells us that a unique
solution is possible. It turns out that for this model, identifiability depends on where
in the parameter space the true parameter is located. In the following, please bear in
mind that the only parameter we really care about is β1, which represents the connection
between X and Y1. All the other parameters are just nuisance parameters.

Since σ12 = 0 if and only if β1 = 0, the parameter β1 is identifiable whenever it equals
zero. But then both σ12 = 0 and σ23 = 0, reducing the six equations in six unknowns to
four equations in five unknowns, meaning the other parameters in the covariance matrix
can’t all be recovered.

But what if β1 does not equal zero? At those points in the parameter space where β2

is non-zero, β1 = σ23
σ13

. This means that adding Y2 to the model bought us what we need,
which is the possibility of correct estimation and inference about β1. Note that stipulating
β2 6= 0 is not a lot to ask, because it just means that the extra variable is related to the
response variable. Otherwise, why include it46?

If both β1 6= 0 and β2 6= 0, all six parameters in the covariance matrix can be recovered

46Moreover, one can rule out β2 = 0 by a routine test of the correlation between W and Y2. This kind
of test is very helpful (assuming the data are in hand), because for successful inference it’s not necessary
for the entire parameter to be identifiable everywhere in the parameter space. It’s only necessary for the
interesting part of the parameter vector to be identifiable in the region of the parameter space where the
true parameter is located.
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by simple substitutions as follows:

β1 =
σ23

σ13

(54)

β2 =
σ23

σ12

φ =
σ12σ13

σ23

ω = σ11 −
σ12σ13

σ23

ψ1 = σ22 −
σ12σ23

σ13

ψ2 = σ33 −
σ13σ23

σ12

This is a success, but actually the job is not done yet. Four additional parameters appear
only in the expected value of the data vector; they are the expected value and intercepts:
ν, µx, α1, and α2. We have

µ1 = ν + µx (55)

µ2 = α1 + β1µx

µ3 = α2 + β2µx

Even treating β1 and β2 as known because they can be identified from the covariance
matrix, this system of three linear equations in four unknowns does not have a unique
solution.

As in the double measurement case, this lack of identifiability is really not too serious,
because our primary interest is in β1. So we re-parameterize, absorbing the expected value
and intercepts into µ exactly as defined in the mean structure equations (55). The new
parameters µ1, µ2 and µ3 may not be very interesting in their own right, but they can be
safely estimated by the vector of sample means and then disregarded.

To clarify, the original parameter was

θ = (ν, µx, α1, α2, β1, β2, φ, ω, ψ1, ψ2).

Now it’s
θ = (µ1, µ2, µ3, β1, β2, φ, ω, ψ1, ψ2).

The dimension of the parameter space is now one less, and we haven’t lost anything that is
either accessible or important. This is all the more true because the model pretends that
the response variables are measured without error. Actually, the equations for Yi,1 and Yi,2
should be viewed as re-parameterizations like the one in Expression (32) on page 46, and
the intercepts α1 and α2 are already the original intercepts plus un-knowable measurement
bias terms.

To an important degree, this is the story of structural equation models. The mod-
els usually used in practice are not what the scientist or statistician originally had in
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mind. Instead, they are the result of judicious re-parameterizations, in which the original
parameter vector is collapsed into a vector of functions of the parameters that are identi-
fiable, and at the same time allow valid inference about the original parameters that are
of primary interest.

Example 0.11.1 is interesting for another reason. The purpose of all this is to test
H0 : β1 = 0, but even if an assumption of normality is justified, the usual normal theory
tests will break down if the null hypothesis is true. Though β1 is identifiable when
the null hypothesis is true, the entire parameter vector is not. There will be trouble
fitting the restricted model needed for a likelihood ratio test, because infinitely many sets
(β2, φ, ψ2, ω) yield the same covariance matrix when β1 = 0.

The Wald test will suffer too, even though it requires fitting only the unrestricted
model. For one thing, local identifiability at the true parameter value is assumed in the
proof of asymptotic normality of the MLE, and I don’t see a way of getting around it; see
for example Davison [20], p. 119 and Wald [66]. Even setting theoretical considerations
aside, the experience of fitting the unrestricted model and trying to test H0 : β1 = 0 is
likely to be unpleasant. This is illustrated in a small-scale simulation study.

A little simulation study

Using R, n sets of independent (Wi, Yi,1, Yi,2) triples were generated from Model (53), with
β1 = 0, β2 = 1, and φ = ω = ψ1 = ψ2 = 1. Note that this makes H0 : β1 = 0 true, and
the entire parameter vector is not identifiable. The expected values and intercepts were
all zero, and all the variables were normally distributed. This was carried out 1,000 times
for n = 50, 100, 500 and 1000, and lavaan was used to fit the model to each simulated
data set. Here is the code.

###############################################

# Run n = 50, 100, 500, 1000 separately

###############################################

rm(list=ls()); options(scipen=999)

# install.packages("lavaan", dependencies = TRUE) # Only need to do this once

library(lavaan)

n = 50 # Set the sample size here

# Parameters

beta1 = 0; beta2 = 1; phi = 1; omega = 1; psi1 = 1; psi2 = 1

# Initialize

M = 1000

converged = logical(M) # Did the numerical search converge?

posvar = logical(M) # Are all the estimated variances positive?

# Only have to define the model once.

mod1 = ’Y1 ~ beta1*X # Latent variable model

Y2 ~ beta2*X

X =~ 1.0*W # Measurement model

# Variances (covariances would go here too)
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X~~phi*X # Var(X) = phi

W ~~ omega*W # Var(e) = omega

Y1 ~~ psi1*Y1 # Var(epsilon1) = psi1

Y2 ~~ psi2*Y2 # Var(epsilon2) = psi2

’

# Simulate: Random number seed is sample size

set.seed(n)

for(sim in 1:M)

{

x = rnorm(n,0,sqrt(phi)); e = rnorm(n,0,sqrt(omega))

epsilon1 = rnorm(n,0,sqrt(psi1)); epsilon2 = rnorm(n,0,sqrt(psi2))

W = x + e

Y1 = beta1*x + epsilon1

Y2 = beta2*x + epsilon2

simdat = data.frame( cbind(W,Y1,Y2) ) # Data must be in a data frame

fit1 = lavaan(mod1, data = simdat) # Fit the model

# Gather data on this simulation

converged[sim] = lavInspect(fit1,"converged") # Checking convergence

posvar[sim] = lavInspect(fit1,"post.check") # All estimated variances positive?

