
Chapter 2

Exploratory Factor Analysis

In experimental design, the term “factor” refers to a categorical explanatory variable. In
structural equation modeling and in the sub-field of factor analysis, a factor is a latent
variable, period. Factor analysis may be said to originate with a 92-page article [60]
by Charles Spearman in the 1901 American Journal of Psychology, entitled “General
intelligence, objectively determined and measured.” If you believe that some people are
generally smarter than others, the basic idea is quite natural. True intelligence cannot
be directly observed, so it’s a latent variable. However, we can observe performance on
various tests and puzzles. Spearman proposed that the correlations among observable
variables arise from their connection to a common “g” factor — general intelligence.

The early history of factor analysis is described masterfully in Harman’s (1960, 1967,
1976) classic Modern factor analysis [28]. Though Harman brings relative clarity to this
murky literature, his book is almost guaranteed to be frustrating for a statistician to
read. Lawley and Maxwell’s (1971) Factor analysis as a statistical method is a welcome
antidote. Bastlevsky’s (1994) Statistical factor analysis and related methods [2] is a strong
and more recent treatment of the topic.

Factor analysis may be divided into two types, commonly called exploratory factor
analysis and confirmatory factor analysis. The books cited above are about exploratory
factor analysis, which came first historically. While both types of factor analysis are
special cases of structural equation models, it is confirmatory factor analysis that provides
a useful measurement model. Exploratory factor analysis is helpful for understanding
confirmatory factor analysis. Another good reason to learn about exploratory factor
analysis is that some people still do it, or may ask you to do it.

2.1 Principal Components Analysis

Before describing what factor analysis is, it will be helpful to describe what it is not.
Principal components analysis is not factor analysis. Factors are unobservable latent
variables. Principal components are linear combinations of the sample data. The very
existence of factors depends on one’s acceptance of a fairly elaborate statistical model,
while the statistical model underlying principal components is quite minimal, if there is
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one at all. Still, principal components analysis and factor analysis have a similar flavour,
and some of the ideas from principal components are used in factor analysis.

The main application of principal components analysis is data reduction. Suppose
you have a large number of variables that are correlated with one another. Principal
components analysis allows you to find a smaller set of linear combinations of the variables,
linear combinations that contain most of the variation in the original set. It may be that
little is lost by using the linear combinations in place of the original variables, and there
can be substantial advantages in terms of storage and processing.

In the most relevant version of principal components, there are k observable variables
that are standardized1, by subtracting off their means and dividing by their standard
deviations. Collect the variables into a k-dimensional random vector z = [zj], with E(z) =
0 and cov(z) = Σ. Because of standardization, Σ is a correlation matrix.

Recall the spectral decomposition Σ = CDC> (see Section A.2 in Appendix A),
where D is a diagonal matrix containing the k eigenvalues of Σ in descending order, and
the columns of the k × k matrix C = [cij] contain the corresponding eigenvectors. The
eigenvectors are orthonormal, so CC> = C>C = I.

Let y = C>z = [yj]. The transformed variables in y will be called the principal
components of z. Immediately, we have E(y) = 0 and

cov(y) = cov(C>z)

= C>cov(z)C

= C>ΣC

= C>CDC>C

= D, (2.1)

so that the elements of y are uncorrelated, and their variances are the eigenvalues of Σ,
sorted from largest to smallest.

Since y = C>z, we can also write the original variables in terms of the principal
components as z = Cy. In scalar form,

z1 = c11y1 + c12y2 + · · ·+ c1kyk

z2 = c21y1 + c22y2 + · · ·+ c2kyk
...

...

zk = ck1y1 + ck2y2 + · · ·+ ckkyk.

Because the elements of y are uncorrelated, the variance of variable j is

V ar(zj) = V ar(cj1y1 + cj2y2 + · · ·+ cjkyk)

= c2
j1V ar(y1) + c2

j2V ar(y2) + · · ·+ c2
jkV ar(yk)

= c2
j1λ1 + c2

j2λ2 + · · ·+ c2
jkλk = 1. (2.2)

1In the other main version of principal components, the variables are not standardized. The develop-
ment is very similar.
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Thus, the variance of zj is decomposed into the part explained by y1, the part explained
by y2, and so on. Specifically, y1 explains c2

j1λ1 of the variance, y2 explains c2
j2λ2 of the

variance, etc.. Because zj is standardized, these are proportions of variance.
They are also squared correlations. Correlation is covariance divided by the product

of standard deviations. Using the fact that cov(yi, yj) = 0 for i 6= j,

Cov(zi, yj) = Cov(ci1y1 + ci2y2 + · · ·+ cijyj + · · ·+ cjkyk,yj)

= cijCov(yj, yj)

= cijλj.

Then,

Corr(zi, yj) =
Cov(zi, yj)

SD(zi)SD(yj)

=
cijλj

1
√
λj

= cij
√
λj, (2.3)

and the squared correlation between zi and yj is c2
ijλj.

Looking at the variances of all the original variables,

V ar(z1) = c2
11λ1 + c2

12λ2 + · · ·+ c2
1kλk

V ar(z2) = c2
21λ1 + c2

22λ2 + · · ·+ c2
2kλk (2.4)

...
...

V ar(zk) = c2
k1λ1 + c2

k2λ2 + · · ·+ c2
kkλk.

The pieces of variance being added up are the squared correlations between the original
variables and the principal components.

Imagine a k × k matrix of these squared correlations, with the original variables cor-
responding to rows, and the principal components corresponding to columns. The layout
is the same as the equations (2.4). If you add the entries in any row, you get one. If you
add the entries in a column, you get the total amount of variance in the original variables
that is explained by that principal component. The sum of entries in column j is

k∑
i=1

c2
ijλj = λj

k∑
i=1

c2
ij

= λj · 1 = λj, (2.5)

where the squared weights add to one because the eigenvectors are of unit length. This
means that the eigenvalues are both the variances of the principal components and the
amounts of variance in the original variables that are explained by the respective principal
components. The total variance in the original variables is the trace of Σ, which equals
k. The trace of a symmetric matrix is the sum of its eigenvalues, and everything adds up.

It’s actually even better than that. There is a well-known theorem saying that y1 has
the greatest possible variance of any linear combination whose squared weights add up to
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one. In addition, y2 is the linear combination that has the greatest variance subject to
the constraints that it’s orthogonal to y1 and its squared weights add to one. Continuing,
y3 is the linear combination that has the greatest variance subject to the constraints that
it’s orthogonal to y1 and y2, and its squared weights add to one — and so on. This
means that the principal components are optimal in the sense that the first one explains
the greatest possible amount of variance, and all the succeeding components explain the
greatest possible amounts of the variance that remains unexplained by the earlier ones.

If the correlations among the original variables are substantial, the first few eigenvalues
will be relatively large. The data reduction idea is to retain only the first several principal
components, the ones that contain most of the variation in the original variables. The
expectation is that they will capture most of the meaningful variation.

To apply this method to actual data, suppose you have n observations on k variables.
First standardize all the variables, by subtracting off sample means and dividing by sam-
ple standard deviations. Assemble the standardized data into an n× k matrix Z = [zij].

The true correlation matrix Σ is unknown, so use the sample correlation matrix Σ̂. Based
upon the spectral decomposition Σ̂ = ĈD̂Ĉ>, calculate Ŷ = ZĈ. The rows of Z con-
tain standardized data vectors, and the rows of Ŷ contain the corresponding vectors of
principal component values. Ŷ has a hat because it is a matrix of the sample principal
components. It can be informative to look at a matrix of squared sample correlations
between the original variables and the components, because the entries are estimated
proportions of variance in each variable that are explained by each component.

A nice feature of principal components is that the formulas given earlier in this section
are exactly correct for sample principal components. This is because most of the rules for
variances and covariances are also true for the sample versions2. As a result, it is possi-
ble to present principal components analysis as a purely descriptive procedure, without
assuming any sampling model at all. Some textbooks do it this way; it’s a matter of taste.

In any case, the main application of principal components is data reduction. The
data reduction strategy is to retain just a few columns of Ŷ, because those principal
components account for most of the variance in the original variables. But where do you
draw the line? How many principal components should you preserve? A standard answer
is to keep the components with eigenvalues greater than one, because one is the amount of
variance in a single original variable. After that point, the principal components explain
no more variance than the original variables.

Example 2.1.1 The Body-Mind Data

2This statement is true and it’s good enough, but here is an another way of thinking about it. The
formulas developed for principal components are true for any distribution of the observed data. In
particular, they are true for the rather peculiar discrete multivariate distribution that puts probability
1
n on each observed data vector. Think of the observed data vectors as strings of beads in an urn. We
are sampling from this urn with replacement. It’s the re-sampling model that is used in the bootstrap!
For this distribution, the population mean, variance, covariance and so on may be calculated using usual
formulas for the corresponding sample moments – provided that one uses the variance and covariance
formulas with n in the denominator rather than n− 1. Consequently, all the formulas derived here apply
directly to sample principal components.
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The Body-Mind data are a set of educational test scores and physical measurements for
a sample of high school students3. The variables are

• sex: F or M.

• progmat: Progressive matrices (puzzle) score.

• reason: Reasoning score.

• verbal: Verbal (reading and vocabulary) score.

• headlng: Head Length in mm.

• headbrd: Head Breadth in mm.

• headcir: Head Circumference in mm.

• bizyg: Bizygomatic breadth in mm, basically how far apart the eyes are.

• weight: In pounds.

• height: In cm.

These data will be used to illustrate true factor analysis as well as principal components.
We begin by reading the data, and looking at basic descriptive statistics and the correla-
tion matrix.

> rm(list=ls())

> bodymind = read.table(’http://www.utstat.toronto.edu/~brunner/openSEM/data/bodymind.data.txt’)

> head(bodymind)

sex progmat reason verbal headlng headbrd headcir bizyg weight height

1 M 108 128 136 182 162 553 140 144 1769

2 F 81 110 94 192 156 571 143 144 1633

3 F 110 134 132 186 145 549 131 135 1672

4 F 95 88 83 189 139 536 124 109 1700

5 M 83 94 100 180 163 549 141 124 1679

6 M 105 77 92 195 148 560 134 126 1651

> dim(bodymind) # Number of rows,columns

[1] 80 10

dat = as.matrix(bodymind[,2:10]) # Omit sex, make dat a matrix rather than a data frame.

> # summary(dat)

> Sigma_hat = cor(dat); round(Sigma_hat,3)

progmat reason verbal headlng headbrd headcir bizyg weight height

progmat 1.000 0.514 0.539 0.323 0.099 0.315 0.200 0.132 0.197

reason 0.514 1.000 0.728 0.203 0.053 0.322 0.291 0.171 0.207

verbal 0.539 0.728 1.000 0.260 0.139 0.354 0.337 0.236 0.199

headlng 0.323 0.203 0.260 1.000 0.255 0.821 0.475 0.506 0.554

3This is a modified subset of data reported in the journal Human Biology [17]. The data are used
here without permission, but I believe they have been sufficiently hacked so that the original copyright
no longer applies, and they can be protected under a Creative Commons license. Good luck trying to
recover the original data values.
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headbrd 0.099 0.053 0.139 0.255 1.000 0.604 0.692 0.368 0.362

headcir 0.315 0.322 0.354 0.821 0.604 1.000 0.713 0.641 0.591

bizyg 0.200 0.291 0.337 0.475 0.692 0.713 1.000 0.589 0.614

weight 0.132 0.171 0.236 0.506 0.368 0.641 0.589 1.000 0.599

height 0.197 0.207 0.199 0.554 0.362 0.591 0.614 0.599 1.000

The R functions princomp and prcomp will do principal components analysis, but we’ll
use spectral decomposition directly at first for illustrative purposes. The eigen function
returns a list with two elements. The first element is a vector of eigenvalues, and the
second element is the matrix C in A = CDC>. Column j of the matrix C is the
eigenvector corresponding to λj.

> eigenSigma = eigen(Sigma_hat); eigenSigma

eigen() decomposition

$values

[1] 4.28768216 1.77444482 0.87126975 0.64039055 0.47989427 0.40504511 0.26315906

[8] 0.21010253 0.06801175

$vectors

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] -0.2274301 -0.47286949 0.10386693 -0.5037581 0.59758999 -0.29003259 -0.08152051

[2,] -0.2405745 -0.54632083 -0.12052776 0.2965707 -0.17975676 0.26454653 -0.63108107

[3,] -0.2665589 -0.51874379 -0.16430737 0.1996142 -0.24123089 -0.07990715 0.71935768

[4,] -0.3622340 0.08683821 0.53544154 -0.3586357 -0.34767275 0.16737858 0.08869681

[5,] -0.2933333 0.27697281 -0.66373737 -0.3094155 0.04112189 -0.03633303 -0.01019606

[6,] -0.4377198 0.12657178 0.08577647 -0.2525368 -0.33524350 0.01081660 -0.14979213

[7,] -0.4007471 0.17219323 -0.34669164 0.1054639 0.05971130 0.13277579 0.01297777

[8,] -0.3513037 0.20963075 0.18723810 0.4548388 0.02650610 -0.74034211 -0.13982797

[9,] -0.3556358 0.18698153 0.24048299 0.3351036 0.55960504 0.49428994 0.16579073

[,8] [,9]

[1,] 0.10288021 0.040581025

[2,] -0.11345554 -0.166563741

[3,] -0.09839457 0.035693597

[4,] 0.07347486 -0.532701450

[5,] -0.44524651 -0.315589722

[6,] -0.14639593 0.751580920

[7,] 0.81059576 -0.002188321

[8,] -0.07609981 -0.128655279

[9,] -0.28094584 0.067358086

Since only the first two eigenvalues are greater than one, the conventional choice for data
reduction would be to retain only the first two sample principal components. Dividing
the eigenvalues by the number of variables yields the proportions of the total variance
explained by each component.

> lambda_hat = eigenSigma$values

> lambda_hat/9 # Proportions of explained variance

[1] 0.476409129 0.197160535 0.096807750 0.071154506 0.053321586 0.045005012 0.029239896

[8] 0.023344726 0.007556861

> cumsum(lambda_hat/9) # Cumulative sum

[1] 0.4764091 0.6735697 0.7703774 0.8415319 0.8948535 0.9398585 0.9690984 0.9924431

[9] 1.0000000
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It seems that the first two components account for around 67% of the total variance in
the observed variables, and five components would account for about 90%.

Calculating Z and then Ŷ = ZĈ, we verify (2.1), which says cov(y) = D.

> > Z = scale(dat) # Standardize

> C_hat = eigenSigma$vectors #$

> Y_hat = Z %*% C_hat # Sample principal components

> # Looking at the variance-covariance matrix of the principal components,

> round(var(Y_hat), 4) # Should equal D

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 4.2877 0.0000 0.0000 0.0000 0.0000 0.000 0.0000 0.0000 0.000

[2,] 0.0000 1.7744 0.0000 0.0000 0.0000 0.000 0.0000 0.0000 0.000

[3,] 0.0000 0.0000 0.8713 0.0000 0.0000 0.000 0.0000 0.0000 0.000

[4,] 0.0000 0.0000 0.0000 0.6404 0.0000 0.000 0.0000 0.0000 0.000

[5,] 0.0000 0.0000 0.0000 0.0000 0.4799 0.000 0.0000 0.0000 0.000

[6,] 0.0000 0.0000 0.0000 0.0000 0.0000 0.405 0.0000 0.0000 0.000

[7,] 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.2632 0.0000 0.000

[8,] 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.0000 0.2101 0.000

[9,] 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.0000 0.0000 0.068

There it is: a diagonal matrix with the eigenvalues on the diagonal.
Based on the eigenvalues, let’s retain just the first two components and estimate how

much variance they explain. First, look at the correlations.

> y = Y_hat[,1:2] # Just the first two components

> zy = cor(Z,y); zy

[,1] [,2]

progmat -0.4709330 -0.6299014

reason -0.4981509 -0.7277446

verbal -0.5519561 -0.6910097

headlng -0.7500678 0.1156757

headbrd -0.6073970 0.3689507

headcir -0.9063741 0.1686041

bizyg -0.8298157 0.2293757

weight -0.7274347 0.2792455

height -0.7364050 0.2490749

All of the large correlations are negative, so they are a bit harder to look at. If this is
a problem, the signs of a principal component can be flipped, reversing the signs of the
correlation between that component and any variable. To see why this is true, recall
the definition of an eigenvalue and associated eigenvector: Ax = λx. Clearly if x is
an eigenvector corresponding to λ, so is −x. Since a principal component is a linear
combination of variables whose weights are the elements of an eigenvector, the sign is
arbitrary.

Now we will check Equation (2.3), which says Corr(zi, yj) = cij
√
λj. We should be

able to reproduce the matrix of correlations between Z and the first two components by

multiplying the first two columns of Ĉ by the matrix

 √
λ̂1 0

0

√
λ̂2

.

> A = rbind(c( sqrt(lambda_hat[1]), 0 ),
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+ c(0, sqrt(lambda_hat[2]) ) )

> C_hat[,1:2] %*% A

[,1] [,2]

[1,] -0.4709330 -0.6299014

[2,] -0.4981509 -0.7277446

[3,] -0.5519561 -0.6910097

[4,] -0.7500678 0.1156757

[5,] -0.6073970 0.3689507

[6,] -0.9063741 0.1686041

[7,] -0.8298157 0.2293757

[8,] -0.7274347 0.2792455

[9,] -0.7364050 0.2490749

Okay, it worked: Estimated Corr(zi, yj) is ĉij

√
λ̂j.

The squared correlations are components of variance. The addmargins function is
used below to add row and column sums. It’s easier to look at the output rounded to
three decimal places.

> zy2 = zy^2

> round( addmargins(zy2, margin = c(1,2), FUN = sum) , 3)

Margins computed over dimensions

in the following order:

1:

2:

sum

progmat 0.222 0.397 0.619

reason 0.248 0.530 0.778

verbal 0.305 0.477 0.782

headlng 0.563 0.013 0.576

headbrd 0.369 0.136 0.505

headcir 0.822 0.028 0.850

bizyg 0.689 0.053 0.741

weight 0.529 0.078 0.607

height 0.542 0.062 0.604

sum 4.288 1.774 6.062

This shows, for example, that the first principal component explains 54.2% of the variance
in height, and the second principal component explains an additional 6.2%. The first two
principal components explain around 85% of the variance in head circumference, but only
about 50.5% of the variance in head breadth. Also, the column totals are the eigenvalues,
as in (2.5). These are all estimated values, of course.

Principal components the easy way It’s a bit easier to use a specialized R function
for principal components analysis, rather than relying on eigen. I prefer prcomp over
princomp, because princomp has some unfortunate features that have been retained for
compatibility with the defunct commercial software S-plus.

In the prcomp function, the scale = T option divides variables by their sample stan-
dard deviations. The option center is true by default, so the data are converted to
z-scores. This is what we want.
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> # Principal components the easy way

> # help(prcomp)

> pc = prcomp(dat, scale = T)

The object pc is a list. The ls function shows its elements.

> ls(pc)

[1] "center" "rotation" "scale" "sdev" "x"

The element pc$center contains the sample means of the variables before standardization;
pc$scale contains the standard deviations. sdev has the standard deviations of the
components. Squaring the sdev vector yields the eigenvalues of the sample correlation
matrix.

