
Chapter 1

Introduction to Structural Equation
Models

The design of this book is for Chapter 0 to be a self-contained discussion of regression with
measurement error, while this chapter introduces the classical structural equation models
in their full generality. So, this chapter may serve as a starting point for advanced read-
ers. These advanced readers may belong to two species — quantitatively oriented social
scientists who are already familiar with structural equation modeling, and statisticians
looking for a quick introduction to the topic at an appropriate level.

Also, readers of Chapter 0 will have noticed that the study of a particular model
typically involves a fair amount of symbolic calculation, particularly the calculation of
covariance matrices in terms of model parameters. While these calculations often yield
valuable insights, they become increasingly burdensome as the number of variables in-
creases, particularly when more than one model must be considered.

The solution is to let a computer do it. So starting with this chapter, many calculations
will be illustrated using Sage, an open source computer algebra package described in
Appendix B. The Sage parts will be interleaved with the rest of the text rather than fully
integrated. Typically, an example will include the result of a calculation without giving
a lot of detail, and then at an appropriate place for a pause, the Sage code will be given.
This will allow readers who are primarily interested in the ideas to skip material they
may find tedious.

1.1 Overview

Structural equation models may be viewed as an extension of multiple regression. They
generalize multiple regression in three main ways: there is usually more than one equa-
tion, a response variable in one equation can be an explanatory variable in another, and
structural equation models can include latent variables.

Multiple equations: Structural equation models are usually based upon more
than one regression-like equation. Having more than one equation is not really
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136 CHAPTER 1. INTRODUCTION TO STRUCTURAL EQUATION MODELS

unique; multivariate regression already does that. But you will see that structural
equation models are more flexible than the usual multivariate linear model.

Variables can be both explanatory and response: This is an attractive feature.
Consider a study of arthritis patients, in which joint pain and mobility are measured
at several time points. Joint pain at one time period can lead to decreased physical
activity during the same period, which then leads to more pain at the next time
period. Level of physical activity at time t is both a response variable and a response
variable. Structural equation models are also capable of representing the back-and-
forth nature of supply and demand in Economics. Many other examples will be
given

Latent variables: Structural equation models may include random variables that
cannot be directly observed, and also are not error terms. This capability (combined
with relative simplicity) is their biggest advantage. It allows the statistican to admit
that measurement error exists, and to incorporate it directly into the statistical
model. The regression models with latent variables in Chapter 0 are special cases
of structural equation models.

There are some ways that structural equation models are different from ordinary linear
regression. These include random (rather than fixed) explanatory variable values, a bit
of specialized vocabulary, and some modest changes in notation. Tests and confidence
intervals are based on large-sample theory, even when normal distributions are assumed.
Also, structural equation models have a substantive1 as well as a statistical compontent;
closely associated with this is the use of path diagrams to represent the connections
between variables.

To the statistician, perhaps the most curious feature of structural equation mod-
els is that usually, the regression-like equations lack intercepts and the expected values
of all random variables equal zero. This happens because the models have been re-
parameterized in search of parameter identifiability. Details are given in the next section
(Section A.6.1).

Random explanatory variables Chapter 0 discusses the advantages of the traditional
regression model in which values of the explanatory variables are treated as fixed con-
stants, and the model is considered to be conditional on those values. But once we admit
that the variables we observe are contaminated by random measurement error, the virtues
of a conditional model mostly disappear. So in the standard structural equation models,
all variables are random variables.

Vocabulary Structural equation modeling has developed a specialized vocabulary, and
except for the term “latent variable,” much of it is not seen elsewhere in Statistics. But
the terminology can help clarify things once you know it, and also it appears in software
manuals and on computer output. Here are some terms and their definitions.

1Substantive means having to do with the subject matter. A good substantive model of water pollution
would depend on concepts from Chemistry and Hydrodynamics.
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• Latent variable: A random variable that cannot be directly observed, and also is
not an error term.

• Manifest variable: An observable variable. An actual data set contains only
values of the manifest variables. This book will mostly use the term “observable.”

• Exogenous variable: In the regression-like equations of a structural equation
model, the exogenous variabes are ones that appear only on the right side of the
equals sign, and never on the left side in any equation. If you think of Y being a
function of X, this is one way to remember the meaning of exogenous. All error
terms are exogenous variables.

• Endogenous variable: Endogenous variables are those that appear on the left
side of at least one equals sign. Endogenous variables depend on the exogenous
varables, and possibly other endogenous variables. Think of an arrow from an
exogenous variable to an endogenous variable. The end of the arrow is pointing at
the endogenous variable.

• Factor: This term has a meaning that actually conflicts with its meaning in main-
stream Statistics, particularly in experimental design. Factor analysis (not “facto-
rial” analysis of variance!) is a set of statistical concepts and methods that grew
up in Psychology. Factor analysis models are special cases of the general structural
equation model. A factor is an underlying trait or characteristic that cannot be
measured directly, like intelligence. It is a latent variable, period.

Notation Several different but overlapping models and accompanying notation systems
are to be found in the many books and articles on structural equation modeling. The
present book introduces a sort of hybrid notation system, in which the symbols for param-
eters are mosly taken from the structural equation modeling literature, while the symbols
for random variables are based on common statistical usage. This is to make it easier
for statisticians to follow. The biggest change from Chapter 0 is that the symbol β is
no longer used for just any regression coefficient. It is reserved for links between latent
endgenous variables and other latent endgenous variables.

1.2 A general two-stage model

Independently for i = 1, . . . , n, let

yi = α+ βyi + Γxi + εi (1.1)

Fi =

(
xi
yi

)
di = ν + ΛFi + ei,

where
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• yi is a q × 1 random vector.

• α is a q × 1 vector of constants.

• β is a q × q matrix of constants with zeros on the main diagonal.

• Γ is a q × p matrix of constants.

• xi is a p× 1 random vector with expected value µx and positive definite covariance
matrix Φx.

• εi is a q×1 random vector with expected value zero and positive definite covariance
matrix Ψ.

• Fi (F for Factor) is a partitioned vector with xi stacked on top of yi. It is a
(p + q) × 1 random vector whose expected value is denoted by µF , and whose
variance-covariance matrix is denoted by Φ.

• di is a k × 1 random vector. The expected value of di will be denoted by µ, and
the covariance matrix of di will be denoted by Σ.

• ν is a k × 1 vector of constants.

• Λ is a k × (p+ q) matrix of constants.

• ei is a k × 1 random vector with expected value zero and covariance matrix Ω.

• xi, εi and ei are independent.

Only d1, . . . ,dn are observable. All the other random vectors are latent. But because
Ω = cov(ei) need not be strictly positive definite, error variances of zero are permitted.
This way, it is possible for a variable to be both exogenous and observable.

The distributions of xi, εi and ei are either assumed to be independent and multivariate
normal, or independent and unknown. When the distributions are normal, the parameter
vector θ consists of the unique elements of the parmeter matrices α, β, Γ, µx, Φx, Ψ, ν,
Λ and Ω. When the distributions are unknown, the parameter vector also includes the
three unknown probability distributions.

The two parts of Model (1.1) are called the Latent Variable Model and the Measure-
ment Model. The latent variable part is yi = α + βyi + Γxi + εi, and the measurement
part is di = ν + ΛFi + ei. The bridge between the two parts is the process of collecting
the latent exogenous vector xi and the latent endogenous vector yi into a “factor” Fi.
This is not a categorical explanatory variable, the usual meaning of factor in experimental
design. The terminology comes from factor analysis, a popular multivariate method in
the social sciences. Factor analysis is discussed in Chapters 2 and 3.

Example 1.2.1 The Brand Awareness study
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A major Canadian coffee shop chain is trying to break into the U.S. Market. They assess
the following variables twice on a random sample of coffee-drinking adults. Each variable
is measured first in an in-person interview, and then in a telephone call-back several days
later, conducted by a different interviewer. Thus, errors of measurement for the two
measurements of each variable are assumed to be independent. The variables are

• Brand Awareness (X1): Familiarity with the coffee shop chain

• Advertising Awareness (X2): Recall for advertising of the coffee shop chain

• Interest in the product category (X3): Mostly this was how much they say
they like coffee and doughnuts.

• Purchase Intention (Y1): Expressed willingness to go to an outlet of the coffeeshop
chain and make an order.

• Purchase behaviour (Y2): Reported dollars spent at the chain during the 2 months
following the interview.

All variables were measured on a scale from 0 to 100 except purchase behaviour, which is
in dollars.

Figure 1.1 shows a path diagram for these data. It is a picture of how some variables
are thought to influence other variables. The notation is standard. Straight arrows go
from exogenous variables to endogenous variables, and possibly from endogenous variables
to other endogenous variables. Correlations among exogenous variables are represented
by two-headed curved arrows. Observable variables are enclosed by rectangles or squares,
while latent variables are enclosed by ellipses or circles. Error terms are not enclosed by
anything.

The path diagram in Figure 1.1 expresses some very definite assertions about consumer
behaviour. For example, it says that brand awareness and advertising awareness affect
actual purchase only through purchase intention, while interest in the product may have a
direct effect on purchase behaviour, as well as an indirect effect through purchase intention
— perhaps reflecting impulse purchases. Such claims may be right or they may be wrong,
and some are testable. But the point is that the statistical model corresponding to the
typical path diagram has a strong subject matter component, and actually is a sort of
hybrid, occupying a position somewhere between the typical statistical model and an
actual theory about the data.

It is always possible to argue about how the path diagram should look, and it is
usually valuable as well. The more subject matter expertise that can be brought to the
discussion, the better. Often, the contest between two or more competing pictures will
be traceable to unresolved theoretical issues in the field. Will the data at hand allow a
formal statistical test to decide between the models? If not, is it possible to design a
study that will make such a comparison possible? Thus, the more technical statistical
expertise that can be brought to the discussion, the better.