} # Next sim

addmargins(table(converged,posvar)) # Look at results

Table 3 shows that the numerical maximum likelihood search converged to a point in the
parameter space only about one third of the time. For about one third of the simulations,

Table 3: Simulation from Model (53)

Sample Size
n = 50 n = 100 n = 500 n = 1, 000

Did not converge 366 310 327 355
Converged, but at least one
negative variance estimate 322 336 315 302
Converged, variance estimates
all positive 312 354 358 343

Total 1,000 1,000 1,000 1,000

the search failed to converge, and for one third the search converged, but to an answer
with negative variance estimates47. I expected the problems to be worse with larger

47You might be thinking that convergence to a solution with negative variance estimates could be
caused by poor starting values. This was not the case. When the numerical search converged, it was
almost always to the correct MLE; this happened 2,614 times out of 2,642. How do we know what the
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sample sizes, but this did not happen. In any case, fitting the unrestricted model will be
confusing and frustrating about two-thirds of the time for this example.

There is a general lesson here, and a way out in this particular case. The general
lesson is to re-verify parameter identifiability when the null hypothesis is true, bearing in
mind that likelihood methods depend on identifiability of the entire parameter vector. It
is better to anticipate trouble and avoid it than to be confused by it once it happens.

As for the way out of the haunted house, note that if β2 6= 0, the null hypothesis β1 = 0
is true if and only if σ12 = σ23 = 0. This null hypothesis can be tested using a generic,
unstructured multivariate normal model for the observable data. The likelihood ratio
test, like the Wald test, will have two degrees of freedom. If the normal assumption is a
source of discomfort, try testing a couple of Spearman rank correlations with a Bonferroni
correction. More generally, we will see shortly that having more than one extra response
variable can yield identifiability whether or not H0 : β1 = 0 is true. This is a better
solution if it’s possible, because it makes the analysis more routine.

Example 0.11.2 Correlation between explanatory variables and error terms

Recalling Section 0.4 on omitted variables in regression, it is remarkable that while the
explanatory variable Xi must not be correlated with the error term εi,1, the error term
εi,2 (corresponding to the extra variable Yi,2) is allowed to be correlated with Xi, perhaps
reflecting the operation of omitted explanatory variables that affect Yi,2 and have non-zero
covariance with Xi. Figure 18 shows a path diagram of this model.

Figure 18: Error term correlated with the explanatory variable
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correct MLE was? By invariance. This is a saturated model, in which the number of parameters equals
the number of unique variances and covariances. Thus, putting hats on the solution (54) yields the exact
maximum likelihood estimates. Note that under the normal model, the joint distribution of the unique
elements of Σ̂ is continuous, so that with probability one there will be no division by zero.
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Suppose Cov(Xi, εi,2) = κ, which might be non-zero. This means that seven unknown
parameters appear in the six covariance structure equations, and the parameter count
rule warns us that it will be impossible to identify them all. Proceeding anyway, the
covariance matrix of Di becomes σ11 σ12 σ13

σ22 σ23

σ33

 =

 φ+ ω β1φ β2φ+ κ
β2

1φ+ ψ1 β1β2φ+ β1κ
β2

2φ+ ψ2 + 2β2κ

 .

Assuming as before that Y2 is a useful extra variable so that β2 6= 0,

σ23

σ13

=
β1(β2φ+ κ)

β2φ+ κ
= β1. (56)

In fact, if κ 6= 0, we don’t even need β2 6= 0 to identify β1. That is, the extra response
variable does not need be influenced by the latent explanatory variable. It need only be
influenced by some unknown variable or variables that are correlated with the explanatory
variable. Far from being a problem in this case, the omitted variables made it easier to
get at β1. In Figure 18, Y2 is an instrumental variable, a point to which we will return in
Section 0.12.

As in Example 0.11.1, testing H0 : β1 = 0 is non-standard because while β1 is identifi-
able, the entre parameter vector is not. We can deal with this kind of complication if we
need to, but everything is much easier with more than one extra variable.

Example 0.11.3 More Than One Extra Response Variable

Suppose that the data set contains another two variables that depend on the latent ex-
planatory variable Xi. Our main interest is still in the response variable Yi,1; the other
two are just to help with identifiability. Now the model is, independently for i = 1, . . . , n,

Wi = ν +Xi + ei (57)

Yi,1 = α1 + β1Xi + εi,1

Yi,2 = α2 + β2Xi + εi,2

Yi,3 = α3 + β3Xi + εi,3,

where ei, ei, εi,1, εi,2 and εi,3 are all independent, V ar(Xi) = φ, V ar(εi,1) = ψ1, V ar(εi,2) =
ψ2, V ar(εi,3) = ψ3, V ar(ei) = ω, E(Xi) = µx and the expected values of all error terms
are zero.

Writing the vector of observable data for case i as Di = (Wi, Yi,1, Yi,2, Yi,3)>, we have

µ = E


Wi

Yi,1
Yi,2
Yi,3

 =


ν + µx
α1 + β1µx
α2 + β2µx
α3 + β3µx


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and

Σ =


φ+ ω β1φ β2φ β3φ

β2
1φ+ ψ1 β1β2φ β1β3φ

β2
2φ+ ψ2 β2β3φ

β2
3φ+ ψ3

 . (58)

As before, it is impossible to identify the intercepts and expected values, so we re-
parameterize, absorbing them into a vector of expected values which we estimate with
the corresponding vector of sample means; we never mention them again.

To establish identifiability of the parameters that appear in the covariance matrix, the
task is to solve the following ten equations for the eight unknown parameters φ, ω, β1,
β2, β3, ψ1, ψ2, and ψ3:

σ11 = φ+ ω (59)

σ12 = β1φ

σ13 = β2φ

σ14 = β3φ

σ22 = β2
1φ+ ψ1

σ23 = β1β2φ

σ24 = β1β3φ

σ33 = β2
2φ+ ψ2

σ34 = β2β3φ

σ44 = β2
3φ+ ψ3

Assuming the extra variables are well-chosen so that both β2 and β3 are both non-zero,

σ13σ14

σ34

=
β2β3φ

2

β2β3φ
= φ. (60)

Then, simple substitutions allow us to solve for the rest of the parameters, yielding the
complete solution
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φ =
σ13σ14

σ34

(61)

ω = σ11 −
σ13σ14

σ34

β1 =
σ12σ34

σ13σ14

β2 =
σ34

σ14

β3 =
σ34

σ13

ψ1 = σ22 −
σ2

12σ34

σ13σ14

ψ2 = σ33 −
σ13σ34

σ14

ψ3 = σ44 −
σ14σ34

σ13

This proves identifiability at all points in the parameter space where β2 6= 0 and β3 6= 0.
The extra variables Y2 and Y3 have been chosen so as to guarantee this, and in any case
the assumption is testable.