> pc$sdev^2 # Eigenvalues

[1] 4.28768216 1.77444482 0.87126975 0.64039055 0.47989427 0.40504511 0.26315906

[8] 0.21010253 0.06801175

> lambda_hat # For comparison

[1] 4.28768216 1.77444482 0.87126975 0.64039055 0.47989427 0.40504511 0.26315906

[8] 0.21010253 0.06801175

The list element pc$rotation corresponds to the Ĉ matrix produced by the spectral

decomposition. Since Ĉ is an orthogonal matrix, it is indeed a rotation.

> pc$rotation

PC1 PC2 PC3 PC4 PC5 PC6 PC7

progmat -0.2274301 -0.47286949 0.10386693 -0.5037581 0.59758999 -0.29003259 0.08152051

reason -0.2405745 -0.54632083 -0.12052776 0.2965707 -0.17975676 0.26454653 0.63108107

verbal -0.2665589 -0.51874379 -0.16430737 0.1996142 -0.24123089 -0.07990715 -0.71935768

headlng -0.3622340 0.08683821 0.53544154 -0.3586357 -0.34767275 0.16737858 -0.08869681

headbrd -0.2933333 0.27697281 -0.66373737 -0.3094155 0.04112189 -0.03633303 0.01019606

headcir -0.4377198 0.12657178 0.08577647 -0.2525368 -0.33524350 0.01081660 0.14979213

bizyg -0.4007471 0.17219323 -0.34669164 0.1054639 0.05971130 0.13277579 -0.01297777

weight -0.3513037 0.20963075 0.18723810 0.4548388 0.02650610 -0.74034211 0.13982797

height -0.3556358 0.18698153 0.24048299 0.3351036 0.55960504 0.49428994 -0.16579073

PC8 PC9

progmat -0.10288021 0.040581025

reason 0.11345554 -0.166563741

verbal 0.09839457 0.035693597

headlng -0.07347486 -0.532701450

headbrd 0.44524651 -0.315589722

headcir 0.14639593 0.751580920

bizyg -0.81059576 -0.002188321

weight 0.07609981 -0.128655279

height 0.28094584 0.067358086

> C_hat # For comparison

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] -0.2274301 -0.47286949 0.10386693 -0.5037581 0.59758999 -0.29003259 -0.08152051

[2,] -0.2405745 -0.54632083 -0.12052776 0.2965707 -0.17975676 0.26454653 -0.63108107

[3,] -0.2665589 -0.51874379 -0.16430737 0.1996142 -0.24123089 -0.07990715 0.71935768

[4,] -0.3622340 0.08683821 0.53544154 -0.3586357 -0.34767275 0.16737858 0.08869681

[5,] -0.2933333 0.27697281 -0.66373737 -0.3094155 0.04112189 -0.03633303 -0.01019606
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[6,] -0.4377198 0.12657178 0.08577647 -0.2525368 -0.33524350 0.01081660 -0.14979213

[7,] -0.4007471 0.17219323 -0.34669164 0.1054639 0.05971130 0.13277579 0.01297777

[8,] -0.3513037 0.20963075 0.18723810 0.4548388 0.02650610 -0.74034211 -0.13982797

[9,] -0.3556358 0.18698153 0.24048299 0.3351036 0.55960504 0.49428994 0.16579073

[,8] [,9]

[1,] 0.10288021 0.040581025

[2,] -0.11345554 -0.166563741

[3,] -0.09839457 0.035693597

[4,] 0.07347486 -0.532701450

[5,] -0.44524651 -0.315589722

[6,] -0.14639593 0.751580920

[7,] 0.81059576 -0.002188321

[8,] -0.07609981 -0.128655279

[9,] -0.28094584 0.067358086

Finally, pc$x has the principal components themselves.

> dim(pc$x) # x is a matrix of the principal components Y_hat = Z %*% C_hat

[1] 80 9

> head(pc$x) # Just the first 6 rows

PC1 PC2 PC3 PC4 PC5 PC6 PC7

1 -2.9056790 -0.8163483 -2.05648959 0.89345100 1.0826163 0.09581676 0.09097201

2 -1.8420248 1.6868136 -1.11946332 0.61460425 -1.7388326 0.20651893 0.68366132

3 -1.1270571 -2.3088592 0.08809617 0.75714079 0.1575711 -0.19017485 0.51153249

4 1.6221315 0.2340440 1.62777485 0.07639917 0.3896938 0.65365783 -0.33948607

5 -0.6431189 1.8507668 -2.60883792 0.58933649 -0.1899104 0.47035165 -0.33536456

6 -0.5757390 0.9010777 0.79544134 -1.28687495 0.1150836 -0.39632242 -0.59876963

PC8 PC9

1 0.66523233 -0.13093412

2 -0.60878367 0.09346307

3 0.34061367 0.13503816

4 0.44387949 0.16416604

5 0.06955952 0.02486900

6 -0.48127952 0.34279834

> head(Y_hat) # For comparison

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

1 -2.9056790 -0.8163483 -2.05648959 0.89345100 1.0826163 0.09581676 -0.09097201

2 -1.8420248 1.6868136 -1.11946332 0.61460425 -1.7388326 0.20651893 -0.68366132

3 -1.1270571 -2.3088592 0.08809617 0.75714079 0.1575711 -0.19017485 -0.51153249

4 1.6221315 0.2340440 1.62777485 0.07639917 0.3896938 0.65365783 0.33948607

5 -0.6431189 1.8507668 -2.60883792 0.58933649 -0.1899104 0.47035165 0.33536456

6 -0.5757390 0.9010777 0.79544134 -1.28687495 0.1150836 -0.39632242 0.59876963

[,8] [,9]

1 -0.66523233 -0.13093412

2 0.60878367 0.09346307

3 -0.34061367 0.13503816

4 -0.44387949 0.16416604

5 -0.06955952 0.02486900

6 0.48127952 0.34279834

A useful feature of prcomp is that it’s easy to specify the number of components you want
to extract. This is accomplished by specifying rank in the call to prcomp.

> pc2 = prcomp(dat, scale = T, rank = 2) # Retain two principal components
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> pc2$rotation

PC1 PC2

progmat -0.2274301 -0.47286949

reason -0.2405745 -0.54632083

verbal -0.2665589 -0.51874379

headlng -0.3622340 0.08683821

headbrd -0.2933333 0.27697281

headcir -0.4377198 0.12657178

bizyg -0.4007471 0.17219323

weight -0.3513037 0.20963075

height -0.3556358 0.18698153

Only the first two columns of Ĉ are returned. Post-multiplying this matrix by the matrix
of standardized data in Z yields an 80×2 matrix of just the first two principal components.

> head(pc2$x) # There should be 2 columns

PC1 PC2

1 -2.9056790 -0.8163483

2 -1.8420248 1.6868136

3 -1.1270571 -2.3088592

4 1.6221315 0.2340440

5 -0.6431189 1.8507668

6 -0.5757390 0.9010777

This is all very nice, but it’s not factor analysis. Principal components analysis and factor
analysis are frequently confused, especially by social scientists. In a consulting situation,
suppose your client claims to have done a factor analysis. You should ask “What kind of
factor analysis?” If the client doesn’t know, ask “What software did you use?” If it’s SAS
or SPSS, ask “Did you use the default options?” If the answer is yes, it was a principal
components analysis. We now turn to true factor analysis.

2.2 True Factor Analysis

In exploratory factor analysis, the goal is to describe and summarize a data set by explain-
ing a set of observed variables in terms of a smaller number of latent variables (factors).
The factors are the reason the observable variables have the correlations they do. Fig-
ure 2.1 shows the path diagram of a model with two factors and eight observable variables.
A common rule is at least three observable variables for each factor. In general, the more
variables for each factor, the better.

The general factor analysis model may be written as follows. Independently for i =
1, . . . , n, let

di = ΛFi + ei, (2.6)

where di is a k× 1 observable random vector, Λ is a k× p matrix of constants, and Fi (F
for factor) is a p× 1 latent random vector with covariance matrix Φ. The k× 1 vector of
error terms ei is independent of Fi; it has expected value zero and covariance matrix Ω,
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Figure 2.1: A Two-factor Model
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which is almost always assumed to be diagonal4. There are no intercepts, and E(Fi) = 0.
This is a centered surrogate model (see Section A.6.1). The notation here is consistent
with the general two-stage model of Section 1.2, except that there, the dimension of Fi

would be (p+ q)× 1. A multivariate normal assumption for Fi and ei is common.

4The assumption that Ω is diagonal helps with identifiability, and may be traced to what Spear-
man [60] (1904, p. 273) calls the “Law of the Universal Unity of the Intellective Function,” to wit:
Whenever branches of intellectual activity are at all dis-similar, then their correlations with one another
appear wholly due to their being all variously saturated with some common fundamental Function (or
group of Functions as well as positive definite. Note that in Figure 2.1, Ω being diagonal corresponds
to a lack of any curved, double-headed arrows connecting e1, . . . , e8. This means that any correlations
between observable variables must come from the factors.
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To clarify the notation, the model equations for Figure 2.1 are

di = Λ Fi + ei

di,1
di,2
di,3
di,4
di,5
di,6
di,7
di,8


=



λ11 λ12

λ21 λ22

λ31 λ32

λ41 λ42

λ51 λ52

λ61 λ62

λ71 λ27

λ81 λ82


(
Fi,1
Fi,2

)
+



ei,1
ei,2
ei,3
ei,4
ei,5
ei,6
ei,7
ei,8


.

(2.7)

The λij values will be called factor loadings. They are essentially regression coefficients
linking the factors to the observed variables5. The factors Fi,1 and Fi,2 are sometimes
called common factors, because they influence all the observed variables; all the observed
variables have them in common. The error terms ei,1, . . . , ei,8 are sometimes called unique
factors, because each one influences only a single observed variable.

The defining feature of exploratory factor analysis is that it tries to be as unconstrained
as possible. The method really wants the data to speak. In Figure 2.1 and in general,
there are arrows from all factors to all observed variables.

Number of factors The number of factors (symbolized here by p) is a fundamental
property of a factor analysis model. For example, it determines the number of parameters.
It’s typically very important to subject matter experts, too. You can always get their
attention by asking if something they are talking about is uni-dimensional. For example,
is creativity uni-dimensional? Are political attitudes uni-dimensional (primarily just left-
right)? In market research, how about attitudes toward a particular product category?
Is it just positive-negative? Their eyes will light up.

Of course, there can be lots of factors. For example, Cattell’s Sixteen Personality
Factor Questionnaire [16] (documented in a 1970 paper by Cattell, Eber and Tatsuoka) is
based on factor analyses of a large number of personality test items. They came up with
16 factors.

In a classical factor analysis, the number of common factors is generally not known in
advance; it is determined in an exploratory manner. The first guiding principle is a piece
of wisdom [39] from Kaiser (1960), who pointed out that for the typical problem involving
human behavior or any other complex system, there are probably hundreds of common
factors. Including them all in the model is out of the question. The objective should be
to come up with a model that includes the most important factors for the variables in
the study, and captures the essence of what is going on. Simplicity is important. Other
things being more or less equal, the fewer factors the better. I have already mentioned a

5In some books, the term “factor loading” is reserved for the correlations between factors and observed
variables. When the factors are uncorrelated, the λij in (2.7) are indeed correlations, and the two common
uses of the term coincide.
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widely accepted rule of thumb6 that says there should be at least three observed variables
per factor [25]. This sets practical soft upper bound for the number of factors.

To narrow the search for the number of factors, quite a few methods are available. If
the parameters are estimated by maximum likelihood, perhaps the most natural approach
is to test goodness of fit using the likelihood ratio test (1.18) on page 171, increasing the
number of factors until the model fits. This idea has quite a pedigree. It was essentially
proposed by Lawley [41] in 19407, though he derived a slightly different large-sample chi-
squared test. The reasoning is that if we really insist that the error terms are independent
of the factors and have a diagonal covariance matrix, the only way that the model can be
incorrect is that it does not have enough factors. Thus, any test for goodness of fit is also
a test for number of factors.

Hypothesis testing may be attractive, but one thing to bear in mind is Kaiser’s obser-
vation that in reality, there are probably hundreds of factors. Suppose the true number
of factors is very large. Because the power of the likelihood ratio test increases with the
sample size, significant lack of fit may be expected for any model with a modest number
of factors, even if that model explains most of the non-error variance in an elegant and
useful way. Statistically, rejecting the null hypothesis is a correct decision, because the
model is wrong. Scientifically, it would be unfortunate. This suggests that while formal
tests for lack of fit may be useful, one should not rely on them exclusively.

Another common method [39], and one that continues to be the default in some
popular statistical software, is due to Kaiser (1960). Kaiser proposed estimating number
of factors by the number of eigenvalues of the correlation matrix that are greater than
one. The idea is that even though factor analysis and principal components analysis
are different, still, if the correlations among the observed variables arise from p common
factors, then the optimality of principal components in explaining variance suggests that
p principal components will explain at least as much variance. And then, as in principal
components, adding an additional factor that explains less variance than a single variable
will not improve the model as a summary of the data.

A variation, called parallel analysis [31] is to test whether each eigenvalue is signifi-
cantly larger than one would expect by chance. The meaning of “chance” is the probability
distribution of an (ordered) eigenvalue under the null hypothesis that the variables are
uncorrelated. These distributions are approximated by randomly independently permut-
ing the observed data values a large number of times, and calculating the eigenvalues of
the correlation matrix for each permutation. A factor is retained if the corresponding
ordered eigenvalue is larger than the 95th percentile of the random values.

A graphical alternative called the scree plot [15] was proposed by Cattell (1966). Scree
is a term from geology. It refers to the pile of rock and debris often found at the foot of a

6A rule of thumb is a rule that comes from experience and expert opinion, but is not backed up by
hard evidence. The term apparently comes from brewing beer. In the early days before thermometers,
the master brewer would stick a thumb in the vat of fermenting hops and stuff, and if the temperature
felt right then it was on to the next stage.

7This is the same article where Lawley proposed estimating factor loadings by maximum likelihood.
Like many of the procedures that are now standard in multivariate analysis, maximum likelihood factor
analysis became practical for most real data sets only after the invention of electronic computers.
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mountain cliff or volcano. Scree slopes tend to be concave up, steepest near the cliff and
then tailing off. In factor analysis, a scree plot shows the eigenvalues of the correlation
matrix, sorted in order of magnitude. It has the numbers 1, . . . , k (k = the number of
principal components as well as variables) on the x axis, and the eigenvalues on the y
axis. The largest eigenvalue goes with 1, the second largest with 2, and so on. It is very
common for the graph to decrease rapidly at first, and then straighten out with a small
negative slope for the rest of the way. The point at which the linear trend begins is the
estimated number of factors.

Figure 2.2 show a scree plot for the Mind-body data, described in Example 2.1 on
page 207. Reading the data and creating the object pc with prcomp has already been
illustrated.

> Eigenvalue = pc$sdev^2

> plot(1:9,Eigenvalue,type=’b’,xlab=’Principal Component’,xaxp=c(1,9,8))

Figure 2.2: Scree Plot for the Mind-Body Data
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Scree Plot for the Mind-Body Data

The linear part of decreasing trend appears to begin with the third eigenvalue, sug-
gesting three factors. There are only nine variables, so the rule of at least three variables
per factor would limit us to three factors at most, anyway. Two of the eigenvalues are
greater than one, suggesting two factors. There is no requirement that these any of these
criteria coincide, and in fact it is reassuring that they are this close.

A final criterion for number of factors is interpretability. What do the factors seem to
represent? Typically, the answer is more clear for models with fewer factors. With more
and more factors, explanation tends to become increasingly difficult, and the wise factor
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analyst will stop at a point where there is still a convincing story to tell. This process
is subjective, but reasonable and widely accepted. In a professional paper, one might
read something like “A maximum likelihood factor analysis extracted four interpretable
factors, accounting for an estimated 72% of the variance in the attitude scales. Table 3
shows the factor loadings . . . ”

Identifiability The parameters of the general factor analysis model are massively non-
identified. This is true even when, as in the example of Figure 2.1, the model passes the
test of the parameter count rule. To see this, first observe that the parameters are the
unique contents of the matrices Φ, Λ and Ω. If two distinct triples (Φ,Λ,Ω) yield the
same covariance matrix Σ = cov(di), then the parameters cannot be identified from Σ.
In practice, that means they can’t be identified at all. Calculating,

cov(di) = Σ = cov(ΛFi + ei)

= ΛΦΛ> + Ω.

The square root matrix of a symmetric matrix is also symmetric, so

ΛΦΛ> + Ω = Λ Φ1/2IΦ1/2 Λ> + Ω

= (ΛΦ1/2)I(Φ1/2>Λ>) + Ω

= (ΛΦ1/2)I(ΛΦ1/2)> + Ω

= Λ2IΛ
>
2 + Ω

Unless Φ = cov(Fi) was equal to the identity in the first place, the triple (I,Λ2,Ω) is
different from (Φ,Λ,Ω), yet it yields the same Σ. This shows that the parameters are
not identifiable.

Actually, Σ is produced by infinitely many parameter sets. Let Q be an arbitrary
positive definite covariance matrix for Fi. Then

Σ = Λ2IΛ
>
2 + Ω

= Λ2Q
− 1

2 QQ−
1
2 Λ>2 + Ω

= (Λ2Q
− 1

2 )Q(Q−
1
2
>Λ>2 ) + Ω

= (Λ2Q
− 1

2 )Q(Λ2Q
− 1

2 )> + Ω

= Λ3QΛ>3 + Ω (2.8)

No matter what the truth might be, one can make the covariance matrix of the factors
absolutely anything, and then adjust the factor loadings to yield exactly the same Σ that
is produced by the true parameter values. Note that for multivariate normal data with
expected value zero (the usual assumption), all one can ever get from increasing amounts
of data is a closer and closer approximation of Σ. This means that empirical data cannot
help us learn the model parameters. It’s not a good situation.
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The classical way out of this dilemma is to regard the covariance matrix of the factors
as essentially arbitrary, and fix Φ = I. The factors are said to be “orthogonal” (at right
angles, uncorrelated). They are also standardized, meaning that the (scalar) expected
value of each factor is zero, and its variance equals one. This is justified on the grounds
of simplicity and ease of interpretation.

Of course, the assumption of uncorrelated factors may be difficult to justify. Further-
more, it is untestable given model (2.6), since all possible covariance matrices for the
factors are equally compatible with any set of data. In exploratory factor analysis, the
possibility of correlated factors is addressed by transforming the estimates from a model
with orthogonal factors into estimates for a model in which the factors are oblique – that
is, not at right angles. Accordingly, we will proceed with the orthogonal factor model for
the present.

Again, setting Φ = I standardizes the factors as well as making them uncorrelated.
The observed variables are standardized as well. For j = 1, . . . , k and (almost) inde-

pendently for i = 1, . . . , n the data we work with are zij =
dij−dj
sj

. Thus, each observed

variable has variance one as well as mean zero.

In the revised exploratory factor analysis model below, the subscripts i on zi, Fi

and ei have been dropped to reduce notational clutter. Implicitly, everything applies
independently for i = 1, . . . , n. The model is

z = ΛF + e, where (2.9)

• z is a k × 1 observable random vector. Each element of z has expected value zero
and variance one.

• Λ is a k × p matrix of constants.

• F (F for factor) is a p × 1 latent random vector with expected value zero and
covariance matrix Ip.

• The k× 1 vector of error terms e has expected value zero and covariance matrix Ω,
which is diagonal.