The measurement model — that is, the part relating the latent variables to the ob-
servable variables — should not escape scrutiny. The processes it represents are usually
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Figure 1.1: The Brand Awareness Study
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not the reason the data were collected, but high quality measurement is a key to the
success of structural equation modeling.

Continuing with the Brand Awareness example, the model corresponding to Figure 1.1
may be written in scalar form as a system of simultaneous regression-like equations.
Independently for i = 1, . . . , n, let

Yi,1 = α1 + γ1Xi,1 + γ2Xi,2 + γ3Xi,3 + εi,1 (1.2)

Yi,2 = α2 + βYi,1 + γ4Xi,3 + εi,2

Wi,1 = ν1 + λ1Xi,1 + ei,1

Wi,2 = ν2 + λ2Xi,1 + ei,2

Wi,3 = ν3 + λ3Xi,2 + ei,3

Wi,4 = ν4 + λ4Xi,2 + ei,4

Wi,5 = ν5 + λ5Xi,3 + ei,5

Wi,6 = ν6 + λ6Xi,3 + ei,6

Vi,1 = ν7 + λ7Yi,1 + ei,7

Vi,2 = ν8 + λ8Yi,1 + ei,8

Vi,3 = ν9 + λ9Yi,2 + ei,9

Vi,4 = ν10 + λ10Yi,2 + ei,10,

where E(Xi,1 = µx1), E(Xi,2 = µx2), E(Xi,3 = µx3), the expected values of all error
terms equal zero, V ar(Xi,j) = φjj for j = 1, 2, 3, Cov(Xi,j, Xi,k) = φjk, V ar(ei,j) = ωj for
j = 1, . . . , 10, V ar(εi,1) = ψ1, V ar(εi,2) = ψ2, and all the error terms are independent of
one another and of the Xi,j variables.

If the two measurements of each variable were deemed similar enough, it would be
possible to reduce the parameter space quite a bit, for example setting ν1 = ν2, λ1 = λ2,
and ω1 = ω2. The same kind of thing could be done for the other latent variables. Also,
the distributions could be assumed normal, or they could be left unspecified; in practice,
those are the two choices.

Setting up the problem in matrix form, we have p = 3 latent exogenous variables, q = 2
latent endogenous variables, and k = 10 observable variables, all of which are endogenous
in this example. Using parameter symbols from the scalar version, the equations of the
latent variable model are

yi = α + β yi + Γ xi + εi(
Yi,1
Yi,2

)
=

(
α1

α2

)
+

(
0 0
β 0

) (
Yi,1
Yi,2

)
+

(
γ1 γ2 γ3

0 0 γ4

)  Xi,1

Xi,2

Xi,3

 +

(
εi,1
εi,2

)

with

Φx = cov(xi) =

 φ11 φ12 φ13

φ12 φ22 φ23

φ13 φ23 φ33

 and Ψ = cov(εi) =

(
ψ1 0
0 ψ2

)
.
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Collecting xi and yi into a single vector of “factors,”

Fi =

(
xi
yi

)
=


Xi,1

Xi,2

Xi,3

Yi,1
Yi,2

 .

Finally, the equations of the measurement model are

di = ν + Λ Fi + ei

Wi,1

Wi,2

Wi,3

Wi,4

Wi,5

Wi,6

Vi,1
Vi,2
Vi,3
Vi,4


=



ν1

ν2

ν3

ν4

ν5

ν6

ν7

ν8

ν9

ν10


+



λ1 0 0 0 0
λ2 0 0 0 0
0 λ3 0 0 0
0 λ4 0 0 0
0 0 λ5 0 0
0 0 λ6 0 0
0 0 0 λ7 0
0 0 0 λ8 0
0 0 0 0 λ9

0 0 0 0 λ10




Xi,1

Xi,2

Xi,3

Yi,1
Yi,2

 +



ei,1
ei,2
ei,3
ei,4
ei,5
ei,6
ei,7
ei,8
ei,9
ei,10


with

Ω = cov(ei) =



ω1 0 0 0 0 0 0 0 0 0
0 ω2 0 0 0 0 0 0 0 0
0 0 ω3 0 0 0 0 0 0 0
0 0 0 ω4 0 0 0 0 0 0
0 0 0 0 ω5 0 0 0 0 0
0 0 0 0 0 ω6 0 0 0 0
0 0 0 0 0 0 ω7 0 0 0
0 0 0 0 0 0 0 ω8 0 0
0 0 0 0 0 0 0 0 ω9 0
0 0 0 0 0 0 0 0 0 ω10


Given a verbal description of a data set, the student should be able to write down a path
diagram, and translate freely between the path diagram, the model in scalar form and
the model in matrix form. Three three ways of expressing the model are equivalent, and
some software2 will allow a model to be specified using only a built-in drawing program.
This can be appealing to users who don’t like equations and Greek letters, but for larger
models the process can be very tedious.

1.3 Review of identifiability

The general two-stage model (1.1) of Section 1.2 is very general indeed — so much so,
that its parameters are seldom identifiable without additional restrictions. Choosing these

2The ones I know of are Amos and JMP.
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restrictions wisely is an essential part of structural equation modeling. In fact, it turns
out that almost everything that makes structural equation modeling distinct from other
large-sample statistical methods can be traced to issue of parameter identifiability. For
the convenience of readers who are starting with Chapter 1, this section collects material
on identifiability from Chapter 0. Readers of Chapter 0 are also encouraged to look it
over. The presentation is intended to be terse. For more detail, please see Chapter 0.

Definition 0.5 (Page 59) Suppose a statistical model implies d ∼ Pθ,θ ∈ Θ. If no
two points in Θ yield the same probability distribution, then the parameter θ is said to
be identifiable. On the other hand, if there exist θ1 and θ2 in Θ with Pθ1 = Pθ2 , the
parameter θ is not identifiable.

Theorem 0.1 (Page 59) If the parameter vector is not identifiable, consistent estimation
for all points in the parameter space is impossible.

Definition 0.6 (Page 60) The parameter is said to be identifiable at a point θ0 if no
other point in Θ yields the same probability distribution as θ0.

Definition 0.7 (Page 60) The parameter is said to be locally identifiable at a point
θ0 if there is a neighbourhood of points surrounding θ0, none of which yields the same
probability distribution as θ0.

Definition 0.8 (Page 60) Let g(θ) be a function of the parameter vector. If g(θ0) 6= g(θ)
implies Pθ0 6= Pθ for all θ ∈ Θ, then the function g(θ) is said to be identifiable at the
point θ0.

Theorem 0.2 (Page 61) Let

y1 = f1(x1, . . . , xp)

y2 = f2(x1, . . . , xp)
...

...

yq = fq(x1, . . . , xp),

If the functions f1, . . . , fq are analytic (posessing a Taylor expansion) and p > q, the set of
points (x1, . . . , xp) where the system of equations has a unique solution occupies at most
a set of volume zero in Rp.

Moment structure equations give moments of the distribution of the observable data in
terms of model parameters. In this course, moments are limited to expected values, vari-
ances and covariances. If it is possible to solve uniquely for the parameter vector in terms
of the these quantities, then the parameter vector is identifiable. Even when a multivari-
ate normal distribution is not assumed, in practice “identifiable” means identifiable from
the moments — usually the variances and covariances.
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Rule 1 (The Parameter Count Rule, page 61) Suppose identifiability is to be decided
based on a set of moment structure equations. If there are more parameters than equa-
tions, the parameter vector is identifiable on at most a set of volume zero in the parameter
space.

1.4 Models: Original and Surrogate

1.4.1 Overview

It is taken for granted that even the best scientific models are not “true” in any ultimate
sense. At best, they are approximations of how nature really works. And this is even
more true of statistical models. As Box and Draper (1987, p. 424) put it, “Essentially
all models are wrong, but some are useful.” [11] In structural equation modeling, the
models used in practice are usually not even the approximate versions that the scientist
or statistician has in mind. Instead, they are re-parameterized versions of the intended
models. This explains some features that may seem odd at first.

Figure 1.2: A sequence of re-parameterizations

Truth ≈ Original Model → Surrogate Model 1 → Surrogate Model 2 → . . .

Figure 1.2 is a picture of the process3. Underlying everything is the true state of
nature, the real process that gave rise to the observable data in our possession. We can
scarcely even imagine what it is, but undoubtedly it’s non-linear, and involves a great
many unmeasured variables. So we start with a model based on the general two-stage
model (1.1) of Section 1.2. It is not the truth and we know it’s not the truth, but maybe it’s
not too bad. It’s basically a collection of regression equations, complete with intercepts.
Based on the usefulness of ordinary multiple regression, there is reason to hope it roughly
approximates the truth in a useful way, at least within the range of the observed data.

As primitive as the original model may be compared to the real truth, its parameters
are still not identifiable. So we re-parameterize, producing a new model whose parameters
are functions of the parameters of the original model. Such a model will be called a
surrogate model because it stands for the original model, and tries to do the job of the
original model. Like a surrogate mother, it may not be as good as a the real thing, but
it will have to do.

As indicated in Figure 1.2, re-parameterization may happen in more than one step. For
the classical structural equation models presented in this book, the first re-parameterization
results in a centered surrogate model with no intercepts, and all expected values equal to
zero. The model equations may look a bit strange at first glance, but it is much more

3Thanks to Michael Li for this way of expressing the idea.
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convenient if we even don’t even have to look at symbols for vectors of parameters that
we can’t estimate uniquely anyway.

Typically, the parameters of the centered surrogate model are still not identifiable,
and there is another re-parameterization, leading to a second level surrogate model. The
process can continue. At each step, the parameter vector of the new model is a function
of of the parameters of the preceding model, and typically the function is not one-to-one.
Otherwise, identifiability would not change. At each stage, the dimension of the new
parameter space is less, so the re-parameterization represents a restriction, or collapsing
of the original parameter space. The end result is a model whose parameters are identi-
fiable functions of the original parameter vector. The goal is for those functions to be as
informative as possible about the parameters of the original model.