The solution (61) is thorough but somewhat tedious, even for this simple example.
The student may wonder how much work really needs to be shown. I would suggest
showing the calculations leading to the covariance matrix (58), saying “Denote the i, j
element of Σ by σij,” skipping the system of equations (59) because they are present
in (58), and showing the solution for φ in (60), including the stipulation that β2 and β3

are both non-zero. Then, instead of the explicit solution (61), write something like this:

ω = σ11 − φ
β1 =

σ12

φ

β2 =
σ13

φ

β3 =
σ14

φ

ψ1 = σ22 − β2
1φ

ψ2 = σ33 − β2
2φ

ψ3 = σ44 − β2
3φ

Notice how once we have solved for a model parameter, we use it to solve for other
parameters without explicitly substituting in terms of σij. The objective is to prove that
a unique solution exists by showing how to get it. A full statement of the solution is not
necessary unless you need it for some other purpose, like method of moments estimation.
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With two (or more) extra variables, the identifiability argument does not need to
be as fussy about the locations in the parameter space where different functions of the
parameter vector are identifiable. In particular, there is no loss of identifiability under the
natural null hypothesis that β1 = 0, and testing that null hypothesis presents no special
difficulties.

Constraints on the covariance matrix Like the double measurement model, the
model of Example 0.11.3 imposes equality constraints on the covariance matrix of the
observable data. In the solution given by (61), the critical parameter β1 is recovered by
β1 = σ12σ34

σ13σ14
, but a look at the covariance structure equations (59) shows that β1 = σ23

σ13
and β1 = σ24

σ14
are also correct. These seemingly different ways of solving for the parameter

must be the same. That is,

σ12σ34

σ13σ14

=
σ23

σ13

and
σ12σ34

σ13σ14

=
σ24

σ14

.

Simplifying a bit yields

σ12σ34 = σ14σ23 = σ13σ24. (62)

Since all three products equal β1β2β3φ
2, the model clearly implies the equality con-

straints (62) even where the identifiability conditions β2 6= 0 and β3 6= 0 do not hold.

What is happening geometrically is that the covariance structure equations are map-
ping a parameter space48 of dimension eight into a moment space of dimension ten. The
image of the parameter space is an eight-dimensional surface in the moment space, con-
tained in the set defined by the relations (62). Ten minus eight equals two, the number
of over-identifying restrictions.

We will see later that even models with non-identifiable parameters can imply equality
constraints. Also, models usually imply inequality constraints on the variances and covari-
ances, whether the parameters are identifiable or not. For example, in (61), φ = σ13σ14

σ34
.

Because φ is a variance, we have the inequality restriction σ13σ14
σ34

> 0, something that is
not automatically true of covariance matrices in general. Inequalities like this are testable,
and provide a valuable way of challenging, or disconfirming a model.

Multiple explanatory variables

Most real-life models have more than one explanatory variable. No special difficulties arise
for the device of introducing extra response variables. In fact, the presence of multiple
explanatory variables only provides more ways to identify the parameters and more over-
identifying restrictions.

Example 0.11.4 Two explanatory variables and two extra response variables

48Actually it’s a subset of the parameter space, containing just those parameters that appear in the
covariance matrix,
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Here is an example with two explanatory variables and a single extra response variable
for each one. Independently for i = 1, . . . , n,

Wi,1 = ν1 +Xi,1 + ei,1 (63)

Yi,1 = α1 + β1Xi,1 + εi,1

Yi,2 = α2 + β2Xi,1 + εi,2

Wi,2 = ν2 +Xi,2 + ei,2

Yi,3 = α3 + β3Xi,2 + εi,3

Yi,4 = α4 + β4Xi,2 + εi,4

where E(Xi,j) = µj, ei,j and εi,j are independent of one another and of Xi,j, V ar(ei,j) = ωj,
V ar(εi,j) = ψj, and

cov

(
Xi,1

Xi,1

)
=

(
φ11 φ12

φ12 φ22

)
.

As usual, intercepts and expected values can’t be recovered individually. Eight parameters
are intercepts and expected values of latent variables that appear in the expressions for
only six expected values of the observable variables. So we re-parameterize, absorbing
them into µ1, . . . , µ6. Then we estimate µ with the vector of 6 sample means and set it
aside, forever.

Denoting the data vectors by Di = (Wi,1, Yi,1, Yi,2,Wi,2, Yi,3, Yi,4)>, the covariance ma-
trix Σ = cov(Di) is

[σij] =


φ11 + ω1 β1φ11 β2φ11 φ12 β3φ12 β4φ12

β2
1φ11 + ψ1 β1β2φ11 β1φ12 β1β3φ12 β1β4φ12

β2
2φ11 + ψ2 β2φ12 β2β3φ12 β2β4φ12

φ22 + ω2 β3φ22 β4φ22

β2
3φ22 + ψ3 β3β4φ22

β2
4φ22 + ψ4


Disregarding the expected values, the parameter49 is

θ = (β1, β2, β3, β4, φ11, φ12, φ22, ω1, ω2, ψ1, ψ2, ψ3, ψ4).

Since θ has 13 elements and Σ has 6(6+1)
2

= 21 variances and non-redundant covariances,
this problem easily passes the test of the parameter count rule. Provided the parameter
vector is identifiable, the model will impose 21 − 13 = 8 over-identifying restrictions on
Σ.

First notice that if φ12 6= 0, all the regression coefficients are immediately identifiable.
Since the extra variables Y2 and Y4 are presumably well-chosen, it may be assumed that

49Since the distributions of the random variables in the model are unspecified, one could say that they
are also unknown parameters. In this case, the quantity θ is really a function of the full parameter vector,
even after the re-parameterization of intercepts and expected values.
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β2 6= 0 and β4 6= 0. In that case, the entire parameter vector is identifiable — for example
identifying φ11 from σ12 and then ω1 from σ11 . . . .

Since it is very common for explanatory variables to be related to one another in non-
experimental studies, assumptions like φ12 6= 0 are very reasonable, and in any case are
testable as part of an exploratory data analysis. So, extension of this design to data sets
with more than two explanatory variables is straightforward, and identifiability follows
without detailed calculations.

Example 0.11.5 Two explanatory variables, one response variable of primary interest,
and one extra response variable for each explanatory variable.

In this example, each explanatory variable has its own extra response variable, but they
share a response variable of primary interest. This is more interesting, because now one
can speak of one explanatory variable controlling for the other, as in ordinary regression.
Figure 19 shows the path diagram.