For this model, everything emerges in terms in terms of correlations rather than covari-
ances. This is a virtue, because correlations are easier to interpret. First, cov(zi) = Σ =
ΛΛ>+ Ω is a correlation matrix; correspondingly, estimation and inference will be based
on the sample correlation matrix.
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Factor Loadings Next, consider the matrix of correlations between the factors and the
observed variables. Because all the variables are standardized,

corr(z,F) = cov(z,F)

= cov(ΛF + e,F)

= Λcov(F,F) + cov(e,F)

= Λcov(F) + 0

= ΛI

= Λ (2.10)

Thus, the factor loadings are correlations between the observable variables and the factors.
In particular, the correlation between observed variable i and factor j is λij. The square
of λij is the reliability8 of observed variable i as a measure of factor j.

Communality and Uniqueness Observed variable i (an element of z; the index i goes
from 1, . . . , k) may be written in scalar form as

zi = λi1F1 + · · ·+ λipFp + ei

=

p∑
j=1

λijFj + ei,

so that

V ar(zi) = V ar

(
p∑
j=1

λijFj + ei

)

=

p∑
j=1

λ2
ijV ar(Fj) + V ar(ei)

=

p∑
j=1

λ2
ij + ωi, (2.11)

where ωi = V ar(ei) is the ith diagonal element of Ω. Since the observed variables are
standardized, we have 1 =

∑p
j=1 λ

2
ij + ωi.

The variance of the observed variable has been split into two components.
∑p

j=1 λ
2
ij is

the proportion of variance in observed variable i that comes from the common factors. It
is called the communality. To get the communality of a variable, add up the squares of the
factor loadings in the corresponding row of Λ. The other component is ωi = 1−

∑p
j=1 λ

2
ij.

It is is what’s left over, the part that comes from error. It is called the uniqueness of the
variable.

It may seem a bit peculiar for the variance of the error term to “know” about the
factor loadings, but that’s what you get when you standardize the observed variables.

8Psychometric reliability. See page 41.
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More important is that since the matrix Ω is diagonal and its diagonal elements are
functions of the λij, the only parameters it contains are factor loadings that are already
in Λ. The role of Ω is to make the diagonal elements of Σ equal one — that is, to make Σ
a proper correlation matrix. In the standardized factor analysis model, the only unknown
parameters are the factor loadings.

This really is quite nice. Since factor loadings are the correlations between the ob-
servable variables and the factors, they could be very informative about the processes
driving the data. Squared factor loadings are reliabilities, another important feature of
the measurement model. One could also use estimated factor loadings to estimate how
much of the variance in each observable variable comes from each factor. All this could
reveal what the underlying factors are, and what they mean.

2.3 Orthogonal Rotations

Unfortunately, the factor loadings are still not identifiable, so meaningful estimation is
still out of the question. This part of the story depends on the idea of a rotation matrix.
In Figure 2.3, a basis for R2 is provided by the unit vectors ~i and ~j, which are at right
angles. These basis vectors are rotated through an angle θ, yielding ~i ′ and ~j ′. If a point

Figure 2.3: Rotation
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θ

on the plane is denoted in terms of ~i and ~j by (x, y), its position in terms of the rotated
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basis vectors is

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ.

These are the well-known equations of rotation. They may be written in matrix form as(
x′

y′

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x
y

)
= R

(
x
y

)
. (2.12)

Using the identities cos(−θ) = cos θ and sin(−θ) = − sin θ, one obtains a matrix that
rotates the axes back to their original position.(

x
y

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x′

y′

)
= R>

(
x′

y′

)
. (2.13)

As the notation indicates, the matrix that reverses the rotation is the transpose of the
original rotation matrix. Verifying that it’s also the inverse,

RR> =

(
cos θ sin θ
− sin θ cos θ

)(
cos θ − sin θ
sin θ cos θ

)
=

(
cos2 θ + sin2 θ − cos θ sin θ + sin θ cos θ

− sin θ cos θ + cos θ sin θ sin2 θ + cos2 θ

)
=

(
1 0
0 1

)
= I.

So in two dimensions, the transpose of a rotation matrix is also its inverse. This fact
holds in higher dimension as well. A p × p matrix R satisfying R−1 = R> is called an
orthogonal matrix, because the columns and rows are orthonormal vectors. Geometri-
cally, pre-multiplication by an orthogonal matrix corresponds to a rotation or possibly a
reflection in p-dimensional space. If you think of a set of factors F as a set of axes or
underlying dimensions, then RF is a rotation (or reflection) of the factors. Call it an
orthogonal rotation, because the factors remain uncorrelated — at right angles.

Rotation matrices are another source of non-identifiability. Returning to the stan-
dardized factor model, the covariance matrix of the observed data vector z is

Σ = ΛΛ> + Ω

= ΛR>RΛ> + Ω

= (ΛR>)(ΛR>)> + Ω

= Λ2Λ
>
2 + Ω

That is, infinitely many rotation matrices produce the same Σ, even though the factor
loadings in Λ2 = ΛR> can be very different for different R matrices.
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Post-multiplication of Λ by R> is often called “rotation of the factors,” for the fol-
lowing reason.

z = ΛF + e

= (ΛR>)(RF) + e

= Λ2F
′ + e. (2.14)

F′ = RF is a set of rotated factors. All rotations of the factors produce the same covariance
matrix of the observable data.

In addition, all sets of rotated factors account for the same proportion of variance.
To see this, recall that

∑p
j=1 λ

2
ij, the formula for the communality of observed variable i,

instructs us to add up the squares of the factor loadings in row i of Λ. This equals the
ith diagonal of element of ΛΛ>. Applying a rotation,

Λ2Λ
>
2 = (ΛR>)(ΛR>)>

= ΛR>RΛ>

= ΛΛ>, (2.15)

so that rotation does not affect the proportions of variance explained by the common
factors.

Confronted with this unpleasant situation, the exploratory factor analyst asks a ques-
tion. Since all rotations of the factors explain the data equally well, why not just pick a
good one? Here’s an outline of the strategy.

1. Place some restrictions on the factor loadings, so that the only rotation matrix that
preserves the restrictions is the identity matrix9. For example, λij = 0 for j > i.
There are other sets of restrictions that work — for example, forcing Λ>Ω−1Λ to
be diagonal.

2. Generally, the restricted factor loadings may not make sense in terms of the data.
Don’t worry about it.

3. Estimate the loadings, perhaps by maximum likelihood. Other methods are avail-
able, but less commonly used than in the past.

4. Now apply a rotation, without any restriction on the resulting factor loadings. All
(orthogonal) rotations result in the same maximum value of the likelihood function.
That is, the maximum is not unique. Again, don’t worry about it.

5. Pick a rotation that results in a simple pattern in the factor loadings, one that is
easy to interpret.

The first and last steps require further discussion. The first step is to place restrictions on
the factor loadings. Consider the restriction λij = 0 for j > i. This means that observed

9This statement will require a bit of qualification, but it’s the right idea.
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variable one comes only from factor one, observed variable two comes only from factors
one and two, observed variable three comes only from factors one, two and three – and so
on. This pattern might be plausible for some sets of variables, but not in general. Carry
on.

As an illustration, consider the case of two factors. In the path diagram of Figure 2.1,
the straight arrow from F2 to d1 is missing. Also, the curved, double-headed arrow between
F1 and F2 is missing, because the factors are orthogonal. In the model equations (2.7),
the only restriction is λ12 = 0. Maintaining that restriction under rotation means

λ11 0
λ21 λ22

λ31 λ32

λ41 λ42

λ51 λ52

λ61 λ62

λ71 λ27

λ81 λ82


(

cos θ sin θ
− sin θ cos θ

)
=



λ′11 0
λ′21 λ′22

λ′31 λ′32

λ′41 λ′42

λ′51 λ′52

λ′61 λ′62

λ′71 λ′27

λ′81 λ′82


Focusing on the zero in the right-hand side, we have

λ11 sin θ + 0 cos θ = 0

⇒ λ11 sin θ = 0

⇒ sin θ = 0 (provided λ11 6= 0).

Therefore, the angle of rotation θ equals 0, or π, or 2π, or 3π, or . . . . For θ = 0 or any
even multiple of π, cos θ = 1, and the rotation matrix is the identity. For θ = π or any
odd multiple of π, cos θ = −1, and the rotation matrix is minus the identity. This reverses
the signs of all the factor loadings.

There are two more orthogonal matrices that preserve the constraint λ12 = 0. They

are

(
−1 0

0 1

)
and

(
1 0
0 −1

)
. The first matrix reverses the signs of the first column

of Λ, but leaves the second column alone. The second matrix reverses the signs of the
second column of Λ while leaving the first column alone. These represent reflections. The
set of orthogonal matrices corresponds to the set of all possible reflections and rotations
about the origin.

This shows that the restriction λ12 = 0 does not quite make the remaining factor
loadings identifiable from the correlation matrix. We have located four distinct sets of
parameter values that yield exactly the same correlation matrix for the observed data
vector. On the other hand, these multiple solutions will not produce trouble in the
numerical search for the MLE, because they are separated in the parameter space. The
search will find just one of them, or it will wander off into nowhere, depending on the
starting value and the topography of the likelihood function. It does not really matter
which one we find. The plan is to apply a rotation later to find a more interpretable set
of factor loadings, so the meaning of the parameter estimates is not an issue at this point.
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To see what happens in higher dimension, it is enough to examine the case of p = 3.
Denoting the orthogonal matrix by R = [rij] and insisting that it preserve the constraints
λij = 0 for j > i, we require

λ11 0 0
λ21 λ22 0
λ31 λ32 λ33
...

...
...


 r11 r12 r13

r21 r22 r23

r31 r32 r33

 =


λ′11 0 0
λ′21 λ′22 0
λ′31 λ′32 λ′33
...

...
...

 (2.16)

Carrying out the row by column multiplications that yield the three zeros, conclude
r12 = r13 = r23 = 0. Then use the fact that RR> = 0. Conclude that r21 = r31 = r32 = 0,
and that  r2

11 0 0
0 r2

22 0
0 0 r2

33

 =

 1 0 0
0 1 0
0 0 1

 .

So, the off-diagonal elements of R are zero, and the diagonal elements are either plus
or minus one, with entries of minus one representing reflections. This is how it goes in
general, with 2p different orthogonal matrices preserving the restriction λij = 0 for j > i.
The result is 2p distinct minima of the minus log-likelihood function, all with the same
value at the local minimum. Again, no numerical difficulties are created, because the
multiple minima are separated in the parameter space, and the search for the MLE will
only go down one of the holes.

The restriction λij = 0 for j > i is fairly easy to understand, but the restriction most
used in practice is for J = Λ>Ω−1Λ to be diagonal. In Factor analysis as a statistical
method [42], Lawley and Maxwell (1971) show how this way of restricting Λ allows an
efficient iterative solution of the equations obtained by differentiating the log likelihood
and setting all the derivatives to zero.

Full details of Lawley’s method will not be given here, but a few remarks are in order.
First, since Λ is k × p, the matrix J is p × p. It is also symmetric, so insisting it be
diagonal places p(p−1)/2 restrictions on Λ. The restriction λij = 0 for j > i also induces
a little triangle of zeros, as in (2.16); there are p(p − 1)/2 of them, so the two methods
impose the same number of restrictions. This is useful when it comes to counting degrees
of freedom.

Second, let the p × p matrix R be a restricted kind of orthogonal matrix, a diagonal
matrix, with values of plus or minus one on the diagonal. Any diagonal element of R
equal to minus one reverses the signs of all the loadings in the corresponding column of
Λ. That’s a reflection.

Replacing Λ with ΛR,

(ΛR)>Ω−1ΛR = R>Λ>Ω−1ΛR

= R>JR

= J,

since J is diagonal. Therefore, as in the simpler case of λij = 0 for j > i, there are 2p
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different Λ matrices that satisfy the constraint, and also produce the same Σ = corr(z).
Again, there are 2p corresponding minima of the minus log likelihood function.

We need some notation. The initial (restricted) maximum likelihood estimates of the

factors will be denoted by λ̃ij, while λ̂ij will be reserved for the final estimates after

applying a rotation. In matrix form, Λ̂ = Λ̃R>.

The Heywood case It is by no means guaranteed that the numerical search for the
MLE will stop at a point that is in the parameter space. In fact, it is surprisingly
common for the estimates to violate the inequality constraints of the model, as in the
negative variance Example 1.5.1. Because the observed variables are standardized, an
application of invariance to (2.11) yields V ar(zi) = 1 =

∑p
j=1 λ̃

2
ij + ω̃i. A negative ω̃i

would thus induce
∑p

j=1 λ̃
2
ij > 1, an estimated communality greater than one. Since the

communality is the proportion of variance that comes from the common factors, this is
a bit of a problem. It is sometimes called a Heywood case. Or sometimes,

∑p
j=1 λ̃

2
ij = 1

is called a Heywood case, and
∑p

j=1 λ̃
2
ij > 1 is called an ultra-Heywood case. You have

to feel sorry for the user, and also for Mr. Heywood, since his name has been so often
cursed10. Rotation will not solve this problem, because communality is unaffected by
rotation (2.15).

Provided that an acceptable MLE has been located, the result is a set of estimated
factor loadings that might be interpretable if the restrictions on Λ made sense in terms
of the problem, but not otherwise. With respect to the original parameter space (without
the restrictions), the set of estimated factor loadings we have found is only one of an
uncountable infinity, all with the same value of the (minus log) likelihood function. There
is one such set of factor loadings for every p× p orthogonal matrix. The last step in the
5-step recipe given earlier is to pick a good one, and go with that.

In the final step, the factors are rotated, so that Λ̂ = Λ̃R> has a “simple structure”
that is easy to interpret. The concept of simple structure is not precisely defined, which
in the past made factor analysis a bit subjective. There were many fruitless arguments
in which researchers came to different conclusions because they used different rotations,
even though they all claimed to have rotated to “simple structure.”

It is helpful to lift the criteria for simple structure from Harman [28], 1976, p. 98;
Harman takes them from Thurstone’s highly influential (1947) book [64], which I cannot
get my hands on right now11. Here are Thurstone’s criteria for simple structure, using
our notation.

1. Each row of Λ̂ should have at least one zero.

10Heywood [29] gets the blame because of a 1931 paper in which he proves, among other things, that
there can be legitimate correlation matrices that would imply a communality greater than one. It’s one
of the “cases” he considers, so I assume that’s why they call it a Heywood case. From the perspective of
this book, the factor analysis model implies inequality constraints that are not true of all positive definite
correlation matrices. There is no mystery here.

11I am writing this in the Spring of 2021. The covid-19 pandemic is going strong, and the library is
closed. One could not ask for a better excuse.
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2. Each column of Λ̂ should have at least p zeros, where p is the number of factors.

3. For every pair of columns of Λ̂, there should be several variables with loadings that
vanish in one column but not in the other.

4. For every pair of columns of Λ̂, a large proportion of the variables should have
loadings in both columns that are small in absolute value, when there are four or
more factors.

5. For every pair of columns of Λ̂, there should be only a small number of variables
with non-vanishing loadings in both columns.

There are various ways of trying to approximate these goals in an objective manner. The
methods are all iterative, taking a number of steps to approach some criterion. The most
popular rotation method is varimax rotation. As described by Harman [28], the initial
version of varimax was based on the following reasonable idea. To move the loadings in a
particular column of Λ̂ toward zero or ±1, maximize the sample variance of the squared
factor loadings. That is, maximize

1

k

k∑
i=1

(
λ̂ 2
ij

)2

− 1

k2

(
k∑
i=1

λ̂ 2
ij

)2

for column j. Adding up the columns yields the criterion

1

k

p∑
j=1

k∑
i=1

λ̂ 4
ij −

1

k2

p∑
j=1

(
k∑
i=1

λ̂ 2
ij

)2

.

In empirical tests, maximizing this criterion often yielded results that were less pleasing
than a subjective rotation. In particular, the loadings near plus and minus one tended
to be concentrated in just a few columns, which is inconsistent with properties three
through five of simple structure given above. Not bothering with the intuitive justification
(see Harman [28], p. 291), the work-around was to give somewhat less weight to factor
loadings from variables with higher communality. This is accomplished by dividing by
the communalities. The whole expression is also multiplied by k2, which does not affect
the point where the maximum occurs. The resulting criterion is

V = k

p∑
j=1

k∑
i=1

(
λ̂ij

ĥi

)4

−
p∑
j=1

(
k∑
i=1

λ̂ 2
ij

ĥ 2
i

)2

, (2.17)

where ĥ 2
i =

∑p
j=1 λ̂

2
ij. That’s the communality of variable i, the proportion of variance

explained by the common factors. Another way to express (2.17) is to say the squared
(estimated) factor loadings are adjusted so that each row adds to one. This is sometimes
called “Kaiser normalization” after the guy who came up with the idea of varimax.

Expression (2.17) is not directly maximized over the factor loadings. Rather, the
process starts with an initial set of estimated loadings (say, from constrained maximum
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likelihood), and then rotates the factors two at a time as in Figure 2.3, picking the angle
of rotation θ that maximizes V at each step. An iteration consists of going through p− 1
steps, rotating factors 1 and 2, factors 2 and 3, and so on12. The process contines to
iterate until V does not increase any more, to some specified number of decimal places.
You might see a message like “Varimax converged in 5 iterations.”

Varimax solutions are not unique. Suppose the rotation matrix R yields a solution
Λ̂ = Λ̃R> that minimizes the varimax criterion (2.17). Let M be a p×p diagonal matrix,
with each diagonal element equal to plus or minus one. M is an orthogonal matrix, and
so is R>M. Therefore, Λ̂M = Λ̃R>M is another orthogonal rotation/reflection. In Λ̂M,

the columns of Λ̂ are multiplied by the corresponding diagonal elements of M. Potentially,
this reverses the signs of the coefficients in one or more columns of Λ̂. There is no effect
on the value of the varimax criterion (2.17), because the varimax criterion is based on
squared factor loadings. With p factors, the varimax criterion has 2p minima, as each
element of M switches between ±1. The solution obtained from software will depend on
where the numerical search happens to start.

Perhaps surprisingly, this does not make interpretation of results more difficult.. Re-
flecting a factor (multiplying by minus one) reverses the signs of the correlations between
that factor and all the observable variables. It also directly reverses the meaning of the
factor. So for example (recalling that the factors are standardized), if a factor represents
wealth, then minus the factor represents poverty. After a varimax rotation, factors may
be reflected at will if that makes it easier to think about the results.

In practice, varimax rotation tends to maximize the squared loading of each observable
variable with just one underlying factor. In the typical varimax solution, each variable has
a big loading on (correlation with) just one of the factors, and small loadings on the rest.
It’s usually not hard to look at the loadings and decide what the factors mean. Naming
the factors is a fun game that is easy to play. In fact, the whole exercise is so satisfying
that many casual users of exploratory factor analysis do not go beyond an orthogonal
solution with a varimax rotation. Even the most casual class of users, who carry out a
principal components analysis thinking it’s factor analysis, often apply a varimax rotation
to the correlations between variables and components, and are very happy with the result.
Later, it will be seen that applying a rotation to principal components is really not such
a bad idea, since the rotated components explain the same total amount of variance as
the original set, and are easier to talk about.

Exploratory factor analysis of the Mind-body data We will start by re-reading
the Mind-body data for the described in Example 2.1.

> # Factor analysis with orthogonal rotation

> rm(list=ls())

> bodymind = read.table(’http://www.utstat.toronto.edu/~brunner/openSEM/data/bodymind.data.txt’)

> dat = as.matrix(bodymind[,2:10]) # Omit sex. dat is now a numeric matrix.