Two features of the original model deserve special mention. The first is that usually,
the original model is already a restricted version of Model (1.1), even before it is re-
parameterized to produce a surrogate model. The restrictions in question arise from
substantive modeling considerations rather than from a search for identifiability. So, in
the Brand Awareness example of Section 1.2, the parameter matrices have many elements
fixed at zero. These represent theoretical assertions about consumer psychology. They
may be helpful in making the remaining free parameters identifiable, but that is not their
justification.

A second notable feature of the original model is that expected values are non-zero
in general, and all the equations are regression-like equations with intercepts, and with
slopes that do not necessarily equal one. Any deviation from this standard needs to be
justified on substantive grounds, not on grounds of simplicity or convenience. Otherwise,
it’s a surrogate model and not an original model. The distinction is important, because
most structural equation models used in practice are surrogate models, and a good way to
understand them is to trace the connection between their parameters and the parameters
of the original models from which they are are derived.

Consider a simple additive model for measurement error, like (28) on page 40:

W = X + e.

Immediately it is revealed as a surrogate model, because there is no intercept and the
slope is set to one – a choice that would be hard to justify on modeling grounds most of
the time. For example, X might be actual calories consumed during the past week, and W
might be number of reported calories based on answers to a questionnaire. Undoubtedly,
the true relationship between these variables is non-linear. In an original (though not
exactly true) model, the relationship would be approximated by

W = ν + λX + e.

With this example in mind, it is clear that most of the models given in Chapter 0 (and
all the models in Chapter 0 with identifiable parameters) are actually surrogate models.
This might be a bit unsettling because you did not realize that you were being tricked, or
it might be reassuring because some models that struck you as unrealistic may actually
be better than they seem.
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1.4.2 The centered surrogate model

The first stage of re-parameterization may be done in full generality. The argument
begins with a demonstration that the means and intercepts of the original model are not
identifiable. Please bear in mind that as a practical consideration, “identifiable” means
identifiable from the moments – the expected values and variance-covariance matrix of
the observable data.

Starting with the latent variable part of the two-stage original model (1.1), it is helpful
to write the endogenous variables solely as functions of the exogenous variables, and not
of each other.

yi = α+ βyi + Γxi + εi

⇔ yi − βyi = α+ Γxi + εi

⇔ Iyi − βyi = α+ Γxi + εi

⇔ (I− β)yi = α+ Γxi + εi

⇔ (I− β)−1(I− β)yi = (I− β)−1 (α+ Γxi + ε)

⇔ yi = (I− β)−1 (α+ Γxi + εi) (1.3)

The preceding calculation assumes that the matrix I−β has an inverse. Surprisingly, the
existence of (I−β)−1 is guaranteed by the model. The proof hinges on the specifications
that xi and εi are independent, and that Ψ = cov(εi) is positive definite.

Theorem 1.1 Model (1.1) implies the existence of (I− β)−1.

Proof yi = α+βyi + Γxi + εi yields (I−β)yi = α+ Γxi + εi. Suppose (I−β)−1 does
not exist. Then the rows of I − β are linearly dependent, and there is a q × 1 non-zero
vector of constants a with a>(I− β) = 0. So,

0 = a>(I− β)yi = a>α+ a>Γxi + a>εi

⇒ V ar(0) = V ar(a>Γxi) + V ar(a>εi)

⇒ 0 = a>ΓΦxΓ
>a + a>Ψa.

But the quantity on the right side is strictly positive, because while ΓΦxΓ
> = cov(Γxi)

is only guaranteed to be non-negative definite, Ψ is strictly positive definite according to
the model. Thus, the assumption that I − β is singular leads to a contradiction. This
shows that (I− β)−1 must exist if the model holds. �

Sometimes, the surface defined by |I− β| = 0 is interior to the parameter space, and
yet cannot belong to the parameter space because of the other model specifications. Thus
it forms an unexpected hole in the parameter space. The pinwheel Model () on page
whatever provides an example.

Now that the existence of (I − β)−1 is established, Expression (1.3) may be used to
calculate expected values, variances and covariances. Expressing the results of routine
calculations as partitioned matrices,
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ν + ΛµF = E(Fi) =

(
E(xi)
E(yi)

)
=

(
µx

(I− β)−1 (α+ Γµx)

)
(1.4)

µ = E(di) = ν + ΛµF

Φ = cov(Fi) =

(
cov(xi) cov(xi,yi)

cov(yi)

)
=

(
Φx ΦxΓ

>(I− β)−1T

(I− β)−1
(
ΓΦxΓ

> + Ψ
)

(I− β)−1T

)
Σ = cov(di) = ΛΦΛ> + Ω

The parameter matrices may be divided into three categories: those appearing only in
µ = E(di), those appearing only in Σ = cov(di), and those appearing in both µ and Σ.

Appearing only in µ µx,α,ν

Appearing only in Σ Φx,Ψ,Ω

Appearing in both β,Γ,Λ

Clearly, the parameters appearing only in µ must be identified from the k mean
structure equations or not at all. Even assuming the best case scenario in which β,Γ and
Λ can be identified from Σ and thus may be considered known, this requires the solution
of k equations in k + p + q unknowns. Since the equations are linear, there is no need
to invoke the parameter count rule4. For every fixed set of (β,Γ,Λ) values, infinitely
many sets (µx,α,ν) yield the same vector of expected values µ. Thus, the means and
intercepts in the model are not identifiable.

Not much is lost, because usually the matrices β, Γ and Λ are of primary interest, and
these (or useful functions of them) may potentially be recovered from Σ. So the standard
solution is to re-parameterize, replacing the parameter set (Φx,Ψ,Ω,β,Γ,Λ,µx,α,ν)
with (Φx,Ψ,Ω,β,Γ,Λ,κ), where κ = µ = ν + ΛµF . Then κ is treated as a nuisance
parameter to be estimated with the vector of sample means where technically necessary,
but otherwise ignored.

A useful way to express the re-parameterization is to re-write the equations of Model (1.1),
centering all the random vectors. Starting with the latent variable part,

yi = (I− β)−1 (α+ Γxi + εi)
= (I− β)−1 (α+ Γxi − Γµx + Γµx + εi)

⇔ yi − (I− β)−1 (α+ Γµx) = (I− β)−1 (Γ(xi − µx) + εi)

⇔
c
yi = (I− β)−1(Γ

c
xi +εi)

⇔ (I− β)
c
yi = Γ

c
xi +εi

⇔
c
yi = β

c
yi +Γ

c
xi +εi,

4A system of linear equations with more unknowns than equations has either infinitely many solutions
or none at all. The option of no solutions is ruled out because the pair (µ,Σ) is actually the image of
one particular set of parameter matrices in the parameter space. More details about mappings between
the parameter space and the moment space are given in Chapter 6.
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where putting a c above a random vector means it has been centered by subtracting off
its expected value. Automatically we have

c

Fi= Fi − µF =

(
c
xi
c
yi

)
.

For the measurement part of the model,

di = ν + ΛFi + ei
= ν + ΛFi −ΛµF + ΛµF + ei

⇔ di − (ν + ΛµF ) = Λ(Fi − µF ) + ei

⇔
c

di = Λ
c

Fi +ei.

Thus, a centered version of Model (1.1) is 100% equivalent to the original. A surrogate
for Model (1.1) is obtained by simply dropping the letter c over the random vectors, and
writing

yi = βyi + Γxi + εi (1.5)

Fi =

(
xi
yi

)
di = ΛFi + ei,

where E(xi) = 0, and all other specifications are as in Model (1.1). This will be called
the Centered Surrogate Model. It is a good substitute for the original because

• It hides the nuisance parameters µx, α and ν, which can’t be identified anyway,
and are essentially discarded by a re-parameterization.

• The remaining parameter matrices are identical to those of the original model.

• The covariance matrix Σ of the observable data (given in Expression 1.4) is identical
to that of the original model.

• Special cases of Σ that are used in applications easier to calculate.

It must be emphasized that (1.5) is not a realistic model for almost any actual data set,
because most variables don’t have zero expected value5. Rather, it’s a substitute for a
re-parameterized version of the original Model (1.1), one that’s more convenient to work
with. This explains why structural equation models are usually written in centered form,
with zero means and no intercepts, and why some structural equation modeling software
does not even allow for models with means and intercepts.

5Some authors suggest that the observable data have been centered by subtracting off sample means,
so that they do have expected value zero. That would explain why ν + ΛµF = 0, but not why µF is
necessarily equal to zero.
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1.4.3 An additional re-parameterization

In general, the parameters of the centered surrogate model are still not identifiable. In
most cases, even after restricting the parameters based on modeling considerations, further
technical restrictions are necessary to obtain a model whose parameters are identifiable.
Like centering, these restrictions should be viewed as re-parameterizations, and the models
that result should be viewed as surrogates for the original model. But unlike centering,
which does not affect the parameters appearing in the covariance matrix, the second
level of re-parameterization affects the meaning of the remaining parameters. General
principles will be developed in later chapters, but here is a simple example to illustrate
the idea.

Example 1.4.1 Blood Pressure

Patients with high blood pressure are randomly assigned to different dosages of a blood
pressure medication. There are many different dosages, so dosage may be treated as
a continuous variable. Because the exact dosage is known, this exogenous variable is
observed without error. After one month of taking the medication, the level of the drug
in the patient’s bloodstream is measured once (with error, of course), by an independent
lab. Then, two measurements of the patient’s blood pressure are taken in the doctor’s
office. The measurements are taken on different days and by different technicians, but
with exacly the same equipment and following exactly the same measurement protocol.
Thus, the two blood pressure readings are thought to be equivalent as well as having
independent measurement errors.

Figure 1.3 shows a path diagram of the model, with X representing drug dosage, Y1

representing true blood level of the drug, and Y2 representing the patient’s average resting
blood pressure.