Figure 19: Two explanatory variables with one extra response variable each, plus a single
response variable of interest
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The formal statement of this model dispenses with intercepts and expected values.
They are really present, but because they are not identifiable separately, they are not
even mentioned. This is common in structural equation modeling. Independently for
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i = 1, . . . , n, let

Wi,1 = Xi,1 + ei,1

Wi,2 = Xi,2 + ei,2

Yi,1 = β1Xi,1 + εi,1

Yi,2 = β2Xi,2 + εi,2

Yi,3 = β3Xi,1 + β4Xi,2 + εi,3

where

• The Xi,j variables are latent, while the Wi,j and Yi,j variables are observable.

• ei,1 ∼ N(0, ω1) and ei,2 ∼ N(0, ω2).

• εi,j ∼ N(0, ψj) for j = 1, 2, 3.

• ei,j and εi,j are independent of each other and of Xi,j.

• Xi,j have covariance matrix

cov

(
Xi,1

Xi,2

)
=

(
φ11 φ12

φ12 φ22

)
.

Denote the vector of observable data by Di = (Wi,1, Yi,1,Wi,2, Yi,2, Yi,3)>, with cov(Di) =
Σ = [σij].

Among other things, this example illustrates how the search for identifiability can
be supported by exploratory data analysis. Hypotheses about single covariances, like
H0 : σij = 0 can be tested by looking at tests of the corresponding correlations. These
tests, including non-parametric tests based on the Spearman rank correlation, are easily
obtained using R’s cor.test function.

The parameter vector50 for this problem is θ = (φ11, φ12, φ22, ω1, ω2, β1, β2, β3, β4, ψ1, ψ2, ψ3)>.
There are 12 parameters and 5 observable variables, so that the covariance matrix has
5(5 + 1)/2 = 15 unique variances and covariances. Thus there are 15 covariance structure
equations in 12 unknowns, and the parameter count rule tells us that identifiability in
most of the parameter space is possible but not guaranteed.

The matrix equation 64 shows the covariance structure equations in a compact form.
σ11 σ12 σ13 σ14 σ15

σ22 σ23 σ24 σ25

σ33 σ34 σ35

σ44 σ45

σ55

 = (64)

50That is, the vector of parameters appearing in Σ = cov(Di).
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
ω1 + φ11 β1φ11 φ12 β2φ12 β3φ11 + β4φ12

β2
1φ11 + ψ1 β1φ12 β1β2φ12 β1(β3φ11 + β4φ12)

ω2 + φ22 β2φ22 β3φ12 + β4φ22

β2
2φ22 + ψ2 β2(β3φ12 + β4φ22)

(β3φ11 + β4φ12)β3 + (β3φ12 + β4φ22)β4 + ψ3


In our study of identifiability for this example, we will confine our attention to that part
of the parameter space where β1 6= 0 and β2 6= 0. After all, the variables Y1 and Y2 were
introduced only to help with identifiability, and they are useless unless they are related to
the explanatory variables. The issue may be resolved empirically by testing H0 : σ23 = 0
and H0 : σ14 = 0 with cor.test. One should proceed to model fitting only if both null
hypotheses are comfortably rejected. In any case, the rest of this discussion assumes that
β1 and β2 are both non-zero.

The parameter φ12 is identifiable, since φ12 = σ13. Consider two cases. The first case
is φ12 6= 0. In this region of the parameter space, β1 is identified from β1 = σ23/φ12, and
β2 is identified from β2 = σ14/φ12. Then, φ11 = σ12/β1 and φ22 = σ34/β2.

With φ11, φ12 and φ22 identified, they may be treated as known. Then, β3 and β4 are
identified from σ14 and σ34 by solving two linear equations in two unknowns. Writing the
equations in matrix form, (

φ11 φ12

φ12 φ22

)(
β3

β4

)
=

(
σ14

σ34

)
.

There is a unique solution if and only if the covariance matrix of the latent explanatory
variables has an inverse, which is not much to ask. At this point, all parameters have
been identified except the variances of the eij and εij. Accordingly, ω1, ψ1, ω2, ψ2 and ψ3

are obtained from the diagonal elements of Σ, by subtraction. The conclusion is that all
parameters are identifiable provided φ12 6= 0. In most observational studies, explanatory
variables will be correlated. That means the parameters of this model are identifiable for
most applications.

Now consider the case where φ12 = 0; that is, the latent explanatory variables are
uncorrelated. This might apply in a designed experiment with random assignment. The
covariance structure equations are now

σ11 σ12 σ13 σ14 σ15

σ22 σ23 σ24 σ25

σ33 σ34 σ35

σ44 σ45

σ55

 = (65)


ω1 + φ11 β1φ11 0 0 β3φ11

β2
1φ11 + ψ1 0 0 β1β3φ11

ω2 + φ22 β2φ22 β4φ22

β2
2φ22 + ψ2 β2β4φ22

β2
3φ11 + β2

4φ22 + ψ3

 .
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The parameter φ12 is still identifiable from σ13, but three equations are lost since φ12 = 0
also implies σ14 = σ23 = σ24 = 0. Thus there are eleven equations in the eleven remaining
unknown parameters. The condition of the the parameter count rule is satisfied, and
identifiability of the entire parameter vector is still possible.

Using (65), β3 = σ25/σ12 and β4 = σ45/σ34. If β3 and β4 are non-zero, solution for
the rest of the parameters is routine. But if β3 = 0, then β1 is no longer identifiable.
Similarly, if β4 = 0, then β2 is no longer identifiable. Since the whole point of this model
is likely to test something like H0 : β3 = 0, it’s important to examine the situation where
this null hypothesis is true.

Suppose one could be sure that Cov(Xi, X2) = φ12 = 0, and consider the problem of
testing H0 : β3 = 0. The first thought might be to just compare the likelihood ratio test
statistic to a chi-squared critical value with one degree of freedom. As in Example 0.11.1
(one extra response variable), this won’t work. In Wilks’ (1938) proof of the likelihood
ratio test [70], identifiability under the null hypothesis is regularity condition zero, and
we are in a situation that Davison [20] (pp. 144-48) would call non-regular. As a practical
matter, the numerical search for the restricted MLE (restricted by H0) will not converge
except by a numerical fluke. As in the little simulation study on page 109, there is also
likely to be trouble fitting even the unrestricted model. If by chance the search for an
unrestricted MLE were to converge, the the theory behind Z-test of H0 : β3 = 0 fails,
because it is equivalent to a Wald test.