> help(factanal)

12The result would seem to depend on the order in which the factors are sorted. I don’t know of any
proof that all orderings of factors yield the same varimax solution, but I expect that they are all pretty
similar.
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The built-in factanal function does maximum likelihood factor analysis with orthogonal
factors. The first argument is an input data matrix, covariance matrix or correlation
matrix. The second argument is the number of factors. How many factors should we have?
We know from the principal components analysis that two eigenvalues of the correlation
matrix are greater than two. That’s one reason to try fitting a two-factor model. Another
reason is that some of the variables are educational measurements (mental), while the rest
are physical measures. Since the input comes from two distinct domains, I would expect
two factors13. We’ll start with two factors. Because there are only nine variables, the
guideline of at least three variables per factor implies a maximum of three factors. The
scree plot in Figure 2.2 suggests three factors, so we’ll definitely consider a three-factor
model after this.

> # Maximum likelihood, varimax, 2 factors

> fit2 = factanal(dat,factors=2) # rotation=’varimax’ is the default

> fit2

Call:

factanal(x = dat, factors = 2)

Uniquenesses:

progmat reason verbal headlng headbrd headcir bizyg weight height

0.616 0.274 0.264 0.324 0.618 0.016 0.473 0.577 0.633

Loadings:

Factor1 Factor2

progmat 0.181 0.592

reason 0.124 0.843

verbal 0.160 0.843

headlng 0.806 0.161

headbrd 0.618

headcir 0.963 0.238

bizyg 0.687 0.236

weight 0.638 0.129

height 0.588 0.144

Factor1 Factor2

SS loadings 3.257 1.948

Proportion Var 0.362 0.216

Cumulative Var 0.362 0.578

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 87.55 on 19 degrees of freedom.

The p-value is 8.97e-11

First, look at the (estimated) factor loadings. We’ll go over other details later. Notice that
the loading for head breadth on Factor 2 appears to be missing. This happens because
the matrix of factor loadings is a special kind of R object with its own elaborate print

13This kind of reasoning often works. To steal a joke from Tom Lehrer, factor analysis is like a sewer.
What you get out of it depends on what you put into it.

https://en.wikipedia.org/wiki/Tom_Lehrer
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method. By default, loadings below 0.1 in absolute value are not displayed. The objective
is to make the loadings easier to understand by hiding trivial ones. As an SPSS jock in
a past life, I am more used to loadings under 0.3 being blanked out, which works better
in the present case. The cutoff is controlled by the cutoff option on print, as shown
below.

> L2 = fit2$loadings

> print(L2,cutoff=0.3)

Loadings:

Factor1 Factor2

progmat 0.592

reason 0.843

verbal 0.843

headlng 0.806

headbrd 0.618

headcir 0.963

bizyg 0.687

weight 0.638

height 0.588

Factor1 Factor2

SS loadings 3.257 1.948

Proportion Var 0.362 0.216

Cumulative Var 0.362 0.578

Looking at this, it’s a little difficult to believe that L2 is just a matrix.

> is.matrix(L2)

[1] TRUE

> dim(L2)

[1] 9 2

So L2 really just a 9× 2 matrix. The little table under the loadings is produced automat-
ically by the print method. It will be discussed presently.

With the small loadings hidden, it is easy to see that the mental measurements
(progmat, reason and verbal) load primarily on the second factor, while the other vari-
ables (all physical) load on the first factor. One could name Factor One “Physical” and
Factor Two “Mental.” Or perhaps they could me named “Size” and “Smarts.” This is a
typical case. Often, the meaning of the factors jumps out at you, and they are easy to
name. This is because of the varimax rotation. Unrotated factor loadings are often very
difficult to interpret.

At the bottom of the output displayed for the fit2 object, there is a chi-squared test
for goodness of fit. The p-value is very small, indicating that the model does not fit well
at all. For this reason and also for other reasons mentioned earlier, we need to look at a
three-factor model. First, however, let’s back up and look at some details, to clarify what
the software is doing.
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We will begin with an unrotated two-factor model, displaying all the factor loadings14.
Note how the cutoff=0 option on print(fit2a) is passed down to the printing of the
factor loadings.

> fit2a = factanal(dat,factors=2,rotation=’none’)

> print(fit2a,cutoff=0)

Call:

factanal(x = dat, factors = 2, rotation = "none")

Uniquenesses:

progmat reason verbal headlng headbrd headcir bizyg weight height

0.616 0.274 0.264 0.324 0.618 0.016 0.473 0.577 0.633

Loadings:

Factor1 Factor2

progmat 0.335 0.521

reason 0.348 0.778

verbal 0.383 0.768

headlng 0.820 -0.064

headbrd 0.600 -0.149

headcir 0.992 -0.033

bizyg 0.725 0.040

weight 0.649 -0.049

height 0.605 -0.021

Factor1 Factor2

SS loadings 3.708 1.497

Proportion Var 0.412 0.166

Cumulative Var 0.412 0.578

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 87.55 on 19 degrees of freedom.

The p-value is 8.97e-11

For an orthogonal factor model, squared factor loadings are components of explained
variance. If you square the factor loadings and add, the row totals are commonalities, or
proportions of variance explained by the common factors. The column totals are amounts
of variance explained by each factor. The addmargins function is a convenient way to
add row and column totals to a matrix.

> L2a = fit2a$loadings

> CompVar = addmargins(L2a^2) # Squared factor loadings are components of variance

> round(CompVar,3)

Factor1 Factor2 Sum

progmat 0.112 0.271 0.384

reason 0.121 0.605 0.726

verbal 0.147 0.589 0.736

headlng 0.672 0.004 0.676

14They are estimated factor loadings, of course. Everything here is an estimate.
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headbrd 0.360 0.022 0.382

headcir 0.983 0.001 0.984

bizyg 0.526 0.002 0.527

weight 0.421 0.002 0.423

height 0.366 0.000 0.367

Sum 3.708 1.497 5.205

Factor One explains a whopping 98.3% of the variance in head circumference, and 52.6%
of the variance head length. Maybe the unrotated version it could be called “Head size”
rather than just “Size.” Anyway, the last column of numbers contains the commonalities.
Checking that communality plus uniqueness equals one,

> fit2a$uniquenesses + CompVar[1:9,3] # Should equal ones

progmat reason verbal headlng headbrd headcir bizyg weight height

0.9999884 0.9999994 1.0000003 0.9999984 0.9999912 1.0000000 1.0000001 1.0000041 1.0000124

Close enough. The column totals of CompVar are the amounts of variance explained by
each factor, and indeed they match SS loadings in the display of fit2a. To convert these
amounts of explained variance to proportions, divide by the number of variables (since
the variables are standardized, the total amount of variance to explain is k, the number
of variables). This yields the Proportion Var line. Cumulative Var is self-explanatory.

Notice that the Proportion Var lines are different for fit2 (the rotated solution)
and fit2a (unrotated). Rotation affects the amounts of variance explained by the fac-
tors. However, rotation does not affect the commonalities. So, it does not affect the
uniquenesses or the total amount of variance explained.

To obtain the unrotated solution by maximum likelihood, factanal uses Lawley’s [41]

constraint that Λ̃
>
Ω̃
−1

Λ̃ must be diagonal15. Checking that the unrotated solution obeys
this restriction,

> Omegahat = diag(fit2a$uniquenesses) # Diagonal matrix of uniquenesses little-omega-hat

> J = t(L2a) %*% solve(Omegahat) %*% L2a

> round(J,10)

Factor1 Factor2

Factor1 69.10492 0.000000

Factor2 0.00000 5.002347

It’s diagonal, as advertised. There is no reason to expect the rotated loadings to obey

this constraint. Using the fact that Ω̂ is unaffected by rotation,

> J = t(L2) %*% solve(Omegahat) %*% L2; round(J,10)

Factor1 Factor2

Factor1 64.36786 16.769564

Factor2 16.76956 9.739412

15Remember that Λ̃ and Ω̃ are the initial estimates before rotation, obtained by constrained maximum
likelihood. Of course, Ω̃ = Ω̂, because rotation does not affect the uniquenesses.
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It is standard to specify the rotation when fitting the model, as in fit2. However, one
may also fit a model without rotation as we have done here, and then rotate the factors
as a separate step. R has a built-in varimax function (and also promax, which will not
be discussed).

> varimax(L2a)

$loadings

Loadings:

Factor1 Factor2

progmat 0.181 0.592

reason 0.124 0.843

verbal 0.160 0.843

headlng 0.806 0.161

headbrd 0.618

headcir 0.963 0.238

bizyg 0.687 0.236

weight 0.638 0.129

height 0.588 0.144

Factor1 Factor2

SS loadings 3.257 1.948

Proportion Var 0.362 0.216

Cumulative Var 0.362 0.578

$rotmat

[,1] [,2]

[1,] 0.9623418 0.2718422

[2,] -0.2718422 0.9623418

The loadings are identical to the rotated factor matrix from fit2 on page 229. The
varimax function returns a list with two items, the factor loadings and the rotation
matrix that maximizes the varimax criterion (2.17). The same matrix is also available as
fit2$rotmat. Note that in our notation, rotmat is R>, not R.

More factors Next, we will try a model with three factors, as suggested by the scree plot
and the highly significant chi-squared test for the the two-factor model. The sort=TRUE

option re-orders the variables in the table of factor loadings, in an attempt to make the
output easier to read.

> # Try a 3-factor model

> fit3 = factanal(dat,factors=3)

> print(fit3,cutoff=0.30, sort=TRUE)

Call:

factanal(x = dat, factors = 3)

Uniquenesses:

progmat reason verbal headlng headbrd headcir bizyg weight height

0.606 0.215 0.309 0.005 0.268 0.094 0.256 0.560 0.565
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Loadings:

Factor1 Factor2 Factor3

headbrd 0.852

bizyg 0.787

weight 0.523 0.387

progmat 0.583

reason 0.879

verbal 0.811

headlng 0.959

headcir 0.631 0.669

height 0.465 0.445

Factor1 Factor2 Factor3

SS loadings 2.318 1.945 1.859

Proportion Var 0.258 0.216 0.207

Cumulative Var 0.258 0.474 0.680

Test of the hypothesis that 3 factors are sufficient.

The chi square statistic is 30.89 on 12 degrees of freedom.

The p-value is 0.00205

This is more challenging. Factor 2 still definitely represents the mental measurements,
while Factors 1 and 3 seem to reflect different aspects of head size. Factor 1 loads most
highly on head breadth, followed closely by bizygomatic breadth, which is basically how
far apart the eyes are. One could call Factor 1 “Face width.” Factor 3 loads primarily on
head length, and that’s what it appears to be. Head circumference, which includes both
face width and led length, loads about equally on the two factors. This makes pretty
good sense. Height and weight, aspects of overall body size, also load on both of the head
factors, though not as highly. We can live with this.

The chi-squared test for lack of fit is still significant, though the p-value of 0.00205 is
a lot closer to 0.05 than 8.97e-11 is. Strictly speaking, the model still does not fit. Let’s
check the degrees of freedom. There are nine observed variables, so the correlation matrix
Σ has 9(9-1)/2 = 36 unique elements. There would be 36 covariance structure equations
in 9× 3 = 27 unknown parameters, except that some of the unknown factor loadings are
functions of the others, because of the constraint that Λ>Ω−1Λ is diagonal. There are
p(p− 1)/2 = 3 such functional connections among the factor loadings. Thus, the degrees
of freedom for the test of fit should be 36− 27 + 3 = 12. That’s what the printout says;
okay.

Which model is better, the two-factor or the three-factor? The two-factor model
explains an estimated 58% of the total variance, while the three-factor model explains an
estimated 68%. Since there are nine observed variables, that 10% gain is worth about
one variable. It’s borderline. The two-factor model is a bit easier to talk about, but the
three-factor model makes sense too. The three-factor model fits better, but it still does
not fit in an absolute sense. How about a four-factor model? We would be violating the
reasonable rule of at least three variables per factor, and we are almost running out of
degrees of freedom, but it’s worth a try.
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> # A four-factor model?!

> print( factanal(dat,factors=4), cutoff=0.30, sort=TRUE)

Call:

factanal(x = dat, factors = 4)

Uniquenesses:

progmat reason verbal headlng headbrd headcir bizyg weight height

0.580 0.216 0.305 0.005 0.005 0.109 0.248 0.356 0.437

Loadings:

Factor1 Factor2 Factor3 Factor4

bizyg 0.633 0.527

weight 0.761

height 0.672

progmat 0.599

reason 0.872

verbal 0.813

headbrd 0.957

headlng 0.423 0.886

headcir 0.555 0.418 0.582

Factor1 Factor2 Factor3 Factor4

SS loadings 2.037 1.946 1.433 1.321

Proportion Var 0.226 0.216 0.159 0.147

Cumulative Var 0.226 0.443 0.602 0.749

Test of the hypothesis that 4 factors are sufficient.

The chi square statistic is 8.98 on 6 degrees of freedom.

The p-value is 0.175

Now it seems that Factor 1 is overall body size, Factor 2 is educational test performance
(or “intelligence,” if you want to walk down that dark path), Factor 3 is face width, and
Factor 4 is head length. Furthermore, the model technically fits. As for choice among the
models, it’s really a judgement call. As I see it, the clearest part of the picture is that
the mental measurements form one cluster, and the physical measurements form another
cluster, but one that may be more differentiated. I’m really torn between the two-factor
model (appealing because of its simplicty), and the four-factor model, which may reveal
the most detail. But is that detail real, or is it the result of over-fitting? If I had to
choose, I suppose I would choose the two-factor model. It does not fully fit the data, but
it tells a simple story that makes sense.

If you disagree, it does not mean that you are wrong. In the end, the choice of a model
is quite subjective, though the way these analyses are written up, the semi-arbitrary final
choice will probably seem like the only possibility. This is especially true because only one
set of factor loadings will be presented. If you were looking for the truth here, I’m sorry
to disappoint you. This is in the nature of the beast called exploratory factor analysis.

In spite of all the uncertainty, this enterprise has been blessed with apparent success.
There are many hundreds of published factor analytic studies in the social sciences, es-
pecially in psychology. For example, in their book The measurement of meaning [50],
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Osgood Suci and Tannenbaum (1957) describe a series of investigation into how people
describe objects, using 7-point scales ranging from Ugly to Beautiful, Strong to Weak,
Fast to Slow and so on. Exploratory factor analysis revealed the same three factors
across many different domains. One of the factors had high factor loadings for Good-Bad,
Beautiful-Ugly, and similar adjective pairs. The investigators named the factor evalua-
tive. Similar considerations led them to identify the other two main factors as potency
and activity. Osgood et al. proposed that these are the main dimensions of connotative
(as opposed to denotative) meaning in the English language.

In another famous application [24], Hans Eysenck16 (1947) factor analyzed questions
from a large number of personality scales, arriving at two factors, neuroticism and ex-
traversion. It’s a bit interesting that in order to get a high score on neuroticism, you have
to be willing to say bad things about yourself, while if you say mostly good things you will
get a low neuroticism score. Perhaps it’s just Osgood et al.’s evaluative factor, reversed.
In any case, there are hordes of other examples, including Cattell’s Sixteen Personality
Factor Questionnaire [16] mentioned earlier. The earlier work, including the examples
cited here, tended to use estimation methods that are less computationally demanding
than maximum likelihood. Varimax rotation also caught on gradually, as computing
equipment became more available. Rotation to a “simple structure” used to be graphical
and more than a little subjective.

2.4 Oblique Rotations

Correlated Factors Naturally, not everybody is comfortable with uncorrelated fac-
tors. The question of whether factors are correlated seems like something that should be
decided based on the data, and not simply assumed. The problem is that by the calcula-
tion (2.8), any correlation matrix of the factors is equally compatible with any data set.
This means that estimating Φ = cov(F) is futile. However, there is almost no limit to
human ingenuity.

An early subjective method (as usual, see Harman [28]) for the history) is well adapted
to a setting in which there are several clusters of variables, highly correlated within sets,
and much less so between sets. Compare the formula for the sample correlation coefficient
to the formula for the cosine of the angle between two vectors.

cos θ = ~x·~y
|~x| |~y| r =

∑n
i=1(xi−x)(yi−y)√∑n

i=1(xi−x)2
√∑n

i=1(yi−y)2
(2.18)

Now consider the vector of n values for a variable as a point in Rn. Suppose that the
data are centered by subtracting off sample means, as they are in the standardized case
we are considering. Then the correlation between two variables equals the cosine of the
angle between the two data vectors. This means that considered as points in Rn, a set of
highly correlated variables are physically clustered together. To estimate the factor that

16Eminent research psychologist, racist scum, running dog of the tobacco companies, fabricator of data
and student of Sir Cyril Burt, who was also racist scum and a fabricator of data. See the Wikipedia
article.

https://en.wikipedia.org/wiki/Hans_Eysenck
https://en.wikipedia.org/wiki/Hans_Eysenck
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gives rise to them, run a vector through the center of the cluster. The natural choice is to
have the estimated factor pass through the centroid — that is, through the multivariate
sample mean of the data vectors belonging to that particular cluster. Then the estimated
factor is normalized, giving it variance one.

Figure 2.4 shows a hypothetical example in two dimensions. Since the variables are
standardized, they all have length one. This means that in Rn, the data points lie on the
surface of a hyper-sphere of radius one, centered at the origin. Since Figure 2.4 is in two
dimensions, all the points are on the unit circle.

Figure 2.4: Correlated factors estimated by centroids

The estimated correlations between factors are the cosines of the angles between the
arrows, and the correlations of variables with factors are the cosines of the angles between
data points and the arrows. It all makes sense, and looking at this example, it is hard to
see why the parameters cannot be estimated successfully by this method. The trick is that
by calculating the arrows based only on the points in a single cluster, we are implicitly
assuming that the points in that cluster arise from only one common factor (plus random
error). Under this assumption, lots of the λij values are zero, and in fact the remaining
factor loadings and the correlations between factors are uniquely identifiable — provided
there are at least three variables in each cluster. Chapter 3 treats confirmatory factor
analysis models in which the parameters are identifiable, including the one just indicated.

The informal centroid method just described does work under some circumstances, but
the big problem is cluster membership. When the variables form distinct, highly correlated
clusters then everything is fine. More often, it will not be really clear how many clusters
there are, and some variables will be difficult to classify. This uncertainty makes the
method subjective, and led the developers of factor analysis to look for something more
objective.
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Oblique Rotations An oblique rotation is one in which the axes17 need not remain at
right angles. Starting with an initial orthogonal solution, the axes are rotated separately
so as to achieve a simple structure in the factor loadings. There are various criteria for
what “simple” means, leading to various flavours of the method.

The following account leads to the classical results, by a route that statisticians should
be able to follow. The original explanations are much more complicated. Everything here
is based on a model with equations z = ΛF + e. The factors are standardized, and they
are potentially correlated. Because the variance of each factor equals one, cov(F) = Φ
is a correlation matrix. All other model specifications are the same as in Model (2.9) on
page 219.

In an orthogonal factor model, the factor loadings in Λ are also the correlations be-
tween the observed variables and the factors. This is no longer true when the factors are
correlated. With correlated factors, the calculations in (2.10) lead to

corr(z,F) = cov(z,F) = ΛΦ.

It is common to call the matrix of coefficients Λ the factor pattern matrix, while the matrix
of correlations between variables and factors in ΛΦ is called the factor structure matrix. In
the factor analysis literature, these terms are applied to both the true parameter matrices
and to their estimates.

When factors are correlated, some of the pleasing simplicity of the orthogonal model
disappears. In particular, the explained variance of an observed variable no longer neatly
splits itself into the variance explained by each factor. In scalar terms,

V ar(zi) = var (λi1F1 + · · ·+ λipFp + ei)

=

p∑
j=1

λ2
ijV ar(Fj) +

∑
`6=j

λijλi`cov(F`, Fj) + V ar(ei)

=

p∑
j=1

λ2
ij +

∑
` 6=j

λijλi`φ`j + ωi.