Figure 1.3: Blood pressure path model
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The original model for this problem may be written in scalar form as follows. Inde-



150 CHAPTER 1. INTRODUCTION TO STRUCTURAL EQUATION MODELS

pendently for i = 1, . . . , n,

Yi,1 = α1 + γXi + εi,1 (1.6)

Yi,2 = α2 + βYi,1 + εi,2

Vi,1 = ν1 + λ1Yi,1 + ei,1

Vi,2 = ν2 + λ2Yi,2 + ei,2

Vi,3 = ν2 + λ2Yi,2 + ei,3,

where E(Xi) = µx, V ar(Xi) = φ, all error terms are independent with expected values
equal to zero, V ar(εi,1) = ψ1, V ar(εi,2) = ψ2, V ar(ei,1) = ω1, and V ar(ei,2) = V ar(ei,3) =
ω2. The equal intercepts, slopes and intercepts for V2 and V3 are modeling restrictions,
based on the belief that V2 and V3 really are equivalent measurements.

Again, this is the original model. In a typical application, a surrogate model would be
presented, both to the reader and to the software. It would be in centered form, with the
coefficients λ1 and λ2 both set equal to one. There might be a brief reference to “setting
the scales” of the latent variables6. Here is a more detailed account of what is going on.

How does the surrogte model arise from the original model? The first step is to
re-parameterize by a change of variables in which each variable is transformed by sub-
tracting off its expected value, and then any notational evidence if the transformation
is suppressed. The result is a centered surrogate model like (1.5). Before further re-
parameterization, let us verify that the parameters of the centered model are not iden-
tifiable. It passes the test of the parameter count rule, because the covariance matrix
contains ten parameters and has ten unique elements. So there are ten covariance struc-
ture equations in ten unknowns.

The covariance matrix Σ = [σij] of the observable variables di = (Xi, Vi,1, Vi,2, Vi,3)>

is 
φ γλ1φ βγλ2φ βγλ2φ(

γ2φ+ ψ1

)
λ21 + ω1

(
γ2φ+ ψ1

)
βλ1λ2

(
γ2φ+ ψ1

)
βλ1λ2(

β2γ2φ+ β2ψ1 + ψ2

)
λ22 + ω2

(
β2γ2φ+ β2ψ1 + ψ2

)
λ22(

β2γ2φ+ β2ψ1 + ψ2

)
λ22 + ω2

 . (1.7)

The model imposes three three equality constraints on the covariance matrix: σ13 = σ14,
σ23 = σ24 and σ33 = σ34. This effectively reduces the number of covariance structure
equations by three, so that to show identifiability it would be necessary to solve seven
equations in ten unknowns7. By the parameter count rule, a unique solution is impossible
except possibly on a set of volume zero in the parameter space. So the parameter vector
is not identifiable.

6See for example Bollen, get reference from language paper.
7This idea is a bit subtle. The σij quantities should be viewed as images of a single, fixed point θ0 in

the parameter space. So if the model implies σ13 = σ14 because they both equal βγλ2φ, it means that σ13
and σ14 both represent the same real number. At this point, parameter symbols like β and γ represent
fixed constants too, because they are elements of θ0. But then when the attempt is made to recover θ0
from Σ(θ0) by solving equations, parameter symbols like β and γ are treated as variables, while the σij
quantities remain fixed constants. Chapter 6 discusses mappings back and forth between the parameter
space and the moment space.
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If this argument is not entirely convincing, the table below gives a numerical example
of two different parameter vectors (with γ, β, λ1 and λ2 all non-zero) that yield the same
covariance matrix.

γ β λ1 λ2 ψ1 ψ2 φ ω1 ω2

θ1 2 4 1 1 4 16 1 1 1
θ2 1 2 2 4 1 1 1 1 1

Both parameter vectors yield the covariance matrix

Σ =


1 2 8 8
2 9 32 32
8 32 145 144
8 32 144 145

 .

By Definition 0.5, the parameter vector is not identifiable.
The next step is to re-examine the model equations in (surrogate) centered form,

Yi,1 = γXi + εi,1 (1.8)

Yi,2 = βYi,1 + εi,2

Vi,1 = λ1Yi,1 + ei,1

Vi,2 = λ2Yi,2 + ei,2

Vi,3 = λ2Yi,2 + ei,3

and carry out the standard re-parameterization that yields λ1 = λ2 = 1, purchasing
identifiability. Expressing the re-parameterization as a change of variables will make it
easier to trace the connection between the parameters of the original model and those
of the re-parameterized model. First note that on modeling grounds, we are sure that
λ1 > 0 and λ2 > 0.

Let Y ′i,1 = λ1Yi,1 and Y ′i,2 = λ2Yi,2. The primes just denote a new (transformed)
random variable. Then from the first equation of (1.8),

Y ′i,1 = (λ1γ)Xi + λ1εi,1

= γ′Xi + ε′i,1.

From the second equation of (1.8),

Y ′i,2 = λ2βYi,1 + λ2εi,2

= λ2β
λ1

λ1

Yi,1 + λ2εi,2

=

(
λ2β

λ1

)
Y ′i,1 + λ2εi,2

= β′Y ′i,1 + ε′i,2.
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Using Y ′i,1 = λ1Yi,1 and Y ′i,2 = λ2Yi,2, and putting it all together, the equations of the
second level surrogate model are

Y ′i,1 = γ′Xi + ε′i,1 (1.9)

Y ′i,2 = β′Y ′i,1 + ε′i,2
Vi,1 = Y ′i,1 + ei,1

Vi,2 = Y ′i,2 + ei,2

Vi,3 = Y ′i,2 + ei,3,

where

γ′ = λ1γ (1.10)

ψ′1 = V ar(ε′i,1) = λ2
1ψ1

β′ =
λ2β

λ1

ψ′2 = V ar(ε′i,2) = λ2
2ψ2

λ′1 = 1

λ′2 = 1.

The only parameters of the original model that are unaffected are ω1 and ω2.
The primes are now suppressed, resulting in a model that looks like (1.8) with λ1 =

λ2 = 1. The parameters of this model have the same names as some parameters of the
original model, but actually they are functions of those parameters and other parameters
(λ1 and λ2, in this case) that have been made invisible by the re-parameterization. In
terms of the new parameters, the covariance matrix Σ is

φ γφ βγφ βγφ
γφ γ2φ+ ω1 + ψ1 (γ2φ+ ψ1)β (γ2φ+ ψ1)β
βγφ (γ2φ+ ψ1)β β2γ2φ+ β2ψ1 + ω2 + ψ2 β2γ2φ+ β2ψ1 + ψ2

βγφ (γ2φ+ ψ1)β β2γ2φ+ β2ψ1 + ψ2 β2γ2φ+ β2ψ1 + ω2 + ψ2

 . (1.11)

It is easy to solve for the new parameters in terms of the variances and covariances σij,
showing that the functions of the original parameters given in (1.7) are identifiable.

Moreover, because the covariance matrix (1.11) is just the covariance matrix (1.7)
written in a different notation, the second level surrogate model (1.9) imposes the same
constraints on the covariance matrix that the original and centered surrogate models do.
These include the equality constraints σ13 = σ14, σ23 = σ24 and σ33 = σ34. As described in
Chapter 7, treating these constraints as a null hypothesis provides a way of testing model
correctness. Rejection of that null hypothesis would cast doubt on the original model.

The meanings of the parameters of the surrogate model are clear from the identities
in (1.10). The crucial parameters γ and β are multiplied by constants that are not just
unknown, they are un-knowable except for being positive. Thus, it will be possible to make
reasonable inference about whether these regression coefficients are positive, negative or
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zero. But parameter estimation as such is a meaningless exercise. It is useful only as an
intermediate step in the construction of hypothesis tests.

Actually, not much is lost here. It may be impossible to estimate the the parameters
of interest8, but recall Figure 1.2. The straight-line relationships of the original model
are at best approximations of the non-linear functions that occur in nature. So one may
hope that conclusions about the signs of regression coefficients will apply to whether the
true relationship is monotone increasing or monotone decreasing. By the way, this hope
is all you ever have with linear regression, as well.

So on the surface, setting λ1 = λ2 = 1 looks like either an arbitrary restriction of the
parameter space, or a measurement model that is very difficult to defend. But in fact
it is a very good re-parameterization, resulting in a surrogate model whose parameters
are not only identifiable, but also reflect what can be known about the parameters of the
original model. It is very helpful to express the re-parameterization in terms of a change
of variables, because that reveals how the apparent suppression of λ1 and λ2 caused them
to appear in the remaining model parameters. This was not at all obvious.

Fortunately, re-parameterizations like this usually do not need to be carried out ex-
plicitly. It is common practice to write the model in centered form from the beginning, set
one factor loading9 for each latent variable equal to one, and then check parameter iden-
tifiability. This is fine, provided that the process is understood as a re-parameterization
with cascading effects on the coefficients linking the latent variables to one another and
to the other observable variables in the model.

As alternative to setting factor loadings equal to one, the centered surrogate model
may be re-parameterized so that the variances of transformed latent variables are equal
to one. That is, if Fj is a latent variable with variance φjj, the change of variables
is F ′j =

√
φjjFj. This device has advantages and disadvantages. Further discussion is

deferred until Chapter 3, which focuses upon the measurement model that links latent to
observable variables.

1.4.4 The blood pressure example with Sage

Sage is an open source symbolic mathematics software package. Use of such software
can greatly ease the computational burden of structural equation modeling. This section
assumes the introduction to Sage in Appendix B. Like all the Sage material, it may be
skipped without loss of continuity. Since this is the first example in the textbook proper,
it contains quite a bit of extra detail.

Writing the equations of the centered surrogate model in matrix form, the latent

8One might hope that in a different re-parameterization, γ and β might appear unaltered as parameters
in the new model. But the numerical example shows that γ and β are not identifiable, and hence by
Theorem 0.1, consistent estimation of them is out of the question.