Instead, look at equality (65) and observe that β3 = 0 implies both σ15 = 0 and
σ25 = 0. This hypothesis may be tested using a likelihood ratio or Wald test, with two
degrees of freedom. Again, the moral of this story is that the study of identifiability should
specifically consider those parts of the parameter space where important null hypotheses
are true.

Also, be aware that the models presented here are actually re-parameterizations of
models with measurement error in the response variables. One must carefully consider
the methods of data collection to rule out correlation between measurement error in the
explanatory variables and measurement error in the response variables. Such correlations
would appear as non-zero covariances between eij and εij terms in the models, and it will
be seen in homework how this can sink the ship on a technical level.

Just to be clear, when data are collected by a common method in a common setting,
errors of measurement will naturally be correlated with one another. For example, in a
study investigating the connection between diet and athletic accomplishment in children,
suppose the data all came from questionnaires filled out by parents. It would be very
natural for some parents to exaggerate the healthfulness of the food they serve and also
to exaggerate their children’s athletic achievements. On the other extreme, some parents
would immediately figure out the purpose of the study, and tell the interviewers what they
want to hear. “My kids eat junk (I can’t control them) and they are terrible in sports.”
Both these tendencies would produce a positive covariance between the measurement
errors in the explanatory and response variables. And in the absence of other information,
it would be impossible to tell whether a positive relationship between observable diet and
athletic performance came from this, or from an actual relationship between the latent
variables.
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0.12 Instrumental Variables Again

In Section 0.5, the method of instrumental variables was introduced as a solution to the
problems that arise when explanatory variables that are missing from the model cause
non-zero covariances between the error term and variables that are in the model. We will
now see that instrumental variables can help with measurement error too.

Recall Example 0.5.1 in Section 0.5; see page 36. The interest was in the relationship
of income to credit card debt. In the imaginary study, data were collected on real estate
agents in a variety of towns and cities. In addition to income (Xi) and credit card debt
(Yi), we had an instrumental variable (Zi) — the median selling price of a home in
the agent’s region. With the instrumental variable, everything worked out beautifully.
The parameters were just identifiable, with nine covariance structure equations in nine
unknown parameters.

The problem is that both income and debt are undoubtedly measured with error, and
there are almost surely other unmeasured variables that affect them both. Figure 20
represents a more realistic model. Omitted variables affecting both true X and true Y
give rise to covariance ψ12 between the error terms ε1 and ε2. Common omitted variables
are also affecting measurement of X and measurement of Y , which are both likely to be
self-report. This gives rise to the covariance ω12 between the measurement error terms
e1 and e2. The regression coefficients λ1 and λ2 linking true income (Tx) to observed
income (X) and true credit card debt (Ty) are positive, but unknown and unlikely to
equal one. We now have six covariance structure equations in eleven unkowns, and still
it’s not realistic enough, because housing prices are only estimated.

The model shown in Figure 21 is easier to defend, but impossible to estimate. By
a mysterious process possibly involving multiple variables, the publicly available median
resale price of a home is dynamically related to a latent variable or set of variables that
positively affect the real estate agent’s income.

Fortunately, an instrumental variable only has to be correlated with the explanatory
variable. As long as we are confident that the covariance between resale price and income
is positive (and we are) everything will be okay. Figure 22 acknowledges our ignorance of
the exact process by which which median resale price to connected to income, representing
the connection with an un-analyzed covariance represented by a curved, double-headed
arrow. Since the model no longer explicitly posits that true latent income is affected by
any variable in the model, the operation of common omitted variables on Tx and Ty is
now represented by a curved, double-headed arrow connecting Tx and ε.

The model of Figure 22 is fairly realistic, but on first examination it does not look
promising. There are six covariance structure equations in 11 unknowns. This model fails
the parameter count rule, which is poison. The explanatory variable is correlated with
the error term, which is another flavour of poison. In addition, errors of measurement
are correlated, which is yet another form of poison. However, we have an instrumental
variable. Let’s calculate the covariance matrix of the observable variables, bearing in
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Figure 20: Z is median price of resale home, X is income, Y is credit card debt
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mind that β is the parameter of primary interest. Showing part of the calculation,

Cov(Z, Y ) = Cov(Z, λ2Ty + e2)

= Cov(Z, λ2(βTx+ ε) + e2)

= λ2βCov(Z, Tx) + λ2Cov(Z, ε) + Cov(Z, e2)

= λ2βφ12 + 0 + 0

The full covariance matrix is

cov

 Z
X
Y

 =

 φ11 λ1φ12 βλ2φ12

· λ2
1φ22 + ω11 βλ1λ2φ22 + cλ1λ2 + ω12

· · β2λ2
2φ22 + 2 βcλ2

2 + λ2
2ψ + ω22

 .

The primary parameter β is not identifiable, but φ12 (the covariance between median home
price and real estate agent income) is positive, and λ2 (the link between true income and
reported income) is also greater than zero. So the sign of β is identifiable from σ13, the
null hypothesis H0 : β = 0 is testable by simply testing whether σ13 is different from zero,
and it is possible to answer the basic question of the study.
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Figure 21: More realistic, but impossible to estimate
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?

It’s a miracle. Instrumental variables can help with measurement error and omitted
variables at the same time. If there is measurement error, the regression coefficients of
interest are not identifiable and cannot be estimated consistently, but their signs can.
Often, that’s all you really need to know. A matrix version is available. The usual rule
in Econometrics is at least one instrumental variable for each explanatory variable. As
you will see in homework, the main technical requirement is that the p × p matrix of
covariances between X and Z must have an inverse.

Zero covariance between the instrumental variable and error terms is critical. Since
non-zero covariances arise naturally from omitted variables, this means instrumental vari-
ables need to come from another world, and are related to to x for reasons that are
separate from why x is related to y. For example, consider the question of whether aca-
demic ability contributes to higher salary. Study adults who were adopted as children. x
is academic ability, y is salary at age 40, W is measured IQ at 40, and the instrumental
variable z is birth mother’s IQ score.

The method of instrumental variables is a solution to the problems of omitted variables
and measurement error, but it’s a partial solution. Good instrumental variables are not
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Figure 22: An improved model of income and credit card debt
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easy to find. They will almost certainly not be in a data set casually collected for other
purposes. Advance planning is needed.

In many textbook examples of instrumental variables, the instrumental variable ar-
guably has a causal impact on the corresponding explanatory variable. That is, one can
argue for a straight arrow running from Z to X. Here is a nice example from the Wikipedia
article on “natural experiments” []. The idea behind a natural experiment is that nature,
rather than the investigator, assigns the study participants to treatment conditions. And,
while the assignment may not be exactly random, it is at least unlikely to be connected
to plausible confounding variables. Here’s the story, quoted from the Wikipedia.