So, while the variance of zi is still decomposed into an explained part and an unexplained
part, the explained variance includes terms that come from each pair of factors, with the
contribution governed by the correlation between factors as well as the factor loadings.
Notice that while the factor loadings and correlations between factors may be mutually
adjusted as in the re-parameterizations (2.8), the amount of unexplained variance ωi is not
affected. The choice of an oblique rotation is one such re-parameterization, and we will
presently see that oblique rotations do not affect estimates of the uniqueness (explained
variance) for any variable.

Oblique rotations are carried out using a p × p transformation matrix T = [tij] sat-
isfying T>T = Φ. Denote column j of T by tj, so that T = (t1|t2| · · · |tp). Because Φ
is a correlation matrix, t>j tj = 1. Thinking of t1, . . . , tp as vectors in Rp and using the
formula in (2.18), the cosine of the angle between ti and tj is t>i tj = Corr(Fi, Fj).

The matrix T is not unique. For p = 2, we have the picture in Figure 2.5. Spin the

17Think of the factors as dimensions, or axes of a co-ordinate system.
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Figure 2.5: Columns of the T matrix

t1
t2

vectors t1 and t2 around the unit circle18 while keeping the angle between them constant.
The cosine of the angle remains constant too, so there are infinitely many transformation
matrices T that yield the same Φ. The square root matrix Φ1/2 is just one of them. By
the way, based on the similarity of Figure 2.5 to Figure 2.4, it would be easy to mistake
the arrows in Figure 2.5 for factors. They are not. They are columns of the T matrix.

For a general number of factors p, the same spinning idea applies. Let R be a p × p
orthogonal matrix. Then (RT)>RT = T>R>RT = T>T = Φ, and RT is another
transformation matrix that produces Φ.

The next theorem says that, as Figure 2.5 suggests, all the transformation matrices
for a given Φ arise from spinning or reflecting a set of column vectors.

Theorem 2.1 Let T1 and T2 be square matrices satisfying T>1 T1 = Φ = T>2 T2, where
Φ is symmetric and positive definite. Then T2 = R T1, where R is an orthogonal matrix.

Proof. Because Φ is positive definite, T1 and T2 are both full rank, and have inverses.

T>2 T2 = ΦT−1
1 T1

=⇒ T2 =
(
(T>2 )−1ΦT−1

1

)
T1 = R T1

18If the axes were being rotated, the rotation matrix R in (2.12) would be employed. Here, the axes
are remaining in position, while the points are being rotated through an angle θ. From the perspective
of one of the points, it looks like the axes are being rotated through an angle of −θ. So, to rotate the
points, one would use the matrix R> in (2.13). Actually, in this case it does not matter which direction
you spin the points.
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Showing that R is an orthogonal matrix,

R>R =
(
(T>2 )−1ΦT−1

1

)> (
(T>2 )−1ΦT−1

1

)
= T−1>

1 Φ>T>−1>
2 (T>2 )−1ΦT−1

1

= T>−1
1 ΦT−1

2 (T>2 )−1ΦT−1
1

= T>−1
1 Φ

(
T>2 T2

)−1
ΦT−1

1

= T>−1
1 ΦΦ−1ΦT−1

1

= T>−1
1 ΦT−1

1

= T>−1
1

(
T>1 T1

)
T−1

1

= I · I = I �

You might be thinking that representing a set of unknown parameters in a way that is
not unique will just make estimation more difficult. In fact, estimation of Φ cannot be
successful by conventional standards anyway, because Φ is not identifiable. As you will
see, the matrix T will be chosen to yield a nice simple factor structure. The fact that T
is not unique just provides a wider range of options.

In the meantime, consider a standard orthonormal basis for Rp, with basis vectors
b1, . . . ,bp, where bi has a one in position i, and zeros elsewhere. Noting that

tj =


t1j
t2j
...
tpj

 ,

the cosine of the angle between bi and tj is b>i tj = tij. Now suppose we were to adopt
t1, . . . , tp as an alternative basis for Rp. Column j of the transformation matrix T contains
the cosines of the angles between tj and the original basis vectors.

Geometrically, changing to the basis t1, . . . , tp corresponds to rotating each of the
original basis vectors through a set of angles satisfying the cosines in T. It is an oblique
rotation rather than an orthogonal rotation, because the new basis vectors need not be
at right angles. The operation can be represented as a matrix multiplication:

T>bj = tj.

This rotation can be applied to a = [aj], a general point in Rp. We have

a = a1b1 + · · ·+ apbp,

so that

T>a = T>(a1b1 + · · ·+ apbp)

= a1T
>b1 + · · ·+ apT

>bp

= a1t1 + · · ·+ aptp,
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representing the point a in terms of the new co-ordinate system. The main point here is
that it makes sense to describe pre-multiplication by T> as a rotation, one that is not
necessarily orthogonal.

Here is how oblique rotation may be used19 to estimate the unknown parameters Λ
and Φ. Returning to the model equations, we start by applying a change of variables to
the factors.

z = ΛF + e

= ΛT>(T>)−1F + e

= AF′ + e,

where A = ΛT> and F′ = (T>)−1F. We have

cov(F′) = cov
(
(T>)−1F

)
= (T>)−1cov(F)

(
(T>)−1

)>
= (T>)−1ΦT−1

= (T>)−1T>TT−1

= I,

so the change of variables and the accompanying re-parameterization results in an orthog-
onal factor model. The new parameter matrix A = [aij] is not identifiable, but it can
be estimated up to an orthogonal rotation, perhaps by constrained maximum likelihood.
This yields Â. (In Section 2.3, the symbol Ã was employed for the constrained MLE.
Here, we return to a more standard notation.)

Now perform another change of variables, to return to a version of the original model
with correlated factors.

z = AF′ + e

= A (T>)−1T>F′ + e

= A(T>)−1 T>(T>)−1F + e

= A(T>)−1 F + e

Instead of expanding A and simplifying back to the original model, we will use our earlier

estimate of A, which is an estimate of ΛT>. Symbolically, Â = Λ̂T>. The matrix of
original factor loadings Λ (the factor pattern matrix) is estimated by

Λ̂ = Λ̂T>(T>)−1 = Â(T>)−1. (2.19)

The factor structure matrix corr(z,F) = ΛΦ is estimated by

Λ̂Φ = Â(T>)−1Φ

= Â(T>)−1T>T

= ÂT (2.20)

19I say “may be” used, because this is not the typical way of describing the process. However, it is
clear to me and it leads to the usual estimates.
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The problem is that the estimates (2.19) and (2.20) both depend on the transformation
matrix T, which unknown and un-knowable20. The solution, as in the case of orthogonal
rotation, is to choose a T matrix that results in a nice simple structure, – either in the
factor pattern (2.19) or the factor structure (2.20). As a by-product, the choice of T

yields an estimate of Φ. Using T̂ to denote the chosen T matrix, Φ̂ = T̂>T̂.
The way in which T is chosen does not affect the estimated uniqueness, the portion

of the variance in an observed variable that comes from the factors. From cov(z) =
ΛΦΛ> + Ω, the estimated explained variances of the observed variables are the diagonal
elements of

Λ̂Φ̂Λ̂
>

= Â
(
T̂>
)−1

T̂>T̂

(
Â
(
T̂>
)−1
)>

= ÂT̂

((
T̂>
)−1
)>

Â>

= ÂT̂T̂−1Â>

= ÂÂ>,

which does not depend on the oblique rotation T̂.
The choice of T depends on what criterion is optimized in search of “simple structure.”

A variety of criteria have been proposed, each with its own impressive name and cadre of
enthusiastic supporters — most of whom, sad to say, are no longer with us. Harman [28]
describes the oblimax, oblimin (including quartimin, covarimin, and biquartimin), direct
oblimin, binormamin and orthoblique methods, and I may have missed some. Confronted
with this wealth of alternatives, I have decided to present the oblimin family, mostly
because of its connection to varimax.

Oblimin rotation Initially, oblimin rotation sought to simplify the factor structure
matrix, while later work focused on simplifying the factor pattern. Logically but not
chronologically, the story begins with the covarimin method. Consider any two columns
of the estimated factor structure matrix in Expression 2.20, but square all the elements
in the matrix. Suppose that all the squared correlations in the matrix are either close to
one or close to zero, and that large squared correlations in one column are beside near-
zero squared correlations in the other column. If this could be achieved for every pair of
columns, it would be a nice simple structure in which each observed variable has a large
correlation (positive or negative) with just one factor, and near zero correlations with the
others. In other words, we want negative relationships between the squared correlations
in all the columns.

Accordingly, square all the estimated correlations in Expression 2.20, and think of
the resulting k × p matrix as a kind of data file, with k observations on p “variables.”

20The matrix T is constrained by the fact the its columns are vectors of length one, and also by
T>T = Φ. This does not help us get at T, because the correlation matrix Φ is not just unknown, it
is not even identifiable. In addition, it has previously been shown that uncountably many T matrices
produce a given Φ. Therefore, even if Φ were known exactly, recovery of the “true” T would be impossible.
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Calculate the p× p sample covariance matrix for these “data.” The covarmin criterion is
the sum of unique off-diagonal elements (multiplied by k2):

p∑
i=1

p∑
j=i+1

(
k

k∑
`=1

c2
`ic

2
`j −

k∑
`=1

c2
`i

k∑
`=1

c2
`j

)
, (2.21)

where c is an estimated correlation. Minimize (2.21) over the elements of the matrix
T. This can be done one column (axis) at a time, literally rotating the axes. As an
option, it is possible to adjust for communalities as in (2.17). Again, one divides squared
correlations by the communality, that is, by the total amount of variance in the variable
that is explained by the common factors.

Covarimin is similar in approach to varimax, and in fact they are both described in the
same 1958 paper by H. F. Kaiser [38]. Both methods treat a matrix of squared estimated
correlations as data. Varimax maximizes the sum of sample variances of the columns, and
covarimin minimizes the sum of sample covariances of the columns.

Covarimin was a nice idea, but based on application to real data sets, it did not yield
satisfactory results. The problem was that it tended to produce solutions that were “too
orthogonal.” That is, the estimated correlation matrix of the factors Φ̂ = T>T tended
to be quite close to the identity, regardless of the data. Perhaps as a way of reducing
how negative the covariances were, a modification was to drop the negative part of (2.21).
This yielded a criterion called quartimin, which had been proposed some years earlier:

p∑
i=1

p∑
j=i+1

(
k∑
`=1

c2
`ic

2
`j

)
. (2.22)

The quartimin criterion tended to yield solutions that were “too oblique.” As a compro-
mise, putting back the k that was omitted from (2.22) and then averaging the two criteria
yielded the biquartimin criterion:

p∑
i=1

p∑
j=i+1

(
k

k∑
`=1

c2
`ic

2
`j −

1

2

k∑
`=1

c2
`i

k∑
`=1

c2
`j

)
, (2.23)

effectively retaining half of the second term in the covarimin criterion (2.21). Some viewed
the biquartimin compromise as “just right,” but it is a matter of taste how much of the
second term to retain. To accommodate all preferences, the general oblimin criterion
replaces the fraction 1

2
with a number between zero and one inclusive, symbolized by γ.

p∑
i=1

p∑
j=i+1

(
k

k∑
`=1

c2
`ic

2
`j − γ

k∑
`=1

c2
`i

k∑
`=1

c2
`j

)
, (2.24)

where 0 ≤ γ ≤ 1. Setting γ = 0 yields quartimin, while γ = 1
2

yields biquartimin, and
γ = 1 yields covarimin.
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Direct oblimin The oblimin method just described seeks to simplify the factor struc-
ture (the matrix of estimated correlations between variables and rotated factors). In
contrast, direct oblimin seeks to simplify the factor pattern, the matrix of estimated fac-
tor loadings21. Both versions of oblimin find a transformation matrix T that minimizes a
criterion of the form (2.24), subject to the restriction that the column vectors of T have

length one. In the original oblimin, the c`j are elements of ÂT (see Expression 2.20),

while for direct oblimin, the c`j are elements of Â(T>)−1 (Expression 2.19). It can make

a difference, because there is no reason to expect the T that optimizes Â(T>)−1 will also

optimize ÂT, unless T is close to the identity.

The name “direct” oblimin seems to be something of a historical accident. The original
oblimin algorithm really was very complicated and indirect. In the paper that introduced
direct oblimin [33], Jennrich and Sampson (1966) provided a much more straightforward
algorithm for minimizing the factor pattern version of (2.24). With more than a half
century of hindsight, it seems that there was a failure to distinguish between directness in
the criterion to be minimized and directness in the algorithm used to get the job done. At
any rate, everyone seems to have bought it, and the original “indirect” version of oblimin
has faded away.

The direct oblimin of Jennrich and Sampson (1966) came to full fruition almost 40
years later [7] in Bernaards and Jennrich (2005). Yes, it’s the same Jennrich. Bernaards
and Jennrich do the optimization directly over the columns of the T matrix, alternating
between a gradient descent step and a projection onto the set of column vectors with length
one. The mathematical expressions are remarkably simple and elegant when written in
matrix form.

Bernaards and Jennrich have provided the R package GPArotation, which implements
their method for a variety of orthogonal and oblique rotations. The options naturally
include direct oblimin, but they do not include indirect oblimin, as far as I can tell. R’s
built-in factanal function has a rotation= option, and it can use all the methods in
GPArotation, provided that the GPArotation package is loaded. Otherwise, factanal
only knows about varimax and promax. The widely used psych package does factor
analysis with oblique rotation using functions from GPArotation, so oblimin rotation in
psych is direct oblimin. This has a lot of prominence because in psych’s workhorse fa

function (fa for factor analysis), the default is to apply an oblimin rotation unless the
user specifies otherwise. The EFAtools package [61] uses GPArotation and psych. I have
been unable to find any R packages that do the original “indirect” oblimin.

In terms of commercial software, online documentation suggests that in SAS and
SPSS, oblimin means direct oblimin. The once-great BMDP package had both direct and
indirect oblimin options, but it is no longer available. In practical terms, direct oblimin
rotation is your only choice unless you write your own function.

There is no obvious reason why the Bernaards and Jennrich algorithm could not
be applied to the factor structure matrix instead of the factor pattern matrix. The
result would be a very direct version of indirect oblimin. Should you bother to write the

21Again, the factor loadings are constants that are like regression coefficients, linking the rotated factors
to the observed variables.
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code? In my judgement, the answer is no, because simplicity in the factor loadings is
probably more desirable than simplicity in the correlations between variables and factors
anyway. Thinking of factor analysis as a causal model (that’s the structural equation
model perspective), the factors are literally producing the observed variables through the
factor loadings in the factor pattern matrix. On the other hand, the factor structure
matrix ÂT is estimating corr(z,F). From the formula corr(z,F) = ΛΦ, the correlation
between an observed variable and a factor depends on the correlations between factors as
well as the direct connection of the factor to the variable.

Consider the two-factor example of Figure 2.1 and Equations (2.7), except with the
observed variables di,j standardized. We have, for example,

corr(zi,4, Fi,1) = cov(zi,4, Fi,1)

= cov(λ41Fi,1 + λ42Fi,2 + ei,4, Fi,1)

= λ41 cov(Fi,1, Fi,1) + λ42 cov(Fi,1, Fi,2) + cov(ei,4, Fi,1)

= λ41 V ar(Fi,1) + λ42 corr(Fi,1, Fi,2) + 0

= λ41 + λ42φ1,2.

If there were p factors, the formula would be corr(zi,4, Fi,1) = λ41 +
∑p

j=2 λ4jφ1,j.
We see that the correlation between an observed variable and a factor includes the

direct link between the variable and the factor, but mixed together with the links be-
tween the variable and all the other factors, in a way that depends on the correlations
between factors. This means that the interpretation of such a correlation may not be
straightforward at all. For example, a high correlation could come from a strong direct
link between the variable and the factor, but it could also come from a weak or zero direct
link, accompanied by strong indirect effects of the other factors. Conversely, evidence of
a strong direct link could be suppressed by the operation of the other factors, resulting in
a near zero correlation. It’s very much like the correlation-causation picture in general.
Though they did not suggest this argument, Jennrich and Sampson showed good taste
when they decided to focus on the factor pattern matrix.

It is important to mention that the effect of the γ parameter is vastly different for
the two oblimin methods. Recall that 0 ≤ γ ≤ 1 for indirect oblimin, with γ = 0
producing the most oblique solutions (largest estimated correlations between factors),
and γ = 1 producing the most orthogonal solutions. For direct oblimin, the connection
is reversed, with obliqueness increasing as a function of γ, rather than decreasing. For
direct oblimin, very large negative γ values yield near zero correlations between factors,
while the estimated correlations between factors rapidly approach ±1 for fairly small
positive values of γ. Then, still for very modest positive γ values, the matrix T becomes
numerically singular, and the algorithm fails to converge. The usual recommendation is
that γ should be zero or negative for direct oblimin.

To avoid confusion, Harman [28] uses the symbol δ instead of γ for direct oblimin,
reserving the symbol γ for indirect oblimin. While SPSS follows Harman’s notation,
R does not. In the oblimin function of the GPArotation package, the gam= argument
controls the value of γ for direct oblimin. Similarly, rotate=quartimin means direct
quartimin; that is, direct oblimin with γ = 0.
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If you happen to know about indirect oblimin, the vocabulary in the GPArotation

documentation can be a trap for the unwary. In help(oblimin), the gam= argument is
documented by “0=Quartimin, .5=Biquartimin, 1=Covarimin.” These are all the direct
oblimin versions. It’s a bit strange because, while γ = 0 is reasonable and in fact is the
default, γ = 1/2 does not correspond to anything interesting for direct oblimin, and the
value γ = 1 frequently leads to convergence problems.

Here is an illustration of factor analysis with oblique rotation for the Mind-body
data. To make the example complete, we begin by reading the data. Then, loading the
GPArotation package makes rotate=oblimin available in factanal.

> rm(list=ls())

> bodymind = read.table(’http://www.utstat.toronto.edu/~brunner/openSEM/data/bodymind.data.txt’)

> dat = as.matrix(bodymind[,2:10]) # Omit sex. dat is now a numeric matrix.

> # install.packages("GPArotation", dependencies=TRUE) # Only need to do this once

> library(GPArotation)

> ob2 = factanal(dat, factors=2, rotation=’oblimin’); print(ob2, cutoff=0)

Call:

factanal(x = dat, factors = 2, rotation = "oblimin")

Uniquenesses:

progmat reason verbal headlng headbrd headcir bizyg weight height

0.616 0.274 0.264 0.324 0.618 0.016 0.473 0.577 0.633

Loadings:

Factor1 Factor2

progmat 0.081 0.584

reason -0.027 0.862

verbal 0.012 0.853

headlng 0.829 -0.019

headbrd 0.655 -0.125

headcir 0.982 0.025

bizyg 0.688 0.088

weight 0.656 -0.014

height 0.600 0.014

Factor1 Factor2

SS loadings 3.353 1.836

Proportion Var 0.373 0.204

Cumulative Var 0.373 0.577

Factor Correlations:

Factor1 Factor2

Factor1 1.000 0.384

Factor2 0.384 1.000

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 87.55 on 19 degrees of freedom.