9This terminology anticipates Chapters 2 and 3. A factor loading is a coefficient linking a latent
variable to an observable variable.
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variable part is

yi = β yi + Γ xi + εi(
Yi,1
Yi,2

)
=

(
0 0
β 0

) (
Yi,1
Yi,2

)
+

(
γ
0

) (
Xi

)
+

(
εi,1
εi,2

)
,

and the measurement part of the model is

di = Λ Fi + ei
Xi

Vi,1
Vi,2
Vi,3

 =


1 0 0
0 λ1 0
0 0 λ2

0 0 λ2




Xi

Yi,1
Yi,2
Xi,3

 +


ei,1
ei,2
ei,3
ei,4

 .

For the measurement model equations to make sense, it is necessary for the distribution
of ei,1 to be degenerate at zero; that is, Pr{ei,1 = 0} = 1. This will be accomplished by
setting V ar(ei,1) = 0.

The covariance matrix Σ = cov(di) is the same under the original model and the
centered surrugate model. To calculate it, first download the sem package.

sem = ’http://www.utstat.toronto.edu/ brunner/openSEM/sage/sem.sage’

load(sem)

evaluate

Then set up the parameter matrices Φ, Γ, β, Ψ, Λ and Ω. Because these matrices contain
so many zeros, the ZeroMatrix function is used quite a bit to create symbolic matrices
that initially contain nothing but zeros. Then, non-zero elements are assigned using var

statements. First comes Φ, which is 1× 1.

# Set up matrices: p = 1, q = 2, k = 4

# Remember, matrix indices start with zero

PHIx = ZeroMatrix(1,1); PHIx[0,0] = var(’phi’); show(PHIx)

evaluate(
φ
)

The matrix Γ is 2× 1.

GAMMA = ZeroMatrix(2,1); GAMMA[0,0] = var(’gamma’); show(GAMMA)

evaluate(
γ
0

)
The matrix β is 2× 2.
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BETA = ZeroMatrix(2,2); BETA[1,0] = var(’beta’); show(BETA)

evaluate(
0 0
β 0

)
The 2×2 matrix Ψ can be created directly with the DiagonalMatrix function; the default
symbol is a ψ.

PSI = DiagonalMatrix(2); show(PSI)

evaluate(
ψ1 0
0 ψ2

)
The matrix Λ is 4× 3.

LAMBDA = ZeroMatrix(4,3); LAMBDA[0,0] = 1 ; LAMBDA[1,1] = var(’lambda1’)

LAMBDA[2,2] = var(’lambda2’) ; LAMBDA[3,2] = var(’lambda2’)

show(LAMBDA)

evaluate
1 0 0
0 λ1 0
0 0 λ2

0 0 λ2


The matrix Ω = cov(ei) has V ar(ei,1) = 0, so that the observable variable Xi can also
appear in the latent variable model.

OMEGA = ZeroMatrix(4,4); OMEGA[1,1] = var(’omega1’)

OMEGA[2,2] = var(’omega2’); OMEGA[3,3] = var(’omega2’)

show(OMEGA)

evaluate
0 0 0 0
0 ω1 0 0
0 0 ω2 0
0 0 0 ω2


Following the two-stage model formulation, the next step is to calculate Φ = cov(Fi).
Then Φ will be used as an ingredient in the calculation of Σ.
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# Calculate PHI = cov(F)

PHI = PathCov(Phi=PHIx,Beta=BETA,Gamma=GAMMA,Psi=PSI)

show(PHI)

evaluate φ γφ βγφ
γφ γ2φ+ ψ1 (γ2φ+ ψ1)β
βγφ (γ2φ+ ψ1)β β2γ2φ+ β2ψ1 + ψ2


Now, Σ is calculated from Φ, Λ and Ω, yielding Expression (1.7). I used Sage to generate
the LATEXcode for the matrix by double-clicking on the object in the Sage worksheet, and
then manually deleted the lower triangular part of the matrix so it would fit better on
the page. It was still a lot better than typesetting the matrix myself.

# Calculate SIGMA = cov(D)

SIGMA = FactorAnalysisCov(Lambda=LAMBDA,Phi=PHI,Omega=OMEGA)

show(SIGMA)

evaluate
φ γλ1φ βγλ2φ βγλ2φ

γλ1φ (γ2φ+ ψ1)λ2
1 + ω1 (γ2φ+ ψ1)βλ1λ2 (γ2φ+ ψ1)βλ1λ2

βγλ2φ (γ2φ+ ψ1)βλ1λ2 (β2γ2φ+ β2ψ1 + ψ2)λ2
2 + ω2 (β2γ2φ+ β2ψ1 + ψ2)λ2

2

βγλ2φ (γ2φ+ ψ1)βλ1λ2 (β2γ2φ+ β2ψ1 + ψ2)λ2
2 (β2γ2φ+ β2ψ1 + ψ2)λ2

2 + ω2


To generate the example of two numerically different parameter sets that yield the same
Σ, I looked at the equations in (1.10) to find distinct θ vectors corresponding to the
same θ′. There was a bit of trial and error, and Sage made it really convenient to do the
numerical calculations. A Sage object like a matrix may be treated as a function of the
symbolic variables that appear in it.

SIGMA(gamma=2,beta=4,lambda1=1,lambda2=1,psi1=4,psi2=16,

phi=1,omega1=1,omega2=1)

evaluate
1 2 8 8
2 9 32 32
8 32 145 144
8 32 144 145


SIGMA(gamma=1,beta=2,lambda1=2,lambda2=4,psi1=1,psi2=1,

phi=1,omega1=1,omega2=1)
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evaluate
1 2 8 8
2 9 32 32
8 32 145 144
8 32 144 145


The same Sage capability was used to generate Expression (1.11), the re-parameterized Σ
matrix under the second-level surrogate model. Rather than starting from the surrogate
model equations (1.9) and re-doing the whole calculation, I just evaluated the Σ of (1.7)
at λ1 = λ2 = 1.

SIGMA(lambda1=1,lambda2=1)

evaluate
φ γφ βγφ βγφ
γφ γ2φ+ ω1 + ψ1 (γ2φ+ ψ1)β (γ2φ+ ψ1)β
βγφ (γ2φ+ ψ1)β β2γ2φ+ β2ψ1 + ω2 + ψ2 β2γ2φ+ β2ψ1 + ψ2

βγφ (γ2φ+ ψ1)β β2γ2φ+ β2ψ1 + ψ2 β2γ2φ+ β2ψ1 + ω2 + ψ2


The covariance structure equations may now be solved by inspection, verifying identifi-
ability of the parameters in the re-parameterized model. But it is instructive to solve
the equations using Sage. The necessary ingredients are a list of equations and a list of
unknown parameters for which to solve.

The sem package has the specialized function Parameters for extracting parameters
from matrices, so they don’t all need to be re-typed. It works on the original parameter
matrices, not on computed matrices like Φ or Σ. For example, the 4×3 matrix Λ contains
just two parameters, λ1 and λ2.

Parameters(LAMBDA) # Don’t need these - just an example

evaluate

(λ1, λ2)

param = [phi,beta,gamma] # Start with this

param.extend(Parameters(PSI))

param.extend(Parameters(OMEGA))

param

evaluate

(φ, β, γ, ψ1, ψ2, ω1, ω2)
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Notice how the list param has been extended by adding the contents of Ψ and Ω. For
big matrices with lots of parameters, this is a real convenience.

The next step is to set up the equations to solve. The Sage solve function needs the same
number of equations as unknowns, so giving it the full set of 10 equations in 7 unknowns
will not work. But we’ll set up all 10 equations anyway to see what happens.

# Now set up equations to solve

S = SIGMA(lambda1=1,lambda2=1) # Sigma under surrogate model

S2 = SymmetricMatrix(4,’sigma’)

eqns = [] # Empty list

for i in range(4): # i goes from 0 to 3

for j in range(i+1): # j goes from 0 to i

item = S[i,j]==S2[i,j] # An equation

eqns.append(item) # Append to list of equations

eqns # Not easy to look at, but there is a scroll bar

evaluate

(φ = σ11, γφ = σ12, γ
2φ+ ω1 + ψ1 = σ22, βγφ = σ13, (γ

2φ+ ψ1)β = σ23, β
2γ2φ+ β2ψ1 + ω2 + ψ2 = σ33, βγφ = σ14, (γ

2φ+ ψ1)β = σ24, β
2γ2φ+ β2ψ1 + ψ2 = σ34, β

2γ2φ+ β2ψ1 + ω2 + ψ2 = σ44)

The object eqns is a list of equations; you can tell it’s a list because it’s enclosed in
brackets. As the comment statement says, it’s not very easy to look at, but there is
a scroll bar. So in a Sage environment, you can examine the output that runs off the
page in this document. Here’s a more convenient way to look at the covariance structure
equations.

for item in eqns: item

evaluate

φ = σ11

γφ = σ12

γ2φ+ ω1 + ψ1 = σ22

βγφ = σ13

(γ2φ+ ψ1)β = σ23

β2γ2φ+ β2ψ1 + ω2 + ψ2 = σ33

βγφ = σ14

(γ2φ+ ψ1)β = σ24

β2γ2φ+ β2ψ1 + ψ2 = σ34

β2γ2φ+ β2ψ1 + ω2 + ψ2 = σ44

It would seem easy to ask Sage to solve these ten equations in seven unknowns. It’s easy
to ask, but the answer is not what we’re looking for.

solve(eqns,param)
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evaluate

[]

That little rectangle is a left square bracket followed by a right square bracket; that is, it’s
an empty list (empty set), meaning that the system of equations has no general solution.
This happens because, for example, the fourth equation in the list says βγφ = σ13, while
the seventh equation says βγφ = σ14. To Sage, σ13 and σ14 are just numbers, and there
is no reason to assume they are equal. Thus there is no general solution.