One of the best-known early natural experiments was the 1854 Broad Street
cholera outbreak in London, England. On 31 August 1854, a major outbreak
of cholera struck Soho. Over the next three days, 127 people near Broad Street
died. By the end of the outbreak 616 people died. The physician John Snow
identified the source of the outbreak as the nearest public water pump, using
a map of deaths and illness that revealed a cluster of cases around the pump.

In this example, Snow discovered a strong association between the use of the
water from the pump, and deaths and illnesses due to cholera. Snow found
that the Southwark and Vauxhall Waterworks Company, which supplied water
to districts with high attack rates, obtained the water from the Thames down-
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stream from where raw sewage was discharged into the river. By contrast, dis-
tricts that were supplied water by the Lambeth Waterworks Company, which
obtained water upstream from the points of sewage discharge, had low attack
rates. Given the near-haphazard patchwork development of the water sup-
ply in mid-nineteenth century London, Snow viewed the developments as ”an
experiment . . . on the grandest scale.”

So, the explanatory variable x was drinking and otherwise using water containing raw
sewage, the response variable y was getting cholera, and the instrumental variable z was
the company that supplied the water. The critical fact that makes it a good instrumental
variable is the “. . . near-haphazard patchwork development of the water supply in mid-
nineteenth century London.” (We will gladly take their word for it.) Seemingly, the
configuration of the water supply was so chaotic that it was unlikely to be related to
other plausible influences on getting cholera, like social class and income. Thus, one can
argue for the absence of any curved arrows connecting the instrumental variable to the
error terms. From both a technical and common-sense viewpoint, that’s what makes the
whole thing work.

The Wikipedia article has several other good examples of natural experiments, and
they are also good examples of instrumental variables. In fact, one could say that the
ultimate instrumental variable is randomly assigned; in that case, it’s guaranteed to come
from another world, and if the experiment is otherwise well-controlled, connections be-
tween omitted variables and the treatment are entirely ruled out.

But for better or worse, we are concerned with cases where ethics or simple practical
considerations dictate that we cannot control the values of the explanatory variables.
Our data come from observational studies. If the data set contains good instrumental
variables, many of our difficulties will disappear, but we cannot just manufacture them.
We must discover and notice them as they naturally occur, and this requires a bit of good
luck, as well as a sharp eye and flexible thinking.

0.13 Exercises for Chapter 0

• Exercises 0.2: Conditional and unconditional regression

1. Everybody knows that V ar(Yi) = σ2 for a regression model, but that’s really
a conditional variance. Independently for i = 1, . . . , n, let

Yi = β0 + β1Xi,1 + β2Xi,2 + εi,

where ε1, . . . εn are independent random variables with expected value zero and
common variance σ2, E(Xi,1) = µ1, V ar(Xi,1) = σ2

1, E(Xi,2) = µ2, V ar(Xi,2) =
σ2

2, and Cov(Xi,1, Xi,2) = σ12. Calculate V ar(Yi); show your work.

2. Suppose that the model (3) has an intercept. How many integral signs are
there in the second line of (6)? The answer is a function of n and p.
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3. The usual univariate multiple regression model with independent normal errors
is

y = Xβ + ε,

where X is an n × p matrix of known constants, β is a p × 1 vector of un-
known constants, and ε is multivariate normal with mean zero and covariance
matrix σ2In, with σ2 > 0 an unknown constant. But of course in practice,
the explanatory variables are random, not fixed. Clearly, if the model holds
conditionally upon the values of the explanatory variables, then all the usual
results hold, again conditionally upon the particular values of the explanatory
variables. The probabilities (for example, p-values) are conditional probabili-
ties, and the F statistic does not have an F distribution, but a conditional F
distribution, given X = x.

(a) Show that the least-squares estimator β̂ = (X′X)−1X′y is conditionally
unbiased.

(b) Show that β̂ is also unbiased unconditionally.

(c) A similar calculation applies to the significance level of a hypothesis test.
Let F be the test statistic (say for an extra-sum-of-squares F -test), and
fc be the critical value. If the null hypothesis is true, then the test is size
α, conditionally upon the explanatory variable values. That is, P (F >
fc|X = x) = α. Find the unconditional probability of a Type I error.
Assume that the explanatory variables are discrete, so you can write a
multiple sum.

• Exercises ??: The Centering Rule

Maybe refer to some exercises from the Appendix.

• Exercises 0.4: Omitted variables

1. In the following regression model, the independent variables X1 and X2 are
random variables. The true model is

Yi = β0 + β1Xi,1 + β2Xi,2 + εi,

independently for i = 1, . . . , n, where εi ∼ N(0, σ2).

The mean and covariance matrix of the independent variables are given by

E

(
Xi,1

Xi,2

)
=

(
µ1

µ2

)
and V ar

(
Xi,1

Xi,2

)
=

(
φ11 φ12

φ12 φ22

)
Unfortunately Xi,2, which has an impact on Yi and is correlated with Xi,1,
is not part of the data set. Since Xi,2 is not observed, it is absorbed by the
intercept and error term, as follows.

Yi = β0 + β1Xi,1 + β2Xi,2 + εi

= (β0 + β2µ2) + β1Xi,1 + (β2Xi,2 − β2µ2 + εi)

= β′0 + β1Xi,1 + ε′i.
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The primes just denote a new β0 and a new εi. It was necessary to add and
subtract β2µ2 in order to obtain E(ε′i) = 0. And of course there could be more
than one omitted variable. They would all get swallowed by the intercept and
error term, the garbage bins of regression analysis.

(a) What is Cov(Xi,1, ε
′
i)?

(b) Calculate the variance-covariance matrix of (Xi,1, Yi) under the true model.

(c) Suppose we want to estimate β1. The usual least squares estimator is

β̂1 =

∑n
i=1(Xi,1 −X1)(Yi − Y )∑n

i=1(Xi,1 −X1)2
.

You may just use this formula; you don’t have to derive it. Is β̂1 a consistent
estimator of β1 for all points in the parameter space if the true model holds?
Answer Yes or no and show your work. Remember, X2 is not available,
so you are doing a regression with one independent variable. You may use
the consistency of the sample variance and covariance without proof.

(d) Are there any points in the parameter space for which β̂1 is a consistent
estimator when the true model holds?