The p-value is 8.97e-11

Note the matrix Φ̂ under Factor Correlations, with an estimated correlation between
factors of 0.348. For comparison, here is a repeat of the analysis with a varimax rotation.
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> print( factanal(dat, factors=2, rotation=’varimax’), cutoff=0) # For comparison

Call:

factanal(x = dat, factors = 2, rotation = "varimax")

Uniquenesses:

progmat reason verbal headlng headbrd headcir bizyg weight height

0.616 0.274 0.264 0.324 0.618 0.016 0.473 0.577 0.633

Loadings:

Factor1 Factor2

progmat 0.181 0.592

reason 0.124 0.843

verbal 0.160 0.843

headlng 0.806 0.161

headbrd 0.618 0.019

headcir 0.963 0.238

bizyg 0.687 0.236

weight 0.638 0.129

height 0.588 0.144

Factor1 Factor2

SS loadings 3.257 1.948

Proportion Var 0.362 0.216

Cumulative Var 0.362 0.578

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 87.55 on 19 degrees of freedom.

The p-value is 8.97e-11

The estimated uniquenesses are the same, as they should be. The factor loadings are
quite similar; they are perhaps a bit sharper for the oblique rotation, so the oblique
rotation allowed a closer approach to simple structure. The little sub-table under the
factor loadings, starting with SS loadings, is also similar for the varimax and oblimin
rotations. However, this is deceiving. That subtable, generated as part of the print
method for an object of class loadings, is appropriate only when factors are orthogonal. In
that case, squared factor loadings are separate components of variance, and SS loadings

makes sense. With an oblique rotation there is no such interpretation, and the next
example will make that table look as nonsensical as it really is.

First, just note that the test for number of factors (the chi-squared test for goodness
of fit) is identical for the varimax and oblimin rotations. That is because displays for all
rotations, orthogonal or oblique, simply report the test for the initial solution, which is
orthogonal.

Now let us return to the SS loadings table under the factor loadings for oblimin
rotation. With higher values of γ in (2.24), estimated correlations between factors become
larger, and the factor pattern matrix becomes more dissimilar to the factor structure
matrix. Now, R’s built-in factanal function will not accept a γ argument (at least not
in a natural way), but the fa function in the psych package will.
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> # Try fa with gam: Check SS loadings

> # install.packages("psych", dependencies=TRUE) # Only need to do this once

> library(psych); library(psychTools)

> # fa(dat,nfactors=2, fm=’ml’, rotate = ’oblimin’, gam=0) # Same results as ob2

> psych0 = fa(dat,nfactors=2, fm=’ml’, rotate = ’oblimin’, gam=1)

> psych0$loadings

Loadings:

ML1 ML2

progmat -0.503 -1.064

reason -1.030 -1.733

verbal -0.943 -1.672

headlng 1.640 0.952

headbrd 1.420 0.969

headcir 1.888 1.033

bizyg 1.243 0.585

weight 1.295 0.750

height 1.155 0.634

ML1 ML2

SS loadings 15.031 11.149

Proportion Var 1.670 1.239

Cumulative Var 1.670 2.909

I rest my case. The matrix of factor loadings is definitely a factor pattern and not a factor
structure matrix, because its elements are not correlations. The SS loadings table still
squares them, adds them up and divides by nine (the number of variables) in order to get
proportions of explained variance. This is nonsense, because the resulting proportions are
greater than one.

One does not need to use the psych package to be able to specify the γ parameter.
It’s better to use the oblimin function in the GPArotation package22. To do this, first
fit an initial, orthogonal model. Then use the oblimin function on the unrotated factor
loadings Â.

> fit2a = factanal(dat,factors=2,rotation=’none’)

> Ahat = fit2a$loadings

> O2b = oblimin(Ahat); O2b # Matches ob2 (gamma=0)

Oblique rotation method Oblimin Quartimin converged.

Loadings:

Factor1 Factor2

progmat 0.0810 0.5837

reason -0.0271 0.8619

verbal 0.0121 0.8533

headlng 0.8293 -0.0194

headbrd 0.6554 -0.1249

headcir 0.9822 0.0251

bizyg 0.6880 0.0876

weight 0.6558 -0.0140

22Of course the people who wrote the psych package might not agree. psych can do a lot of things,
and if you need or want to do them, you should use the psych package.
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height 0.6001 0.0141

Rotating matrix:

[,1] [,2]

[1,] 0.975 0.0608

[2,] -0.471 1.0813

Phi:

[,1] [,2]

[1,] 1.000 0.384

[2,] 0.384 1.000

The factor loadings match ob2, with a default value of γ = 0. Note that the rotation
is described as Oblimin Quartimin, which is accurate as long as it’s understood to be

direct oblimin. The so-called Rotating matrix is
(
T̂>
)−1

. Looking at the list of items

produced by the oblimin function,

> ls(O2b)

[1] "convergence" "Gq" "loadings" "method" "orthogonal" "Phi" "Table"

[8] "Th"

The Th item is T̂, so the following matches the “Rotating matrix.”

> solve(t(O2b$Th))

[,1] [,2]

[1,] 0.9750642 0.06083524

[2,] -0.4713192 1.08129141

The loadings item is the rotated factor pattern matrix. Fortunately, it is not an object
of class “loadings,” so it does not use the misleading print method.

> O2b$loadings

Factor1 Factor2

progmat 0.08096306 0.58366083

reason -0.02710434 0.86193259

verbal 0.01213684 0.85326892

headlng 0.82927554 -0.01942290

headbrd 0.65541656 -0.12490579

headcir 0.98223567 0.02510846

bizyg 0.68800789 0.08760370

weight 0.65576088 -0.01399468

height 0.60011168 0.01406469

It is instructive to look at the results for γ = 1/2, described as (direct) Oblimin Biquartimin.

> O2c = oblimin(Ahat, gam = 0.5); O2c

Oblique rotation method Oblimin Biquartimin converged.

Loadings:

Factor1 Factor2

progmat -0.0399 0.6440

reason -0.2201 0.9756

verbal -0.1751 0.9593
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headlng 0.9153 -0.1604

headbrd 0.7476 -0.2502

headcir 1.0734 -0.1358

bizyg 0.7364 -0.0162

weight 0.7234 -0.1253

height 0.6561 -0.0844

Rotating matrix:

[,1] [,2]

[1,] 1.058 -0.0944

[2,] -0.756 1.2969

Phi:

[,1] [,2]

[1,] 1.000 0.639

[2,] 0.639 1.000

The estimated correlation between factors is larger, and so are the estimated factor load-
ings. It still tells the same general story, with the first factor representing physical size,
the the second factor reflecting performance on the mental tests.

To give an idea of how the correlation between factors varies as a function of γ, I fit
a series of models with different γ values, covering a wide range.

> # Correlation between factors as a function of gamma

> options(scipen=999) # To suppress scientific notation

> gammaval = c(-500, -100, -50, -10, 0, 0.25, 0.50, 0.75, 1)

> ngamma = length(gammaval); phi12 = numeric(ngamma)

> for(j in 1:ngamma) phi12[j] = oblimin(Ahat, gam = gammaval[j])$Phi[1,2]

> round(rbind(gammaval,phi12),3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

gammaval -500.000 -100.000 -50.000 -10.000 0.000 0.250 0.500 0.750 1.000

phi12 0.002 0.011 0.022 0.105 0.384 0.481 0.639 0.802 0.935

Observe how the correlation between factors approaches zero very slowly as γ → −∞, and
approaches one rapidly for positive values of γ ; it could also approach -1 for increasing
gamma, depending on the data and the starting values for the oblimin minimization.

One might well ask, what’s the right γ value? The answer is that there is no right
answer. γ is not an unknown parameter of the statistical model, and it is not something
that can be estimated. It’s a setting that determines the criterion to be minimized in
order to seek a simple structure in the estimated factor loadings. Typically, users try
different γ values, and settle on one that produces results that seem reasonable for the
data. Or, they just use the software default of γ = 0.

As a final example, consider a three-factor model for the Mind-body data. Before
doing this, I will disclose that I expect one mental factor and two physical factors, and
that the physical factors will be more correlated with one another than either of them is
with the mental factor.

> fit3a = factanal(dat,factors=3,rotation=’none’)

> A3hat = fit3a$loadings
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> oblimin(A3hat)

Oblique rotation method Oblimin Quartimin converged.

Loadings:

Factor1 Factor2 Factor3

progmat 0.18819 -0.0948 0.5686

reason -0.07027 -0.0170 0.9104

verbal -0.00706 0.0312 0.8253

headlng 1.02610 -0.0549 -0.0135

headbrd -0.10556 0.9136 -0.0746

headcir 0.59540 0.4652 0.1061

bizyg 0.11682 0.7509 0.1408

weight 0.31027 0.4429 0.0422

height 0.38873 0.3609 0.0477

Rotating matrix:

[,1] [,2] [,3]

[1,] 1.0070 -0.0171 0.00256

[2,] -0.5830 0.8516 0.60471

[3,] 0.0544 -0.7553 0.87791

Phi:

[,1] [,2] [,3]

[1,] 1.000 0.465 0.327

[2,] 0.465 1.000 0.254

[3,] 0.327 0.254 1.000

The third factor is definitely mental, and could be called “academic ability” without
raising much controversy. The first factor is dominated by head length and to a lesser
extent by head circumference; it could be called “head size.” The second factor has its
highest loadings on head breadth and bizygomatic breadth. It could be called “face
width.” The picture is quite similar to what appeared with an orthogonal (varimax)
rotation. The correlation between the two physical factors is higher than the others in
the Φ̂ matrix, but not notably so.

2.5 Factor Scores

My man Harman [28] suggests that there are two potential reasons for doing factor analy-
sis. One is to understand how certain unobservable factors give rise to a set of observable
data. The other reason is data reduction. You have a lot of variables, and you’d like to
work with a smaller set that contains essentially the same information. So you do a factor
analysis, and then somehow “estimate” the values of the factors for all the members of
your sample. The estimates are called factor scores. They may be more interpretable
than the original data, in the sense that they might represent the underlying quantities
that the data were intended to measure. Certainly, there will be fewer of them. If only for
this reason, they may be easier to think about and to incorporate into subsequent data
analyses.

Principal components Frequently,
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2.6 A Dose of Reality

Let us take a step back from all these interesting details, and consider what we have. In
Sections 2.2 and 2.3, it was shown that the parameters of the exploratory factor analysis
model are not identifiable, even if they are constrained by making the factors uncorrelated.
Infinitely many sets of parameter values are consistent with any data set, so that using
the data alone to distinguish between them is hopeless. The solution in exploratory
factor analysis is rotation. After locating a family of parameter sets that are all equally
reasonable given the data (and arguably better than other values outside the family), one
rotates the factors in such a way that the factor loadings achieve a simple structure, one
that is scientifically meaningful.

The problem is that in statistics, there is such a thing as a true parameter value23.
If the truth resembles simple structure, rotation will take you closer to the truth. If the
truth does not resemble simple structure, rotation will take you farther away. The factor
analysts have a deep philosophical answer to this, but before dealing with that I will give
a few examples using simulated data. The advantage of simulated data is that we know
exactly what the true parameter values are.

In the first example, the truth corresponds to simple structure. There are two uncor-
related factors and eight observed variables. The first four variables load only on factor
one, and the last four load only on factor two. This is an extreme case of simple struc-
ture, and looks very much like varimax. All the distributions are normal, so that the
model underlying maximum likelihood estimation is exactly correct. All the variables are
centered, and the true variances of both factors and observed variables are exactly equal
to one. In the code, the factor loadings (the only parameters) are denoted by Lij. The
sample size is huge, so that sampling error does not make the pattern of results harder to
see.

> rm(list=ls())

> n = 50000 # Huge sample size

> # True factor loadings have a simple structure like varimax (All communalities = 0.49)

> # Factor loadings

> L11 = 0.7; L12 = 0.0

> L21 = 0.7; L22 = 0.0

> L31 = 0.7; L32 = 0.0

> L41 = 0.7; L42 = 0.0

> L51 = 0.0; L52 = 0.7

> L61 = 0.0; L62 = 0.7

> L71 = 0.0; L72 = 0.7

> L81 = 0.0; L82 = 0.7

> # Error Variances

> v1 = 1 - L11**2 - L12**2

> v2 = 1 - L21**2 - L22**2

> v3 = 1 - L31**2 - L32**2

> v4 = 1 - L41**2 - L42**2

> v5 = 1 - L51**2 - L52**2

> v6 = 1 - L61**2 - L62**2

23Except maybe in the mind of the most radical subjective Bayesian.
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> v7 = 1 - L71**2 - L72**2

> v8 = 1 - L81**2 - L82**2

> # Generate data

> set.seed(9999)

> F1 = rnorm(n,0,1); F2 = rnorm(n,0,1)

> d1 = L11*F1 + L12*F2 + rnorm(n,0,sqrt(v1))

> d2 = L21*F1 + L22*F2 + rnorm(n,0,sqrt(v2))

> d3 = L31*F1 + L32*F2 + rnorm(n,0,sqrt(v3))

> d4 = L41*F1 + L42*F2 + rnorm(n,0,sqrt(v4))

> d5 = L51*F1 + L52*F2 + rnorm(n,0,sqrt(v5))

> d6 = L61*F1 + L62*F2 + rnorm(n,0,sqrt(v6))

> d7 = L71*F1 + L72*F2 + rnorm(n,0,sqrt(v7))

> d8 = L81*F1 + L82*F2 + rnorm(n,0,sqrt(v8))

> dmat = cbind(d1,d2,d3,d4,d5,d6,d7,d8)

We fit a two-factor model by maximum likelihood, with a varimax rotation.

> factanal(dmat,factors=2,rotation=’varimax’)

Call:

factanal(x = dmat, factors = 2, rotation = "varimax")

Uniquenesses:

d1 d2 d3 d4 d5 d6 d7 d8

0.506 0.510 0.519 0.511 0.507 0.505 0.508 0.510

Loadings:

Factor1 Factor2

d1 0.698

d2 0.694

d3 0.688

d4 0.695

d5 0.697

d6 0.699

d7 0.696

d8 0.695

Factor1 Factor2

SS loadings 1.971 1.953

Proportion Var 0.246 0.244

Cumulative Var 0.246 0.491

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 10.22 on 13 degrees of freedom.

The p-value is 0.676

It is arbitrary which factor is called Factor 1 and which is called Factor 2. Other than that,
all the estimates are right on the money. The model is correct, and it fits. Everything is
perfect.

In the second example, the true pattern of factor loadings is not at all like varimax.
Everything else is very similar to the first example.
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> # Truth is not like varimax (All communalities = 0.50)

> # Factor loadings

> L11 = 0.5; L12 = -0.5

> L21 = 0.5; L22 = -0.5

> L31 = 0.5; L32 = -0.5

> L41 = 0.5; L42 = -0.5

> L51 = 0.5; L52 = 0.5

> L61 = 0.5; L62 = 0.5

> L71 = 0.5; L72 = 0.5

> L81 = 0.5; L82 = 0.5

> # Error Variances

> v1 = 1 - L11**2 - L12**2

> v2 = 1 - L21**2 - L22**2

> v3 = 1 - L31**2 - L32**2

> v4 = 1 - L41**2 - L42**2

> v5 = 1 - L51**2 - L52**2

> v6 = 1 - L61**2 - L62**2

> v7 = 1 - L71**2 - L72**2

> v8 = 1 - L81**2 - L82**2

> # Generate data

> set.seed(8888)

> F1 = rnorm(n,0,1); F2 = rnorm(n,0,1)

> d1 = L11*F1 + L12*F2 + rnorm(n,0,sqrt(v1))

> d2 = L21*F1 + L22*F2 + rnorm(n,0,sqrt(v2))

> d3 = L31*F1 + L32*F2 + rnorm(n,0,sqrt(v3))

> d4 = L41*F1 + L42*F2 + rnorm(n,0,sqrt(v4))

> d5 = L51*F1 + L52*F2 + rnorm(n,0,sqrt(v5))

> d6 = L61*F1 + L62*F2 + rnorm(n,0,sqrt(v6))

> d7 = L71*F1 + L72*F2 + rnorm(n,0,sqrt(v7))

> d8 = L81*F1 + L82*F2 + rnorm(n,0,sqrt(v8))

> dmat = cbind(d1,d2,d3,d4,d5,d6,d7,d8)

Again we fit a two-factor model with a varimax rotation.

> notsimple = factanal(dmat,factors=2,rotation=’varimax’); notsimple

Call:

factanal(x = dmat, factors = 2, rotation = "varimax")

Uniquenesses:

d1 d2 d3 d4 d5 d6 d7 d8

0.496 0.496 0.504 0.504 0.497 0.495 0.503 0.499

Loadings:

Factor1 Factor2

d1 0.708

d2 0.708

d3 0.702

d4 0.702

d5 0.708

d6 0.709

d7 0.703

d8 0.706
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Factor1 Factor2

SS loadings 2.007 2.000

Proportion Var 0.251 0.250

Cumulative Var 0.251 0.501

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 9.58 on 13 degrees of freedom.

The p-value is 0.728

This time, only the estimates of communality (which are identifiable) and the goodness of
fit test perform well. Everything else is awful. In particular, the estimates of the loadings
are very similar to the estimates in the first example, and very far from the truth.

While the factor analysis for this second example clearly failed to yield a good estimate,
it did yield a set of numbers that are only an orthogonal rotation away from an estimate
that is very good indeed. If you think of the likelihood function as a high-dimensional
mountain range, the maximum elevation is attained on a sort of ridge, with all points on
the ridge at the same altitude. As the sample size increases, the ridge gets higher and
higher, and its location changes a little bit, but less and less with increasing n. Meanwhile,
the rest of the landscape melts into a featureless plain. The initial constrained maximum
likelihood estimation lands you at one point on the ridge, and then an orthogonal rotation
walks you along the ridge (say there is a path along the ridge)24. In these simulated data,
the path actually passes very close to the true parameter value — very close indeed, since
the sample size in this simulated data set is so large.

To find the point on the path that is closest to where the treasure is hidden, we
will rotate the factor solution in the second example using a criterion that has not been
mentioned before now. We will carry out a Procrustes rotation25. In Procustes rotation,
the rotation matrix is chosen to minimize the difference between the matrix of estimated
loadings and a target matrix, using least squares. There are orthogonal and oblique
versions of Procrustes rotation. For our present purposes we want an orthogonal version.
The MCMCpack package has a good one.

> # Procrustes rotation

> # install.packages("MCMCpack", dependencies=TRUE) # Only need to do this once

> library(MCMCpack)

Loading required package: coda

Loading required package: MASS

##

## Markov Chain Monte Carlo Package (MCMCpack)

24In this picture of the likelihood function, what is simple structure? Parameter values are literally
coordinates, like latitude and longitude. This means that choosing a simple structure is like choosing a
“good” location on the path, based on pleasing numerical values for the co-ordinates. For example, both
latitude and longitude are integers, or divisible by eight. It’s a lucky spot; let’s stop here.

25Procrustes is a character in classic Greek mythology. He was a very bad man who would invite
travellers to a free dinner and bed at his castle. Everybody fit the bed in the guest room, one way or
the other. If travellers were too short, Procrustes would hammer them and stretch them with ropes until
they fit. If they were too tall, he would cut off their feet. The survival rate for his guests was essentially
zero. Then one day Theseus came along and gave Procrustes a taste of his own medicine.
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## Copyright (C) 2003-2021 Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park

##

## Support provided by the U.S. National Science Foundation

## (Grants SES-0350646 and SES-0350613)

##

> # help(procrustes)

> L = notsimple$loadings; print(L,cutoff=0) # Factor loadings for the second example

Loadings:

Factor1 Factor2

d1 0.047 0.708

d2 0.056 0.708

d3 0.054 0.702

d4 0.052 0.702

d5 0.708 -0.050

d6 0.709 -0.054

d7 0.703 -0.052

d8 0.706 -0.052

Factor1 Factor2

SS loadings 2.007 2.000

Proportion Var 0.251 0.250

Cumulative Var 0.251 0.501

The target matrix will be the matrix of true factor loadings. Of course we can only do
this because it’s a simulation, and we know what the true parameter values are.