Actually, because we think of the σij values as arising from a single, fixed point in the
parameter space, we recognize σ13 = σ14 (and also σ23 = σ24 and σ33 = σ44) as realities –
distinctive features that the model imposes on the covariance matrix Σ. But Sage can’t
know this unless we tell it, and I don’t know how to do that. It’s easiest to just eliminate
the redundant equations.

extra = [9,7,6] # Redundant equations, starting with index zero

for item in extra: show(eqns[item])

evaluate

β2γ2φ+ β2ψ1 + ω2 + ψ2 = σ44

(γ2φ+ ψ1)β = σ24

βγφ = σ14

Removing the the extra equations from the list and then taking a look . . .

for item in extra: eqns.remove(eqns[item])

for item in eqns: item

evaluate

φ = σ11

γφ = σ12

γ2φ+ ω1 + ψ1 = σ22

βγφ = σ13

(γ2φ+ ψ1)β = σ23

β2γ2φ+ β2ψ1 + ω2 + ψ2 = σ33

β2γ2φ+ β2ψ1 + ψ2 = σ34

Now it is possible to solve the remaining seven equations in seven unknowns. The solution
will be easier to use in later calculations if it is obtained in the form of a dictionary. To
see if the solution is unique, first check the length of the list of dictionaries returned by
solve.
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# Return solution as list of dictionaries

solist = solve(eqns,param,solution_dict=True)

len(solist)

evaluate

1

There is only one item in the list of dictionaries; it’s item zero. The key of the dictionary
is the parameter, and the value is the solution, which for us will be some function of
the σij quantities. Dictionary entries take the form Key-Colon-Value. Dictionaries are
inherently unordered.

sol = solist[0]; sol # Item 0 of the list; there’s just one.

evaluate{
φ : σ11, ψ1 :

σ11σ12σ23−σ2
12σ13

σ11σ13
, β : σ13

σ12
, ω2 : σ33 − σ34, γ : σ12

σ11
, ω1 : −σ12σ23−σ13σ22

σ13
, ψ2 : σ12σ34−σ13σ23

σ12

}
The dictionary format makes it convenient to refer to the solution for a parameter — for
example, the solution for ψ2.

sol[psi2]

evaluate

σ12σ34−σ13σ23
σ12

Dictionaries are hard to look at when they have a lot of items. Here is one way to take a
quick look at a solution. Dictionary entries are expressed as tuples of the form (Parameter,
Solution). Since the for loop below is going through the list of parameters, the output is
in that order.

for item in param:

item, sol[item]

evaluate

(φ, σ11)(
β, σ13

σ12

)
(
γ, σ12

σ11

)
(
ψ1,

σ11σ12σ23−σ2
12σ13

σ11σ13

)
(
ψ2,

σ12σ34−σ13σ23
σ12

)
(
ω1,−σ12σ23−σ13σ22

σ13

)
(ω2, σ33 − σ34)
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That’s okay for a quick look, and the syntax is intuitive. Equations are nicer, though.
In the following, realize that nothing is getting assigned. Rather, item==sol[item] just
causes that equation to be displayed.

for item in param: item==sol[item]

evaluate

φ = σ11

β = σ13
σ12

γ = σ12
σ11

ψ1 =
σ11σ12σ23−σ2

12σ13
σ11σ13

ψ2 = σ12σ34−σ13σ23
σ12

ω1 = −σ12σ23−σ13σ22
σ13

ω2 = σ33 − σ34

The dictionary sol gives parameters in terms of the σij values. It can also be useful to
have a dictionary that goes in the other direction, where the input is in terms σij and
the output is in terms of the model parameters. The function SigmaOfTheta sets up such
a dictionary; see Appendix B or try SigmaOfTheta? in a Sage environment for more
detail. In the following, the dictionary is in terms of the original (not surrogate) model
parameters.

# Original covariance matrix as a function of theta

theta = SigmaOfTheta(SIGMA)

# theta is a dictionary

# For example, sigma12 = gamma lambda1 phi

sigma12(theta)

evaluate

γλ1φ

Such a dictionary can be used to evaluate big, messy functions of Σ, including the solutions
in the dictionary sol.

# What is the solution for psi2 (that’s psi2-prime) in terms of

# ORIGINAL model parameters?

sol[psi2](theta)

evaluate

−(γ2φ+ψ1)β2γλ1λ22φ−(β2γ2φ+β2ψ1+ψ2)γλ1λ22φ
γλ1φ
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Simplify(_) # Underscore refers to the last item

evaluate

λ2
2ψ2

Where in the original parameter space is ψ′1 identifiable? These are the points in the
parameter space where the denominator of the solution (that’s σ11σ13) is non-zero. Eval-
uating the denominator as a function of the model parameters θ,

# Where is psi1-prime identifiable?

denominator(sol[psi2])(theta)

evaluate

βγλ2φ
2

Thus, β, γ and λ2 must all be non-zero in order for ψ′1 = λ2
1ψ1 to be identifiable. This is

the end of the Sage example.

1.4.5 Yet another type of surrogate model

In some structural equation models, variables that are obviously measured with error are
assumed to be observable. Invariably, the assumption is adopted so that the parameters
of the resulting model will be identifiable. Since it is practically impossible to measure
anything without error, almost every model that assumes error-free measurement is either
dangerously10 unrealistic, or a surrogate for some model that is more reasonable.

For an example, we will turn to Section 0.11 of Chapter 0, where extra response
variables were used to identify the parameters of regression models with measurement
error in the explanatory variables. Consider a centered version of model (53) on page 106.

Wi = Xi + ei (1.12)

Yi,1 = β1Xi + εi,1

Yi,2 = β2Xi + εi,2

The path diagram is shown in Figure ??. To give this some content, consider the question
of whether smoking cigarettes can help you lose weight. We will limit the study to young
adults who smoke at least occasionally, and who do not exercise regularly. Suppose that
the latent variable Xi is amount of smoking, Wi is reported number of cigarettes smoked
daily, Yi,1 is body mass index11, and Yi,2 is resting heart rate. Interest is in the connection

10Section 0.7 in Chapter 0 points out the disastrous effects of ignoring measurement error in multiple
regression, and it is natural to expect similar things to happen in a more general setting. Except possibly
for experimentally manipulated exogenous variables, assuming perfect measurement is not something to
be done lightly.

11Weight in kilograms divided by squared height in meters. Big numbers mean you are heavier for your
height.
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Figure 1.4: Path diagram of the surrogate model for credit card debt

X

W Y
1

Y
2

e ε
1

ε
2

β
1 β

2

between amount of smoking and body mass index (BMI), represented by β1. Heart rate
(known to be increased by smoking) is an extra response variable.

Notice that in Wi = Xi + ei, the factor loading for equals one; this means that it’s
a surrogate model. As described starting on page 106, the parameters of this model are
identifiable — but it’s far from realistic. Body mass index surely cannot be measured
without error, because height and weight are measured with error. As for resting heart
rate, it will vary over the time of day, and also with things like ambient noise level and
recent exertion.

Figure 1.5 depicts a somewhat more reasonable model for the smoking example, and
it is proposed as the original model. In this model, Yi,1 is true body mass index, while Vi,1
is the measured version. Yi,2 is true average resting heart rate, while Vi,2 is the snapshot
measured with error that appears in the data file. The equations of the proposed original
model are

Wi = ν1 + λ1Xi + ei,1 (1.13)

Yi,1 = α1 + β1Xi + εi,1

Yi,2 = α2 + β2Xi + εi,2

Vi,1 = ν2 + λ2Yi,1 + ei,2

Vi,2 = ν3 + λ3Yi,2 + ei,3,

where V ar(Xi) = φ, V ar(ei,1) = ω1, V ar(ei,2) = ω2, V ar(ei,3) = ω3, V ar(εi,1) = ψ1 and
V ar(εi,2) = ψ2. As the path diagram indicates, all error terms are independent of Xi and
of one another. Because Wi, Vi,1 and Vi,2 are direct measurements of the corresponding
latent variables, it is safe to assume that the factor loadings λ1, λ2 and λ3 are all positive.

Centering the variables and setting all three factor loadings to one yields a second
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Figure 1.5: Path diagram of the original model for credit card debt
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level surrogate model that preserves the signs of β1 and β2, though not their actual
values. There are now eight parameters, but still only six covariance structure equations.
By the parameter count rule, the parameters of this model cannot be identified. However,

Vi,1 = Yi,1 + ei,2

= (β1Xi + εi,1) + ei,2

= β1Xi + (εi,1 + ei,2)

= β1Xi + ε′i,1.

Re-labelling Vi,1 as Y ′i,1, we have the model equation Y ′i,1 = β1Xi + ε′i,1, with V ar(ε′i,1) =
ψ′1 = ψ1 +ω2. The same procedure yields Y ′i,2 = β2Xi+ε

′
i,2, with V ar(ε′i,2) = ψ′2 = ψ2 +ω3.

Dropping the primes as usual to hide the evidence of our strange activities, we arrive
once more at the model equations (1.12). All along, this model was a surrogate for the
original model of Figure 1.5 and Equations (1.13). It never really assumed that credit card
debt and vehicle value were observable. Rather, the change of variables ε′i,1 = εi,1 + ei,2
was carried out to obtain the re-parameterization ψ′1 = ψ1 + ω2, and the change of
variables ε′i,2 = εi,2 + ei,3 was carried out to obtain the re-parameterization ψ′2 = ψ2 + ω3.
Notationally, the result looks like a model with error-free measurement of Yi,1 and Yi,2
— but in this case appearances are deceiving. Surrogate models are never to be taken
literally.

The beginning of Section 0.7 of Chapter 0 suggested that in multiple regression, mea-
surement error in response variables may be safely ignored, and the result was a useful
surrogate model. The same principle applies here. In general, suppose that an endogenous



1.4. MODELS: ORIGINAL AND SURROGATE 165

variable Yi,j in the latent variable model is a purely endogenous variable, in the sense that
there are no arrows from Yi,j to any other latent variable. In addition, suppose that Yi,j
is measured with error in a single observable variable Vi,j, so that after centering,

Yi,j = r>j xi + εi,j

Vi,j = λjYi,j + ei,j,

where rj = rj(β,Γ) denotes row j of the matrix (I − β)−1Γ; see Expression (1.3) on
page 146. In addition, suppose that εi,j and ei,j are independent of one another and of all
other exogenous variables in the model, with V ar(εi,j) = ψj and V ar(ei,j) = ωj.