2. Ordinary least squares is often applied to data sets where the independent
variables are best modeled as random variables. In what way does the usual
conditional linear regression model imply that (random) independent variables
have zero covariance with the error term? Hint: Assume Xi as well as εi
continuous. What is the conditional distribution of εi given Xi = xi) = 0?

3. Show that E(εi|Xi = xi) = 0 for all xi implies Cov(Xi, εi) = 0, so that a
standard regression model without the normality assumption still implies zero
covariance (though not necessarily independence) between the error term and
explanatory variables.

• Exercises 0.6: Measurement error

1. Calculate expression (29) for the reliability, showing the details that were
skipped. The point of this question (besides exercising your variance-covariance
muscles and keeping you busy so you don’t have a personal life) is to see whether
you feel comfortable assuming µ = 0 even though it may not be.

2. In a study of diet and health, suppose we want to know how much snack food
each person eats, and we “measure” it by asking a question on a questionnaire.
Surely there will be measurement error, and suppose it is of a simple additive
nature. But we are pretty sure people under-report how much snack food they
eat, so a model like W = X + e with E(e) = 0 is hard to defend. Instead, let

W = ν +X + e,

where E(X) = µ, E(e) = 0, V ar(X) = σ2
x, V ar(e) = σ2

e , and Cov(X, e) = 0
The unknown constant ν could be called measurement bias. Calculate the
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reliability of W for this model. Is it the same as (29), or does ν 6= 0 make a
difference?

3. Continuing Exercise 2, suppose that two measurements of W are available.

W1 = ν1 +X + e1

W2 = ν2 +X + e2,

where E(X) = µ, V ar(X) = σ2
T , E(e1) = E(e2) = 0, V ar(e1) = V ar(e2) = σ2

e ,
and X, e1 and e2 are all independent. Calculate Corr(W1,W2). Does this
correlation still equal the reliability?

4. Let X be a latent variable, W = X + e1 be the usual measurement of X with
error, and G = X+e2 be a measurement of X that is deemed “gold standard,”
but of course it’s not completely free of measurement error. It’s better than
W in the sense that 0 < V ar(e2) < V ar(e1), but that’s all you can really say.
This is a realistic scenario, because nothing is perfect. Accordingly, let

W = X + e1

G = X + e2,

where E(X) = µ, V ar(X) = σ2
x, E(e1) = E(e2) = 0, V ar(e1) = σ2

1, V ar(e2) =
σ2

2 and that X, e1 and e2 are all independent of one another. Prove that the
squared correlation between W and G is strictly less than the reliability of W .
Show your work.

The idea here is that the squared population correlation51 between an ordinary
measurement and an imperfect gold standard measurement is strictly less than
the actual reliability of the ordinary measurement. If we were to estimate such
a squared correlation by the corresponding squared sample correlation, all we
would be doing is estimating a quantity that is not the reliability. On the
other hand, we would be estimating a lower bound for the reliability — and
this could be reassuring if it is a high number.

5. In this continuation of Exercise 4, show what happens when you calculate the
squared sample correlation between a usual measurement and an imperfect
gold standard, and let n→∞. It’s just what you would think.

6. Suppose we have two equivalent measurements with uncorrelated measurement
error:

W1 = X + e1

W2 = X + e2,

51When we do Greek-letter calculations, we are figuring out what is happening in the population from
which a data set might be a random sample.
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where E(X) = µ, V ar(X) = σ2
x, E(e1) = E(e2) = 0, V ar(e1) = V ar(e2) = σ2

e ,
and X, e1 and e2 are all independent. What if we were to measure the true
score X by adding the two imperfect measurements together? Would the result
be more reliable?

(a) Let S = W1 + W2. Calculate the reliability of S. Is there any harm in
assuming µ = 0?

(b) Suppose you take k independent measurements (in psychometric theory,
these would be called equivalent test items). What is the reliability of
S =

∑k
i=1 Wi? Show your work.

(c) What happens as the number of measurements k →∞?

This exercise establishes the well-known principle that longer tests tend to be
more reliable. The measurement of practically anything can be improved by
measuring it independently several times and then averaging the results —
assuming this is possible.

7. Suppose we have two equivalent measurements with correlated measurement
error:

W1 = X + e1

W2 = X + e2,

where E(X) = µ, V ar(X) = σ2
x, E(e1) = E(e2) = 0, V ar(e1) = V ar(e2) =

σ2
e , and e1 and e2 are all independent of X but Cov(e1, e2) = κ. Calculate
Corr(W1,W2); show your work. What is the relationship of your answer to
the reliability if κ > 0 (which is typical of correlated measurement error)? The
point of this question is that correlated measurement errors are more the rule
than the exception in practice, and it’s poison.

• Exercises 0.7: Ignoring measurement error

1. The following is perhaps the simplest example of what happens to regression
when there is measurement error in the explanatory variable. Independently
for i = 1, . . . , n, let

Yi = Xiβ + εi

Wi = Xi + ei,

where E(Xi) = E(εi) = 0, V ar(Xi) = σ2
x, V ar(εi) = σ2

ε , V ar(ei) = σ2
e , and Xi,

εi and ei are all independent. Notice that Wi is just Xi plus a piece of random
noise. This is a simple additive model of measuremnt error.

Unfortunately, we cannot observe the Xi values. All we can see are the pairs
(Xi,Wi) for i = 1, . . . , n. So we do what everybody does, and fit the naive
(mis-specified, wrong) model

Yi = Wiβ + εi
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and estimate β with the usual formula for regression through the origin. Where
does β̂n go as n→∞? Show your work.

2. Recall the simulation study of inflated Type I error when independent variables
are measured with error but one ignores it and uses ordinary regression anyway.
We needed to produce correlated (latent, that is unobservable) independent
variables from different distributions. Here’s how we did it.

(a) It is easy to simulate a collection of independent random variables from
any distribution, and then standardize them to have expected value zero
and variance one. Let E(X) = µ and V ar(X) = σ2. Now define Z = X−µ

σ
.

Find

i. E(Z)

ii. V ar(Z)

(b) Okay, now let R1, R2 and R3 be independent random variables from any
distribution you like, but standardized to have expected value zero and
variance one. Now let

W1 =
√

1− φR1 +
√
φR3 and

W2 =
√

1− φR2 +
√
φR3.

Find

i. Cov(W1,W2)

ii. Corr(W1,W2)

(c) This one is more efficient. Let R1 and R2 be independent random variables
with expected value zero and variance one. Now let

W1 =

√
1 + φ

2
R1 +

√
1− φ

2
R2

W2 =

√
1 + φ

2
R1 −

√
1− φ

2
R2

Find

i. Cov(W1,W2)

ii. Corr(W1,W2)

(d) Briefly state how you know the following. No proof is required.