> Lambda = rbind(c(L11,L12), # True factor loadings

+ c(L21,L22),

+ c(L31,L32),

+ c(L41,L42),

+ c(L51,L52),

+ c(L61,L62),

+ c(L71,L72),

+ c(L81,L82) )

> Lambda # True Lambda -- How close can we get to this?

[,1] [,2]

[1,] 0.5 -0.5

[2,] 0.5 -0.5

[3,] 0.5 -0.5

[4,] 0.5 -0.5

[5,] 0.5 0.5

[6,] 0.5 0.5

[7,] 0.5 0.5

[8,] 0.5 0.5

Now carry out the Procrustes rotation.

> pro = procrustes(X = L, Xstar = Lambda) # Rotate X to approximate Xstar.

> pro$X.new

[,1] [,2]

d1 0.4981332 -0.5056613

d2 0.5049341 -0.4994469

d3 0.4994946 -0.4962512
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d4 0.4978127 -0.4979441

d5 0.5033950 0.5000182

d6 0.5014220 0.5038790

d7 0.4986956 0.4981095

d8 0.5003778 0.5008127

That’s very close to the target. To see how close, look at it rounded and compare the
result to Lambda above.

> round(pro$X.new,2)

[,1] [,2]

d1 0.5 -0.51

d2 0.5 -0.50

d3 0.5 -0.50

d4 0.5 -0.50

d5 0.5 0.50

d6 0.5 0.50

d7 0.5 0.50

d8 0.5 0.50

To really see how impressive this is, note that a Procruste rotation cannot fit an arbitrary
target very well. In the final part of this example, the matrix M contains factor loadings
that produce a covariance matrix very different from the one produced by Lambda. Can
we rotate to fit this one?

> M = rbind(c(0.30,0.64),

+ c(0.30,0.64),

+ c(0.30,0.64),

+ c(0.30,0.64),

+ c(0.30,0.64),

+ c(0.30,0.64),

+ c(0.30,0.64),

+ c(0.30,0.64) ); M

[,1] [,2]

[1,] 0.3 0.64

[2,] 0.3 0.64

[3,] 0.3 0.64

[4,] 0.3 0.64

[5,] 0.3 0.64

[6,] 0.3 0.64

[7,] 0.3 0.64

[8,] 0.3 0.64

> procrustes(X = L, Xstar = M)$X.new

[,1] [,2]

d1 -0.2470153 0.6654424

d2 -0.2385050 0.6689701

d3 -0.2379146 0.6626890

d4 -0.2401607 0.6618827

d5 0.6661897 0.2441638

d6 0.6688511 0.2407410

d7 0.6624699 0.2407156

d8 0.6656312 0.2410942
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So the closest one can get to this particular target with an orthogonal rotation is ridicu-
lously far away.

The main point here that for the second simulated data example, the one where
varimax rotation failed, an excellent estimate is actually somewhere in the collection of
factor matrices that can be reached by an orthogonal rotation. The problem is that
we don’t know which one. This is true for real data sets, too. I cannot think of any
exceptions.

Oblique rotations If anything, the problem is a bit worse with oblique rotations,
because they can miss the truth and find an inferior solution, even if the true factor
loadings typify simple structure. For the next example, there will be three factors. The
first factor is independent of the others, but factors two and three are highly correlated.
There are nine observed variables. The first three variables load only on factor one, the
second three load only on factor two, and the last three load only on factor three. That’s
a clear example of simple structure.

> Phi = rbind(c(1.0, 0.0, 0.0),

+ c(0.0, 1.0, 0.9),

+ c(0.0, 0.9, 1.0))

>

> Lambda = rbind(c(0.9, 0.0, 0.0),

+ c(0.9, 0.0, 0.0),

+ c(0.9, 0.0, 0.0),

+ c(0.0, 0.9, 0.0),

+ c(0.0, 0.9, 0.0),

+ c(0.0, 0.9, 0.0),

+ c(0.0, 0.0, 0.9),

+ c(0.0, 0.0, 0.9),

+ c(0.0, 0.0, 0.9) )

The standardized model will hold exactly in the population. For this, it is necessary to
calculate the matrix Ω in cov(z) = cov(ΛF + e) = ΛΦΛ> + Ω.

> # Calculate Omega, the 9 x 9 covariance matrix of the error terms.

> Lambda %*% Phi %*% t(Lambda)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 0.81 0.81 0.81 0.000 0.000 0.000 0.000 0.000 0.000

[2,] 0.81 0.81 0.81 0.000 0.000 0.000 0.000 0.000 0.000

[3,] 0.81 0.81 0.81 0.000 0.000 0.000 0.000 0.000 0.000

[4,] 0.00 0.00 0.00 0.810 0.810 0.810 0.729 0.729 0.729

[5,] 0.00 0.00 0.00 0.810 0.810 0.810 0.729 0.729 0.729

[6,] 0.00 0.00 0.00 0.810 0.810 0.810 0.729 0.729 0.729

[7,] 0.00 0.00 0.00 0.729 0.729 0.729 0.810 0.810 0.810

[8,] 0.00 0.00 0.00 0.729 0.729 0.729 0.810 0.810 0.810

[9,] 0.00 0.00 0.00 0.729 0.729 0.729 0.810 0.810 0.810

> diag(Lambda %*% Phi %*% t(Lambda))

[1] 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81

> Omega = diag(1-0.81,nrow=9,ncol=9); Omega

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
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[1,] 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

[2,] 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00

[3,] 0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00

[4,] 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.00

[5,] 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.00

[6,] 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00

[7,] 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00

[8,] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00

[9,] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19

Now we will generate the random data set. We need a function for simulating multivariate
normal data. Such a function is available in several packages, but I prefer one that I wrote;
it is available for download and free for public use under the usual GNU conditions. As
you can see from the code, it uses spectral decomposition to transform a set of standard
normals into a multivariate normal.

> rm(list=ls())

> # Need function for simulating multivariate normal data.

> source("http://www.utstat.toronto.edu/~brunner/Rfunctions/rmvn.txt")

> rmvn # Type the function name to see the code.

function(nn,mu,sigma)

# Returns an nn by kk matrix, rows are independent MVN(mu,sigma)

kk <- length(mu)

dsig <- dim(sigma)

if(dsig[1] != dsig[2]) stop("Sigma must be square.")

if(dsig[1] != kk) stop("Sizes of sigma and mu are inconsistent.")

ev <- eigen(sigma)

sqrl <- diag(sqrt(ev$values))

PP <- ev$vectors

ZZ <- rnorm(nn*kk) ; dim(ZZ) <- c(kk,nn)

rmvn <- t(PP%*%sqrl%*%ZZ+mu)

rmvn

In the simulation below, the large sample size of n = 10, 000 means that the results will
not be blurred much by sampling error.

> # Generate data

> set.seed(9999)

> n = 10000

> Fac = rmvn(n,mu=c(0,0,0),sigma=Phi) # n x 3 matrix of factor values

> err = rmvn(n,mu=numeric(9),sigma=Omega) # n x 9 matrix of error terms

>

> # n x 3 3 x 9 n x 9

> dat = Fac %*% t(Lambda) + err

Compare the sample correlation matrix to the true correlation matrix. They are close, as
one would expect with this sample size. Of course this is a way to check for mistakes in
calculation or programming.
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> round(cor(dat),3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 1.000 0.808 0.806 -0.004 -0.001 0.008 0.004 0.003 -0.002

[2,] 0.808 1.000 0.809 -0.001 -0.006 0.000 -0.002 -0.003 -0.006

[3,] 0.806 0.809 1.000 -0.002 -0.007 0.003 -0.002 -0.001 -0.004

[4,] -0.004 -0.001 -0.002 1.000 0.811 0.809 0.731 0.732 0.730

[5,] -0.001 -0.006 -0.007 0.811 1.000 0.812 0.726 0.728 0.725

[6,] 0.008 0.000 0.003 0.809 0.812 1.000 0.729 0.730 0.726

[7,] 0.004 -0.002 -0.002 0.731 0.726 0.729 1.000 0.810 0.809

[8,] 0.003 -0.003 -0.001 0.732 0.728 0.730 0.810 1.000 0.808

[9,] -0.002 -0.006 -0.004 0.730 0.725 0.726 0.809 0.808 1.000

> Lambda %*% Phi %*% t(Lambda) + Omega # Compare

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 1.00 0.81 0.81 0.000 0.000 0.000 0.000 0.000 0.000

[2,] 0.81 1.00 0.81 0.000 0.000 0.000 0.000 0.000 0.000

[3,] 0.81 0.81 1.00 0.000 0.000 0.000 0.000 0.000 0.000

[4,] 0.00 0.00 0.00 1.000 0.810 0.810 0.729 0.729 0.729

[5,] 0.00 0.00 0.00 0.810 1.000 0.810 0.729 0.729 0.729

[6,] 0.00 0.00 0.00 0.810 0.810 1.000 0.729 0.729 0.729

[7,] 0.00 0.00 0.00 0.729 0.729 0.729 1.000 0.810 0.810

[8,] 0.00 0.00 0.00 0.729 0.729 0.729 0.810 1.000 0.810

[9,] 0.00 0.00 0.00 0.729 0.729 0.729 0.810 0.810 1.000

When I decided on this example, I thought that common methods for determining the
number of factors might fail, because it could be hard to tell the two highly correlated
factors from a single factor. Indeed, there are two eigenvalues greater than one, and the
others are not even close; this points to two factors. Other common tests for number of
factors give varying results. However, testing for goodness of fit performed really well.
Fitting a model with just two factors,

> factanal(dat,factors=2)

Call:

factanal(x = dat, factors = 2)

Uniquenesses:

[1] 0.195 0.189 0.192 0.235 0.239 0.238 0.240 0.239 0.243

Loadings:

Factor1 Factor2

[1,] 0.897

[2,] 0.900

[3,] 0.899

[4,] 0.875

[5,] 0.872

[6,] 0.873

[7,] 0.872

[8,] 0.873

[9,] 0.870

Factor1 Factor2

SS loadings 4.566 2.424
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Proportion Var 0.507 0.269

Cumulative Var 0.507 0.777

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 3179.9 on 19 degrees of freedom.

The p-value is 0

Varimax was fooled into thinking that the last six variables all came from the same factor,
but the two-factor model did not come close to fitting. Trying a three-factor model,

> factanal(dat,factors=3)

Call:

factanal(x = dat, factors = 3)

Uniquenesses:

[1] 0.195 0.189 0.192 0.193 0.185 0.190 0.188 0.192 0.193

Loadings:

Factor1 Factor2 Factor3

[1,] 0.897

[2,] 0.900

[3,] 0.899

[4,] 0.878 -0.191

[5,] 0.878 -0.212

[6,] 0.877 -0.201

[7,] 0.877 0.205

[8,] 0.877 0.197

[9,] 0.875 0.204

Factor1 Factor2 Factor3

SS loadings 4.615 2.424 0.244

Proportion Var 0.513 0.269 0.027

Cumulative Var 0.513 0.782 0.809

Test of the hypothesis that 3 factors are sufficient.

The chi square statistic is 12.73 on 12 degrees of freedom.

The p-value is 0.389

This model fits nicely; the goodness of fit test located the true number of factors. This
has been my experience with uncorrelated factors, too. The chi-squared test for goodness
of fit is an excellent tool for determining the number of factors, and the larger the sample
size, the better it gets — with simulated data. Of course that’s the problem. We must
bear in mind the suggestion that for any real data set, there could easily be hundreds of
common factors. When this is true, no model will fit if the sample size is large enough.

In any case, suppose we know that there are three factors. The true matrix of factor
loadings is an extreme example of simple structure. Can oblimin find it? If the factors
were uncorrelated, one coud trust varimax to locate this easy truth. The first attempt
will use the default setting of γ = 0.
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> # install.packages("GPArotation", dependencies=TRUE) # Only need to do this once

> library(GPArotation)

>

> threefac = factanal(dat,factors=3,rotation=’none’); Ahat = threefac$loadings

> options(scipen=999) # Suppress scientific notation for now

> oblimin(Ahat)

Oblique rotation method Oblimin Quartimin converged.

Loadings:

Factor1 Factor2 Factor3

[1,] 0.002820 0.89720 0.0024216

[2,] -0.001803 0.90038 -0.0022990

[3,] -0.000956 0.89891 0.0000235

[4,] 0.878590 -0.00141 -0.1905515

[5,] 0.878124 -0.00382 -0.2111222

[6,] 0.877928 0.00538 -0.2005067

[7,] 0.876644 0.00142 0.2058478

[8,] 0.876572 0.00120 0.1972533

[9,] 0.874316 -0.00314 0.2046256

Rotating matrix:

[,1] [,2] [,3]

[1,] 1.00000 -0.001673 -0.0003306

[2,] 0.00307 1.000000 -0.0000706

[3,] -0.00201 0.000551 1.0000028

Phi:

[,1] [,2] [,3]

[1,] 1.00000 -0.001395 0.002345

[2,] -0.00140 1.000000 -0.000484

[3,] 0.00234 -0.000484 1.000000

Both the Λ̂ and Φ̂ matrices are way off. Φ̂ is nearly the identity, and Λ̂ is essentially the
varimax solution. Increasing the value of γ to encourage more highly correlated factors,

> oblimin(Ahat, gam = 0.5) # For more highly correlated factors (truth).

Oblique rotation method Oblimin Biquartimin converged.

Loadings:

Factor1 Factor2 Factor3

[1,] 0.117 1.0222 0.220

[2,] 0.114 1.0234 0.215

[3,] 0.114 1.0227 0.217

[4,] 0.978 0.0304 -0.291

[5,] 0.983 0.0197 -0.317

[6,] 0.981 0.0342 -0.301

[7,] 0.864 0.1860 0.195

[8,] 0.866 0.1825 0.184

[9,] 0.861 0.1801 0.193

Rotating matrix:

[,1] [,2] [,3]

[1,] 1.052 0.118 -0.0661

[2,] 0.131 1.138 0.2414
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[3,] -0.286 0.385 1.2240

Phi:

[,1] [,2] [,3]

[1,] 1.000 -0.313 0.396

[2,] -0.313 1.000 -0.551

[3,] 0.396 -0.551 1.000

Once again, the results are nowhere near the true parameter values. Increasing the value
of γ once again,

> oblimin(Ahat, gam = 0.75)

Oblique rotation method Oblimin g=0.75 NOT converged.

Loadings:

Factor1 Factor2 Factor3

[1,] 4.31 9.678 4.72

[2,] 4.28 9.650 4.72

[3,] 4.28 9.662 4.73

[4,] 7.81 -0.429 -8.08

[5,] 7.76 -0.685 -8.30

[6,] 7.82 -0.468 -8.14

[7,] 8.43 4.017 -4.01

[8,] 8.42 3.919 -4.10

[9,] 8.39 3.950 -4.03

Rotating matrix:

[,1] [,2] [,3]

[1,] 9.23 1.93 -6.99

[2,] 4.80 10.76 5.24

[3,] 1.57 11.15 10.21

Phi:

[,1] [,2] [,3]

[1,] 1.000 -0.995 0.994

[2,] -0.995 1.000 -0.997

[3,] 0.994 -0.997 1.000

Warning message:

In GPFoblq(L, Tmat = Tmat, normalize = normalize, eps = eps, maxit = maxit, :

convergence not obtained in GPFoblq. 1000 iterations used.

This time, the algorithm did not converge (this is common with “large” positive values
of γ), and the estimates are to be ignored. They are just the current values when the job
ran out of iterations. The value of the oblimin criterion was marching off to −∞.

Lowering the value of γ a bit,

> oblimin(Ahat, gam = 0.6)

Oblique rotation method Oblimin g=0.6 converged.

Loadings:

Factor1 Factor2 Factor3

[1,] 0.306 1.3650 0.427736

[2,] 0.301 1.3641 0.423094

[3,] 0.301 1.3642 0.425963
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[4,] 1.213 0.1018 -0.651437

[5,] 1.216 0.0792 -0.686801

[6,] 1.217 0.1028 -0.664617

[7,] 1.138 0.4683 0.013499

[8,] 1.140 0.4600 -0.000951

[9,] 1.134 0.4595 0.010177

Rotating matrix:

[,1] [,2] [,3]

[1,] 1.341 0.314 -0.379

[2,] 0.341 1.519 0.472

[3,] -0.188 0.915 1.673

Phi:

[,1] [,2] [,3]

[1,] 1.000 -0.669 0.659

[2,] -0.669 1.000 -0.812

[3,] 0.659 -0.812 1.000

This time, the maximum absolute correlation between factors is in the right vicinity, but
the values of the estimated correlations are way off, and the estimated factor loadings are
nowhere near the truth.

It is clear that adjusting the value of γ does not help at all. Possibly the numerical
search is getting caught in a local minimum. By default, the search starts with the
transformation matrix T equal to the identity. Using a combination of calculation and
guesswork (the details are not important), I came up with a promising T matrix, denoted
by T try.

> T_try

[,1] [,2] [,3]

Factor1 -0.001603061 0.975610583 0.973941825

Factor2 0.999998098 0.002998459 0.002938147

Factor3 0.001110803 -0.219488039 0.226778941

This transformation matrix reproduces the true correlations between factors and the true
factor loadings quite well. Checking T>T = Φ,

# Test T_try

> M = t(T_try) %*% T_try; round(M,2)

[,1] [,2] [,3]

[1,] 1 0.0 0.0

[2,] 0 1.0 0.9

[3,] 0 0.9 1.0

> Phi

[,1] [,2] [,3]

[1,] 1 0.0 0.0

[2,] 0 1.0 0.9

[3,] 0 0.9 1.0

The match is perfect, to two decimal places. Now try Λ = A
(
T>
)−1

.
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> round(Ahat %*% solve(t(T_try)), 2) # Compare Lambda

[,1] [,2] [,3]

[1,] 0.9 0.00 0.00

[2,] 0.9 0.01 -0.01

[3,] 0.9 0.00 0.00

[4,] 0.0 0.88 0.02

[5,] 0.0 0.93 -0.03

[6,] 0.0 0.91 -0.01

[7,] 0.0 0.00 0.90

[8,] 0.0 0.01 0.89

[9,] 0.0 0.00 0.90

> Lambda

[,1] [,2] [,3]

[1,] 0.9 0.0 0.0

[2,] 0.9 0.0 0.0

[3,] 0.9 0.0 0.0

[4,] 0.0 0.9 0.0

[5,] 0.0 0.9 0.0

[6,] 0.0 0.9 0.0

[7,] 0.0 0.0 0.9

[8,] 0.0 0.0 0.9

[9,] 0.0 0.0 0.9

The reason it’s possible to approximate Φ and Λ so well is the large sample size. Of
course, as in the orthogonal case, there are infinitely many other T matrices that fit the
data equally well. When T try is used as a starting value, the simple structure in Λ̂
ensures that the numerical search stays very close to where it started.

> # Use T_try as a starting value

> oblimin(Ahat, Tmat=T_try, gam=0)

Oblique rotation method Oblimin Quartimin converged.