At this point it would be possible and legitimate to implicitly re-parameterize by
setting λj = 1 as in the Credit Card Debt example. As an alternative, the absorption
of the un-knowable factor loading will be accomplished by the re-parameterization that
combines ψj and ωj, all in one step.

Vi,j = λjYi,j + ei,j

= λj(r
>
j xi + εi,j) + ei,j

= (λjrj)
>xi + (λjεi,j + ei,j)

= r′>j xi + ε′i,j,

with V ar(ε′i,j) = ψ′j = λ2
jψj + ωj. The β and γ parameters in rj are also re-expressed in

this step. Now Vi,j may be called Y ′i,j without doing any harm. The result is a new model
in which

• The parameters are functions of the parameters in the original model.

• The dimension of the parameter space is two less, so the new parameter vector
should be easier to identify.

• The meaning of the new parameters is clear. The β and γ parameters in rj are
positive multiples of what they were before, while any separate meaning that ψj
and ωj may have had is lost. They were probably not knowable anyway.

• After dropping the primes, it looks like Yi,j is measured without error, but that is
an illusion. No such claim was ever intended.

The situation is shown graphically in Figure 1.6. When a latent endogenous variable does
not affect any other latent variables and is expressed by only one observable variable, it
is acceptable to drop the latent variable from the model, and run all the arrows directly
to the observable variable.

Comments Virtually all structural equation models used in practice are surrogate mod-
els, and most of them have the features described here. While the re-parameterizations
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Figure 1.6: Direct path to the observed variable
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are very standard, the terms “original model” and “surrogate model” are not. I made
them up, and they will not be found elsewhere12.

Experts in the field undoubtedly know that what’s happening is a series of re-parameterizations,
but this is often not acknowledged in textbooks. Instead, the process is presented as a
harmless restriction of the parameter space, adopted in order to identify the parameters.
I think it’s really helpful to point out how the re-parameterizations are accomplished by
change-of-variable operations. This reveals effects on other parameters in the model (not
just the ones that seem to be restricted), and makes it possible to specify the meanings
of the new parameters in terms of the parameters of the original model.

1.5 Maximum likelihood

In most structural equation modeling software, the default method of parameter estima-
tion is numerical maximum likelihood13. The exogenous variables and error terms are
assumed multivariate normal, and consequently the joint distribution of the observable
variables is multivariate normal too. It will be seen in theorem ?? that when the nor-
mal assumption is clearly wrong, maximum likelihood estimates based on normality are
still consistent. They are also asymptotically normal under conditions that are widely
accepted. This makes bootstrap standard errors potentially very useful when the as-
sumption of normality is questionable. Bootstrapping in lavaan is easy, and theoretically
based robust standard errors are also available.

12That is, unless others find the terminology useful and it catches on. It’s always possible, I suppose.
13The reader is referred to Section A.6.3 in Appendix A for material on maximum likelihood and related

concepts.
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1.5.1 Estimation

Let d1, . . . ,dn be a random sample from a k-dimensional multivariate normal distribution
with expected value µ and varance-covariance matrix Σ. The likelihood is

L(µ,Σ) =
n∏
i=1

1

|Σ| 12 (2π)
k
2

exp

{
−1

2
(di − µ)>Σ−1(di − µ)

}

= |Σ|−n/2(2π)−nk/2 exp

{
−1

2

n∑
i=1

(di − µ)>Σ−1(di − µ)

}

= |Σ|−n/2(2π)−nk/2 exp−n
2

{
tr(Σ̂Σ

−1
) + (d− µ)>Σ−1(d− µ)

}
,

where Σ̂ = 1
n

∑n
i=1(di − d)(di − d)> is the sample variance-covariance matrix.

Let θ ∈ Θ be a vector of parameters from a structural equation model; Θ is the
parameter space. For example, θ could be the the unique elements in the parameter
matrices in the original Model (1.1), restricted only by modeling considerations. Then the
likelihood is a function of θ through µ = µ(θ) and Σ = Σ(θ), as given in Expressions (1.4).

Maximizing the likelihood over θ is equivalent to minimizing the minus log likelihood

−`(θ) =
n

2
log |Σ(θ)|+ nk

2
log(2π) +

n

2
tr(Σ̂Σ(θ)−1) (1.14)

+
n

2

(
d− µ(θ)

)>
Σ(θ)−1

(
d− µ(θ)

)
For any set of observed data values, the minus log likelihood defines a high-dimensional
surface floating over the parameter space Θ. The maximum likelihood estimate θ̂ is the
point in Θ where the surface is lowest. One might try the calculus approach, partially
differentiating the log likelihood and setting all the derivates to zero. This ypically yields
a system of equations that nobody can solve, so it really does not help us locate the point
where the minimum value ofccurs. To find the point numerically, choose a starting value
as close to the answer as possible and move downhill. Choice of good starting values is
important, because the likelihood surface can have many local maxima and minima, and
other topological features that are “interesting,” but not in a good way.

Ideally, the numerical search will terminate at the unique minimum of the function.
Geometrically, the surface at that point will be level and concave up. Analytically, the
gradient will be zero, and the eigenvalues of the Hessian matrix will all be positive. As
described in Appendix A, the Hessian is the observed Fisher information matrix evaluated
at θ̂, and its inverse is the approximate asymptotic covariance matrix of θ̂.

When the parameters are not identifiable, this procedure fails. The likelihood is con-
stant on collections of functions of θ that are identifiable. Typically, the numerical search
reaches the bottom of a high-dimensional valley, and at the bottom of that valley is a
contour (think of a winding, invisibly thin river) where the minus log likelihood is con-
stant. The gradient is zero at any point on the surface of the river, but the surface is
not concave up in every direction. It follows that the Hessian matrix has one or more
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eigenvalues equal to zero. The determinant of the Hessian equals zero, and inverting it to
approximate the asymptotic covariance matrix of θ̂ is impossible. In this situation, good
software complains loudly14.

Re-parameterization Since the parameters of the original Model (1.1) are not identifi-
able, directly fitting it by maximum likelihood is out of the question. Re-parameterization
is necessary. Following Section A.6.1, the first step is to lose the expected values and in-
tercepts. Let κ = ν + ΛµF , where the partitioned matrix

µF =

(
µx

(I− β)−1 (α+ Γµx)

)
.

Under this re-parameterization, the new parameter vector θ′ consists of κ, plus all the
parameters that appear in Σ — that is, the unique elements of Φx,Ψ,Ω, β,Γ and Λ.

Because the new parameter κ is exactly µ(θ), the minus log likelihood is minimal
when κ = d, regardless of the values of the remaining parameters. The second line of
Expression (1.14) disappears, and the task is now to minimize the first line with respect
to the parameters that appear in the covariance matrix.

The remaining parameters are still not identifiable in general. Further re-parameterization
is necessary, and the re-parameterizations corresponding to standard surrogate models
are often very helpful. The parameters of a good surrogate model are identifiable func-
tions of the original model’s parameters. After the centering step, re-parameterization
is carried out by a set of change-of-variables operations involving only latent variables.
As a result, the parameters of the original model appear in the covariance matrix only
through functions of θ that correspond to the parameters of the surrogate model. If the
re-parameterizations are well chosen, the maximum of the likelihood under the surrogate
model is identical to the maximum of the likelihood under the original model. If in addi-
tion, the likelihood function achieves its maximum at a point where the parameters of the
surrogate model are identifiable, then the maximum will be unique. The minus log likeli-
hod will be nicely concave up at this point in the parameter space of the re-parameterized
model. The Hessian matrix (observed Fisher Information) will be positive definite, and its
inverse will provide an approximate asymptotic covariance for the estimated parameters
of the surrogate model. This is the main ingredient for Z-tests and Wald tests. The
height of the minus log likelihood at the MLE is used in likelihood ratio tests.

Once the expected values and intercepts have been absorbed into κ, we implicitly
estimate the identifiable function κ with the vector of sample means d, and then forget
about it, basing all inference upon the sample variance-covariance matrix. This is standard
practice, but it raises a few issues. First, note that while κ is a function of the un-knowable
parameters ν, α and µx, it is also a function of β,Γ and Λ. These last three matrices

14This encourages some naive users to simply run their structural equation modeling software without
thinking very hard about identifiability, trusting that if the parameters are not identifiable, the search
will blow up. Unfortunately, the search can blow up numerically for other reasons, and sometimes the
symptoms can be very similar to those arising from lack of identifiability. It is much better to check
identifiability mathematically, before trying to fit the model.
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are often of primary interest. Might d contain some information about them? Are we are
throwing this information away?

The answer is no, provided that the intercept term ν is not restricted by modeling
considerations. Suppose that the first line of the minus log likelihood (1.14) is minimized,
regardless of whether that minimum is unique. Now consider the effect of adjusting β,
Γ or Λ. The value of the first line will increase or remain the same. Now look at the
second line, recalling that µ(θ) = ν + ΛµF . Regardless of how the values of the other
parameters change, ν can always be adjusted so that d − µ(θ) = 0. This makes the
second line equal to zero, which is as low as it can be. Therefore, the second line of (1.14)
makes no contribution to the MLEs of parameters appearing in the covariance matrix Σ
— that is, provided that ν is unrestricted.

Since inference is to be be based on the covariance matrix, it saves mental effort to
employ the centered surrogate model. But we never actually fit the centered surrogate
model. We cannot, because the change of variables involves subtracting expected values
from the observed data, and those expected values (elements of µ(θ) = κ) are unknown.
On the other hand, it is possible to fit an approximate centered model by using the vector
of sample means in place of µ(θ). That is,

c

di= di − µ(θ) ≈ di − d

by the Law of Large Numbers. The approximation will be very good for large samples.