– If the R variables are normal and φ = 0, both methods yield X1 and
X2 independent.

– But if the Rs are non-normal, then φ = 0 only implies independence
for the first method.

• Exercises 0.8: Modeling measurement error
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1. Let X1, . . . , Xn be a random sample from a normal distribution with mean
θ1 and variance θ2 + θ3, where −∞ < θ1 < ∞, θ2 > 0 and θ3 > 0. Are the
prameters of this model identifiable? Answer Yes or No and prove your answer.
This is fast.

2. Let X1, . . . , Xn be a random sample from a normal distribution with mean θ
and variance θ2, where −∞ < θ <∞. Is θ identifiable? Answer Yes or No and
justify your answer. This is even faster than the last one.

3. For this problem you may want to read about the invariance principle of max-
imum likelihood estimation in Appendix A. Consider the simple regression
model

Yi = βXi + εi,

where β is an unknown constant, Xi ∼ N(0, φ), εi ∼ N(0, ψ) and the random
variables Xi and εi are independent. Xi and Yi are observable variables.

(a) What is the parameter vector θ for this model? It has three elements.

(b) What is the distribution of the data vector (Xi, Yi)
>? Of course the ex-

pected value is zero; obtain the covariance matrix in terms of θ values.
Show your work.

(c) Now solve three equations in three unknowns to express the three elements
of θ in terms of σi,j values.

(d) Are the parameters of this model identifiable? Answer Yes or No and state
how you know.

(e) For a sample of size n, give the MLE Σ̂. Your answer is a matrix containing
three scalar formulas (or four formulas, if you write down the same thing
for σ̂1,2 and σ̂2,1). Write your answer in terms of Xi and Yi quantities. You
are not being asked to derive anything. Just translate the matrix MLE
into scalar form.

(f) Use the invariance principle to obtain the formula for β̂ and simplify. Show
your work.

(g) Give the formula for φ̂. Use the invariance principle.

(h) Obtain the formula for ψ̂ and simplify. Use the invariance principle. Show
your work.

4. Consider the regression model

Yi,1 = β1Xi + εi,1

Yi,2 = β2Xi + εi,2,

where Xi ∼ N(0, φ), and Xi is independent of εi,1 and εi,2. The error terms εi,1
and εi,2 are bivariate normal, with mean zero and covariance matrix

Ψ =

(
ψ1,1 ψ1,2

ψ1,2 ψ2,2

)
.

The variables Xi, Yi,1 and Yi,2 are observable; there is no measurement error.
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(a) What is the parameter vector θ for this model? It has six elements.

(b) Calculate the covariance matrix of the observable variables; show your
work.

(c) Are the parameters of this model identifiable? Answer Yes or No and
justify your answer.

5. Here is a multivariate regression model with no intercept and no measurement
error. Independently for i = 1, . . . , n,

yi = βXi + εi

where

yi is an q × 1 random vector of observable response variables, so the re-
gression can be multivariate; there are q response variables.

Xi is a p× 1 observable random vector; there are p explanatory variables.
Xi has expected value zero and variance-covariance matrix Φ, a p × p
symmetric and positive definite matrix of unknown constants.

β is a q × p matrix of unknown constants. These are the regression coef-
ficients, with one row for each response variable and one column for each
explanatory variable.

εi is the error term of the latent regression. It is an q×1 random vector with
expected value zero and variance-covariance matrix Ψ, a q × q symmetric
and positive definite matrix of unknown constants. εi is independent of
Xi.

Are the parameters of this model identifiable? Answer Yes or No and show
your work.

6. Consider the following simple regression through the origin with measurement
error in both the explanatory and response variables. Independently for i =
1, . . . , n,

Yi = βXi + εi

Wi,1 = Xi + ei,1

Wi,2 = Xi + ei,2

Vi = Yi + ei,3

whereXi and Yi are latent variables, εi, ei,1, ei,2, ei,3 andXi and are independent
normal random variables with expected value zero, V ar(Xi) = φ, V ar(εi) = ψ,
and V ar(ei,1) = V ar(ei,2) = V ar(ei,3) = ω. The regression coefficient β is a
fixed constant. The observable variables are Wi,1,Wi,1 and Vi.

(a) Calculate the variance-covariance matrix of the observable variables. Show
your work.

(b) Write down the moment structure equations.
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(c) Are the parameters of this model identifiable? Answer Yes or No and prove
your answer.

7. Independently for i = 1, . . . , n, let

Yi = βXi + εi

Wi = Xi + ei,

where E(Xi) = µ 6= 0, E(εi) = E(ei) = 0, V ar(Xi) = φ, V ar(εi) = ψ,
V ar(ei) = ω, and Xi, ei andεi are all independent. The variables Xi is latent,
while Wi and Yi are observable.

(a) Does this model pass the test of the parameter count rule? Answer Yes or
No and give the numbers.

(b) Is the parameter vector identifiable? Answer Yes or No and prove your
answer. If the answer is No, give a simple example of two different sets
of parameter values that yield the same (bivariate normal) distribution of
the observable data.

(c) Let

β̂1 =

∑n
i=1 WiYi∑n
i=1W

2
i

.

Is β̂1 a consistent estimator of β? Answer Yes or No and prove your answer.

(d) Let

β̂2 =

∑n
i=1 Yi∑n
i=1Wi

.

– Is β̂2 a consistent estimator of β? Answer Yes or No and justify your
answer.

– We know from Theorem 0.1 that consistent estimation is impossible
when the parameter is not identifiable. Does this example contradict
Theorem 0.1?

8. Independently for i = 1, . . . , n, let

Yi = βXi + εi

Wi,1 = Xi + ei,1

Wi,2 = Xi + ei,2,

where

– Xi is a normally distributed latent variable with mean zero and variance
φ > 0

– εi is normally distributed with mean zero and variance ψ > 0

– ei,1 is normally distributed with mean zero and variance ω1 > 0

– ei,2 is normally distributed with mean zero and variance ω2 > 0
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– Xi, εi, ei,1 and ei,2 are all independent of one another.

(a) What is the parameter vector θ for this model?

(b) Does this problem pass the test of the parameter count rule? Answer Yes
or No and give the numbers.

(c) Calculate the variance-covariance matrix of the observable variables. Show
your work.

(d) Is the parameter vector identifiable? Answer Yes or No and prove your
answer.

(e) Propose a consistent estimator of the parameter β, and show it is consis-
tent.

• Exercises 0.9

•

•

•

•
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