Loadings:

Factor1 Factor2 Factor3

[1,] 0.89721 -0.003859 0.00671

[2,] 0.90038 0.004258 -0.00617

[3,] 0.89891 -0.000471 -0.00056

[4,] -0.00139 0.876491 0.02450

[5,] -0.00381 0.922002 -0.02156

[6,] 0.00540 0.898292 0.00198

[7,] 0.00159 -0.006151 0.90648

[8,] 0.00136 0.012927 0.88730

[9,] -0.00297 -0.004632 0.90257

Rotating matrix:

[,1] [,2] [,3]

Factor1 -0.001572 0.51597 0.51025

Factor2 1.000000 0.00182 0.00127

Factor3 0.000933 -2.22516 2.22648

Phi:

[,1] [,2] [,3]

[1,] 1.00000 -0.00122 -0.00159
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[2,] -0.00122 1.00000 0.89908

[3,] -0.00159 0.89908 1.00000

One could not ask for nicer results. Notice how a large value of γ is not necessary to
get a high estimated correlation between factors. Furthermore, the oblimin criterion is
actually lower for this solution than for the one with the default starting value, so the
earlier search found a local minimum that was higher than the global minimum. Here’s
how to tell.

An oblimin object is a list, and one of the items in the list is a table showing the
iteration history. For some reason, the table is called Table. The second column of the
table gives the value of the oblimin criterion. There is one row in the table for each
iteration, so tables can be quite long. We will use R’s tail function to look at just the
last four lines of the tables. First comes the one with the default starting value for T (the
identity), and then the one starting with T try.

> tail(oblimin(Ahat, gam=0)$Table)

[,1] [,2] [,3] [,4]

[91,] 90 0.09396019 -4.936630 0.50

[92,] 91 0.09396019 -4.947460 0.50

[93,] 92 0.09396019 -4.958262 0.50

[94,] 93 0.09396019 -4.969037 0.50

[95,] 94 0.09396019 -4.745909 1.00

[96,] 95 0.09396019 -5.054387 0.25

> tail(oblimin(Ahat, Tmat=T_try, gam=0)$Table)

[,1] [,2] [,3] [,4]

[38,] 37 0.0005909207 -4.741182 0.1250

[39,] 38 0.0005909207 -4.949552 0.0625

[40,] 39 0.0005909207 -4.985353 0.1250

[41,] 40 0.0005909207 -4.991386 0.1250

[42,] 41 0.0005909207 -4.950799 0.1250

[43,] 42 0.0005909207 -5.158412 0.0625

Starting with T try was possible only because I knew the true Λ matrix. The key to find-
ing such a hidden solution with real data (if one exists) is to try different starting values for
T. The GPArotation package has a useful function called Random.Start, which generates
a random orthogonal matrix. The single argument of the function Random.Start is the
number of rows and columns. While the transformation matrix T is not constrained to
be orthogonal, the non-zero off-diagonal elements mix things up enough so that it works
quite well. What I did was to execute the following code repeatedly until something
interesting happened.

> oblimin(Ahat, Tmat=Random.Start(3))

After just three tries, I got the following.

Oblique rotation method Oblimin Quartimin converged.

Loadings:

Factor1 Factor2 Factor3

[1,] -0.89721 0.006711 0.003860
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[2,] -0.90038 -0.006167 -0.004258

[3,] -0.89891 -0.000561 0.000472

[4,] 0.00139 0.024497 -0.876491

[5,] 0.00381 -0.021562 -0.922002

[6,] -0.00540 0.001983 -0.898292

[7,] -0.00159 0.906484 0.006151

[8,] -0.00136 0.887303 -0.012927

[9,] 0.00297 0.902572 0.004632

Rotating matrix:

[,1] [,2] [,3]

[1,] 0.001572 0.51025 -0.51597

[2,] -1.000000 0.00127 -0.00182

[3,] -0.000933 2.22648 2.22516

Phi:

[,1] [,2] [,3]

[1,] 1.00000 0.00159 -0.00122

[2,] 0.00159 1.00000 -0.89908

[3,] -0.00122 -0.89908 1.00000

This is the same solution obtained using T try as a starting value, except that the the
signs of all the factor loadings for factors one and three are reversed, and the correlation
between factors two and three is negative instead of positive. This is perfectly good. Since
the oblimin criterion is a function of the squared factor loadings, switching the signs of
the loadings in any column produces the same value of the function being minimized,
and the function has at least 2p local minima. As in orthogonal factor analysis, one may
reflect factors at will, and the only consequence is the word one uses to describe the factor.
One may call it “anti-racism” instead of “racism,” or “mental health” instead of “mental
illness.” It is entirely a matter of convenience. Naturally, when one does this one must
also switch the signs of the correlations between the factor in question and all the other
factors. That is what has happened here.

Continuing to execute the code, on the eleventh try I got a version of the correct
solution with only factor three reflected, and on the thirteenth try I got a version with
only factor one reflected.

The conclusion is that if the true factor pattern has a simple structure, oblimin rotation
may miss it unless one tries numerous starting values26. In fact, even if the truth has a
fairly simple structure, there may be another solution that fits the data just as well and
which has a structure that is even simpler. In this case, multiple starting values will lead
you to the answer that is prettier, but wrong. Of course, if the truth does not happen to
be simple, there is no hope at all.

Frequently, simulation studies involve thousands, or even millions of random data sets.
Here, you really only need two simulated data sets to see how unsuccessful exploratory

26I tried Random.Start a large number of times with the Mind-body data, and got the same results
each time apart from reflections.
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factor analysis can be. It all depends on how closely the true pattern of factor loadings
approximates simple structure. If the truth looks like the result of a varimax rotation,
then a varimax rotation will probably find it – or it will find something equivalent, with
one or more factors reflected. If the truth does not resemble a varimax rotation, then a
varimax rotation will settle on a simple structure that may be quite different from the
truth. Should we expect the truth in any particular field to resemble simple structure? I
really can’t see why.

The factor analysts have an answer, and it goes back to the early days, from the time
when the indeterminacy of factor solutions was first recognized. The argument is that a
factor solution is essentially a scientific theory of the data. In the philosophy of science, it
is widely accepted that there can be many different theories that fit a set of data equally
well. In this situation, a principle known as Occam’s razor says that all other things being
equal, a simpler explanation is better. Thus, the simple structure located by a varimax
or some other good rotation method is the preferred estimate.

My response is that while the factor analysis model itself is like a scientific theory, the
unknown constants in the model are numerical quantities that are subject to estimation,
like the speed of light in relativity theory. In the case of unconstrained exploratory factor
analysis, lack of parameter identifiability means that there are infinitely many potential
estimates that are equally reasonable given the data. Choosing a set of numerical values
that tells a pleasing story is one option, but the truth may be much closer to a completely
different set of values – one that is equally compatible with the data. Viewed as a method
of statistical estimation, exploratory factor analysis is a failure, period. It is something a
statistician should never do, except perhaps for money.

2.7 Rotating Principal Components

Something can be salvaged from all this. Rotation is what makes factor analysis results
understandable. In R, a nice thing about the stand-alone varimax function is that it can
also be used to rotate principal components. The result is a set of uncorrelated linear
combinations of the variables that explain exactly the same amount of variance as the
original components, but are easier to interpret. This section is a bit of a digression, but
the end product is a useful data analysis trick.

From Section 2.1, we have the k×1 standardized data vector z, the correlation matrix
cov(z) = Σ, the spectral decomposition Σ = CDC>, and the vector of principal compo-
nents y = C>z. The ordered eigenvalues in the diagonal matrix D are both the variances
of the principal components and the amounts of variance in z that they explain. It is

https://en.wikipedia.org/wiki/Occam%27s_razor
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helpful to calculate the matrix of correlations

corr(z,y) = cov(z,D−1/2y)

= cov(z,D−1/2C>z)

= cov(z)
(
D−1/2C>

)>
= ΣCD−1/2

= CD C>C︸ ︷︷ ︸
I

D−1/2

= CDD−1/2

= CD1/2, (2.25)

a formula equivalent to the scalar version (2.3).
We don’t retain all the principal components. Instead, we summarize the variables

with a smaller set of p principal components that explain a good part of the total variance.
Typically, components associated with eigenvalues greater than one are retained. This
may be accomplished with a p×k selection matrix that will be denoted by S (for selection),
and is not to be mistaken for a sample covariance matrix. Each row of S has a one in the
position of a component to be retained, and the rest zeros. For example, if there were five
principal components, the first two may be selected as follows.

Sy =

(
1 0 0 0 0
0 1 0 0 0

)
y1

y2

y3

y4

y5

 =

(
y1

y2

)
.

If A is any k × k matrix, then SAS> is the p × p sub-matrix with rows and columns
indicated by S. A sub-matrix of the identity is another (smaller) identity matrix, so
SS> = Ip. Selection matrices are quite flexible and can even be used to re-order variables,
but here they will just be used to select the first p principal components.

Simply rotating a set of selected principal components is not a good choice, because
the resulting linear combinations are correlated.

cov(RSy) = RScov(y) (RS)>

= RSDS>R>,

a matrix that in general will not be diagonal unless all the eigenvalues equal one. Because
the eigenvalues are the variances of the principal components, this suggests standardizing
the principal components before rotating them. It is more convenient (mathematically,
not computationally) to standardize first, and then select. The result is

f = SD−1/2y

= SD−1/2C>z.
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The notation f is meant to suggest that the standardized principal components are anal-
ogous to factors, even though they are not really factors.

Applying a rotation to f , we have f ′ = Rf , with covariance matrix

cov(f ′) = cov(RSD−1/2C>z)

= RSD−1/2C>cov(z)
(
RSD−1/2C>

)>
= RSD−1/2C>ΣCD−1/2S>R>

= RSD−1/2C>CDC>CD−1/2S>R>

= RSD−1/2 C>C︸ ︷︷ ︸
I

D C>C︸ ︷︷ ︸
I

D−1/2S>R>

= RS D−1/2DD−1/2︸ ︷︷ ︸
I

S>R>

= R SS>︸︷︷︸
I

R>

= RR>

= I. (2.26)

Thus, by scaling27 the selected principal components and then rotating, we obtain lin-
ear combinations that are uncorrelated. Since their expected values are zero and their
variances are one, they are still standardized after rotation.

The k × p matrix of correlations between the original variables and the rotated com-
ponents is

corr(z, f ′) = cov(z, f ′) = cov(z,RSD−1/2C>z)

= cov(z)
(
RSD−1/2C>

)>
= Σ CD−1/2S>R>

= CD C>C︸ ︷︷ ︸
I

D−1/2S>R>

= CDD−1/2S>R>

= CD1/2S>R>

= corr(z,y)S>R>

from (2.25).
Since corr(z,y)S> is just the first p columns of the k × k matrix corr(z,y), we can

select principal components first and then compute the correlations, yielding

corr(z, f ′) = corr(z,Sy)R>. (2.27)

Furthermore, scaling and rotation does not affect the amount of variance explained by
the first p components. By (2.2) and (2.3), the variance in zj explained by the first

27Scaling the components to have variance one is the same as standardizing, because they already have
expected value zero.
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p components is the sum of the squared correlations between zj and those components.
There are k such quantities, one for each observed variable. They are the diagonal elements
of the matrix corr(z,Sy)corr(z,Sy)>.

By (2.27), the corresponding sums of squared correlations between the variables and
the scaled and rotated components are on the main diagonal of

corr(z, f ′)corr(z, f ′)> = corr(z,Sy)R>
(
corr(z,Sy)R>

)>
= corr(z,Sy) R>R︸ ︷︷ ︸

I

corr(z,Sy)>

= corr(z,Sy)corr(z,Sy)>.

That is, for each variable, the sum of squared correlations with the first p original com-
ponents is the same as the sum of squared correlations with the scaled and rotated com-
ponents f ′.

It remains to show that the sum of squared correlations of the variables with f ′ is the
variance explained by f ′. This is true because

1. Following the calculations leading to (2.3), we have this general result. Let the
random variable w = a1x1 + · · · + akxk, where a, . . . , ak are non-zero constants,
V ar(xj) = σ2

j , and Cov(xi, xj) = 0 for i 6= j. Then the variance in w that is
explained by a subset of x variables is the sum of their squared correlations with w.

2. For i = 1, . . . , k, zi = ai,1f
′
1 + · · ·+ ai,pf

′
p + ci,p+1yp+1 + · · ·+ ci,kyk, where f ′ = [f ′j].

It is a homework problem to write a matrix expression for the ai,j.

3. The matrix of covariances between f ′ and the principal components yp+1, . . . , yk is
zero.

The conclusion is that for each variable, the variance explained by the rotated linear
combinations f ′ is equal to the variance explained by the first p original components.

To summarize, one can select the first p out of k principal components, and then
scale them to have variance one. This yields f . Applying a rotation (or reflection) yields
f ′ = Rf . The random variables in f ′ have these properties:

• They are uncorrelated.

• They explain the same amount of variance as the first p principal components.

• Their correlations with the observed variables are equal to the correlations of the
first p principal components with the observed variables, but post-multiplied by the
transpose of the rotation matrix. This is equation (2.27).

All this holds for any p× p rotation matrix — that is, for any orthogonal matrix R.
Now, it is not at all mandatory to scale and rotate the principal components, but

it can be useful, because the original components, though unique, are often difficult to
understand in terms of the input variables. Rotation to something approaching simple
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structure can result in linear combinations of the variables that are uncorrelated, collec-
tively just as good as the principal components in terms of explaining variance, and also
easy to understand. The only thing that is lost is the property that the first one explains
the most possible variance, and so on.

The mechanics of rotation can be directly borrowed from factor analysis. Recalling
factor analysis with rotation,

z = ΛF + e

= (ΛR>)(RF) + e

= (ΛR>)F′ + e,

where F′ denotes the rotated factors. Based on an initial solution Λ̂, the rotation matrix
R is chosen so that Λ̂R> has a simple structure.

Comparing Equation (2.27) to the corresponding results for factor analysis,

corr(z, f ′) = corr(z,Sy)R> corr(z,F′) = corr(z,F)R>.

So, one can simply take the matrix of sample correlations between the variables and the
first p principal components, and hand it to a rotation algorithm like varimax. The result
will be simplified matrix of correlations between the variables and and a set of rotated
components f ′ – as well as the rotation matrix that gets the job done.

Illustrating with the Mind-body data, we begin with pc2, the earlier prcomp object
that retained just the two principal components, the ones with eigenvalues greater than
one.

> pc2 = prcomp(dat, scale = T, rank=2)

> ls(pc2)

[1] "center" "rotation" "scale" "sdev" "x"

The list element pc2$x is an n × 2 matrix of the two principal components that are
retained. Looking at the correlations of these principal components with the variables,

> cor(dat,pc2$x)

PC1 PC2

progmat -0.4709330 -0.6299014

reason -0.4981509 -0.7277446

verbal -0.5519561 -0.6910097

headlng -0.7500678 0.1156757

headbrd -0.6073970 0.3689507

headcir -0.9063741 0.1686041

bizyg -0.8298157 0.2293757

weight -0.7274347 0.2792455

height -0.7364050 0.2490749

Correlations of raw (unrotated) principal components with variables are always hard to
understand, but the minus signs make it worse. We can just flip the signs and everything
still correct, because correlations between variables and principal components have the
same signs as eigenvector elements. The definition of an eigenvector and corresponding
eigenvalue is Ax = λx. Thus, if x is an eigenvector corresponding to λ, so is −x. The
choice of sign is arbitrary.
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> y = - pc2$x # Principal components (reflected, still unrotated)

> M1 = cor(dat,y); M1 # Correlations between variables and components

PC1 PC2

progmat 0.4709330 0.6299014

reason 0.4981509 0.7277446

verbal 0.5519561 0.6910097

headlng 0.7500678 -0.1156757

headbrd 0.6073970 -0.3689507

headcir 0.9063741 -0.1686041

bizyg 0.8298157 -0.2293757

weight 0.7274347 -0.2792455

height 0.7364050 -0.2490749

Applying a rotation to these correlations is very easy.

> vmax1 = varimax(M1); print(vmax1, cutoff=0)

$loadings

Loadings:

PC1 PC2

progmat 0.122 0.777

reason 0.100 0.876

verbal 0.165 0.869

headlng 0.717 0.248

headbrd 0.709 -0.042

headcir 0.880 0.274

bizyg 0.841 0.185

weight 0.774 0.093

height 0.767 0.124

PC1 PC2

SS loadings 3.739 2.323

Proportion Var 0.415 0.258

Cumulative Var 0.415 0.674

$rotmat

[,1] [,2]

[1,] 0.8841526 0.4671982

[2,] -0.4671982 0.8841526

The pattern of correlations is clear. After rotation, the first component represents physical
size, and the second component represents performance on the mental tests. The 67.4%
of variance explained is the same as the percentage of variance explained before rotation:

> sum(M1^2)/9

[1] 0.6735697

As a quick cross-check, we calculate the scaled principal components f , apply the rotation
from vmax1 to obtain f ′, and verify that corr(z, f ′) corresponds to the “loadings” produced
by the varimax function. In fprime = f %*% t(R), note the post-multiplication by R>,
rather than pre-multiplication by R. This is because the n random f vectors are in the
rows of a matrix, and thus are transposed.
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> f = scale(y)

> # Note that pc2$rotmat is the transpose of the rotation matrix that is applied to the factors

> R = t(vmax1$rotmat) # Transpose it for notation consistent with the text.

> fprime = f %*% t(R)

> round(cor(dat,fprime),3)

[,1] [,2]

progmat 0.122 0.777

reason 0.100 0.876

verbal 0.165 0.869

headlng 0.717 0.248

headbrd 0.709 -0.042

headcir 0.880 0.274

bizyg 0.841 0.185

weight 0.774 0.093

height 0.767 0.124

> print(vmax1$loadings,cutoff=0) # For comparison

Loadings:

PC1 PC2

progmat 0.122 0.777

reason 0.100 0.876

verbal 0.165 0.869

headlng 0.717 0.248

headbrd 0.709 -0.042

headcir 0.880 0.274

bizyg 0.841 0.185

weight 0.774 0.093

height 0.767 0.124

PC1 PC2

SS loadings 3.739 2.323

Proportion Var 0.415 0.258

Cumulative Var 0.415 0.674

This works so well that I really can’t see why anyone would want to do principal compo-
nents without rotation. In fact, rotating principal components is a fairly common practice.
Social scientists do it all the time. Many are led down this path by the default “factor
analysis” method in SPSS and SAS being principal components (!) and the default rota-
tion method being varimax.

It’s interesting what these users do when they obtain a new data set with the same
variables, or when they use a set of variables that have previously been “factor analyzed”
by another author. Rather than using the weights (eigenvectors) from the first study,
they tend to form “scales” by simply adding up the variables that correlate primarily
with the same component, or possibly adding up z values if the variables are on really
different scales (as the physical variables are in our example). Thus, they would get a
“size” variable and a “smart” variable from the Mind-body data. The reasoning is usually
not explicit, but I believe they may be thinking that the particular weights may be quite
specific to the sub-population from which they obtained the data, and the weights may
also be subject to sampling error. They want something more portable and generalizable,
so they go with a cruder linear combination. In my view, this may be pretty good practice.
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Generally speaking, the more sophisticated the user, the less likely he or she is to apply
a rotation to principal components. After all, rotation is a central tool in exploratory
factor analysis, and principal components analysis definitely is not factor analysis. So
why do it? This little section provides the answer. I hope it establishes that scaling
and then rotating a set principal components makes them easier to interpret, without
sacrificing anything important.
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