Letting
c

di refer to di − d for now, the model is that
c

d1, . . .
c

dn are a random sample
from a multivariate normal distribution with expected value zero and covariance matrix
Σ(θ). The observations are not quite independent because the same random quantity d
is subtracted from each one, but the covariances go to zero as n → ∞. The likelihood
function is

L(Σ) =
n∏
i=1

1

|Σ| 12 (2π)
k
2

exp

{
−1

2

c

d
>
i Σ−1

c

di

}

= |Σ|−n/2(2π)−nk/2 exp

{
−1

2

n∑
i=1

(di − d)>Σ−1(di − d)

}

= |Σ|−n/2(2π)−nk/2 exp−n
2

{
tr(Σ̂Σ

−1
)
}
.

The minus log likelihood is just the first line of (1.14). So, estimating κ = µ(θ) with
d and setting it aside is the same as fitting the approximate centered surrogate model.
Either way, the intercepts and expected values disappear.

1.5.2 Hypothesis testing

z-tests The maximum likelihood estimates are asymptotically normal under general
conditions, so that for a scalar parameter θj,

z =
θ̂j − θj
sθj

(1.15)
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has an approximate standard normal distribution for large samples, where sθj is the

standard error (estimated standard deviation) of θ̂j, obtained by taking the square root
of a diagonal element the estimated asymptotic covariance matrix. There are various
good ways to estimate the asymptotic covariance matrix15. Squaring the z statistic yields
a Wald chi-square statistic with one degree of freedom. Wald tests are the topic of the
next brief section.

Wald tests As described in Section A.6.7 of Appendix A, a linear null hypothesis of
the form H0 : Lθ = h can be tested using the statistic

Wn = (Lθ̂n − h)>(LV̂nL
>)−1(Lθ̂n − h). (1.16)

Under the null hypothesis, Wn has an approximate chi-squared distribution with r degrees
of freedom, where r is the number of rows in the matrix L. In the formula, V̂n is the
estimated asymptotic covariance matrix of θ̂; see footnote 15.

Likelihood ratio tests As described more fully in Section A.6.8 of Appendix A, a
large-sample likelihood ratio test of a linear (or under some circumstances, non-linear)
null hypothesis may be based on the test statistic

G2 = −2 log

(
L(θ̂0)

L(θ̂)

)
(1.17)

= 2
(
`(θ̂)− `(θ̂0)

)
,

where L(·) is the likelihood function, `(·) is the log likelihood, θ̂ is the unrestricted max-

imum likelihood estimate, and θ̂0 is the maximum likelihood estimate restricted by the
null hypothesis. The second line says that the test statistic is just the difference between
two log likelihoods. If the null hypothesis is true, then the approximate large-sample
distribution of G2 is chi-squared with r degrees of freedom, where r is the number of
equalities specified by the null hypothesis.

1.5.3 Testing model correctness

The typical structural equation model implies a covariance matrix Σ(θ) with properties
that are not necessarily true of covariance matrices in general. For example, the original
and surrogate model for the Blood Pressure example yields the covariance matrix (1.7)
on page 150. In this matrix, σ13 = σ14, σ23 = σ24 and σ33 = σ34; these same constraints
are implied by the surrogate model. The double measurement regression Model (47) and

15For a classical estimate that depends on multivariate normality of the data, one can use the inverse
of the estimated Fisher information – either I(θ̂) or J (θ̂) from Section A.6.6 in Appendix A. Robust
estimators like the ones described in Section 5 provide alternatives that do not assume multivariate
normality.
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the instrumental variables Model (57) also induce equality constraints on their covariance
matrices; see pages 87 and 115 respectively for details.

In all such cases, the model implies that certain polynomials in σij are equal to zero.

These constraints are satisfied by Σ(θ) for any θ in the parameter space, including θ̂. This

means that the matrix Σ(θ̂) (the reproduced covariance matrix) automatically satisfies
the constraints as well.

With probability one, Σ(θ̂) will not be exactly equal to Σ̂, but if the model is correct
it should be fairly close. This is the idea behind Jöreskog’s (1967) classical likelihood ratio
test for goodness of model fit [35]. The null hypothesis is that the equality constraints
implied by the model are true16, and the alternative is that Σ is completely unconstrained
except for being symmetric and positive definite. Note that since a well-chosen surrogate
model implies the same constraints as the original model, this test of model correctness
applies equally to the original and the surrogate model. It is far more convenient to carry
out model fitting using the surrogate model.

Assuming that substantive modeling considerations do not restrict the intercept pa-
rameter ν in the general Model (1.1)17, the likelihood ratio test statistic is written

G2 = −2 log
L
(
Σ(θ̂)

)
L(Σ̂)

= −2 log
|Σ(θ̂)|−n/2(2π)−nk/2 exp−n

2

{
tr(Σ̂Σ(θ̂)−1)

}
|Σ̂|−n/2(2π)−nk/2 exp−n

2

{
tr(Σ̂Σ̂

−1
)
}

= n
(

log |Σ(θ̂)|+ tr(Σ̂Σ(θ̂)−1)− log |Σ̂| − k
)

= n
(
tr(Σ̂Σ(θ̂)−1)− log |Σ̂Σ(θ̂)−1| − k

)
(1.18)

This statistic is quite easy to compute given θ̂. In fact, it is common for software to
directly minimize the “objective function” or “loss function”

b(θ) = tr(Σ̂Σ(θ)−1)− k − log |Σ̂Σ(θ)−1| (1.19)

instead of the minus log likelihood18, and then just multiply the final result by n to get the
likelihood ratio test statistic G2. An advantage of doing it this way is that the numerical
performance of the minimization is not affected by the sample size.

16This is not what he says, but it clarifies what he does say.
17This might not be a completely safe assumption. For example, if two measurements of a latent

variable are truly equivalent, they will have the same means as well as the same variances and the same
covariances with other variables. Overlooking this kind of thing would result in a modest loss of power
in the goodness of fit test.

18If you are a history buff, compare (1.19) to formula (6) on p. 446 in Jöreskog’s (1978) classic article [37]
in Psychometrika. Astonishingly, this is almost the same as Formula (6) (same equation number) on p. 446
(same page number) in [35], another classic article by Jöreskog in Psychometrika (Jöreskog, 1967). The
1967 paper is limited to the special case of factor analysis.
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The test statistic G2 is referred to a chi-squared distribution with degrees of freedom
equal to the number of model-induced equality constraints on Σ. When G2 is larger than
the critical value, the null hypothesis that the constraints hold is rejected, casting doubt
on the model.

To count the constraints, first assume that the parameter vector is identifiable, and
that there are more moment structure equations than unknown parameters. If the number
of parameters is equal to the number of moment structure equations, the model is called
saturated, and this way of testing model fit does not work.

Suppose there are m moments (typically covariances or correlations), and r unknown
parameters in the vector θ, with m > r. The degrees of freedom are m − r. To see why
this might hold, suppose that exactly r of the the moment structure equations can be
solved for the r unknown parameters. Substituting the solution into the m − r unused
equations gives m − r equalities involving only σij quantities. These correspond to the
constraints. Notice that while this is a test of the constraints that the model induces on
the covariance matrix Σ, the test statistic can be calculated and degrees of freedom can
be determined without knowing exactly what the constraints are.

If a model fails the G2 goodness of fit test, it is common to search for a model that does
fit. Sometimes, the reason for lack of fit can be revealed by residuals formed by subtracting
the elements of Σ̂ from those of Σ(θ). Approximate formulas for standardization are
available. Once the model fits, likelihood ratio tests for full versus reduced models can
be obtained by subtracting G2 statistics, with degrees of freedom equal to the number of
additional constraints implied by the reduced model.

The likelihood ratio test for goodness of fit is useful, but as a test of model correctness it
is incomplete. This is because structural equation models imply two types of constraint on
Σ: equality constraints and inequality constraints. For example, in proving identifiability
for the instrumental variables Model (57) on page 112, the solution (61) includes ω =
σ11 − σ13σ14

σ34
. Because ω is a variance, this means σ11 >

σ13σ14
σ34

=⇒ σ11σ34 > σ13σ14, an
inequality constraint that is obviously not true of 4×4 covariance matrices in general. The
typical structural equation model imposes many inequality constraints on the covariance
matrix.

In general, moment structure equations map the parameter space into a moment space,
which for the classical surrogate models is a space of k × k positive definite matrices. As
the numerical maximum likelihood search moves θ through the parameter space, Σ(θ)
moves along through a lower-dimensional subset of the moment space where the equality
constraints are satisfied, generally behaving as if it were attracted to Σ̂.

While Σ(θ) is forced to obey the equality constraints, it need not obey the inequality
constraints. If the true value of Σ is such that an inequality constraint is not satisfied
(which means the model is wrong), then it is quite possible for Σ(θ) to cross the boundary
of an inequality constraint. This means that θ leaves the parameter space. Maximum
likelihood estimates that are outside the parameter space make everyone uncomfortable,
if they are noticed. In factor analysis, this phenomenon is called a “Heywood case;” see
page 226.

Example 1.5.1 A negative variance estimate
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Here is a very simple example. Suppose we have two measurements of a latent variable,
like academic ability. The surrogate model equations are, independently for i = 1, . . . , n,

Wi,1 = Xi + ei,1

Wi,2 = Xi + ei,2,

where all expected values are zero, V ar(Xi) = φ, V ar(ei,1) = ω1, and V ar(ei,2) = ω2.
According to the model, the exogenous variables ei,1, ei,2 and Xi are all independent.
A path diagram is shown in the left panel of Figure 1.7. The covariance matrix of the

Figure 1.7: Two measurements of a latent variable
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The model is saturated, with three linear covariance structure equations in three unknown
parameters. The solutions are

φ = σ12

ω1 = σ11 − σ12 (1.20)

ω2 = σ22 − σ12,
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so that the parameters are just identifiable. The model imposes no equality constraints on
Σ, and it is untestable with the classical test of fit. However, since the model parameters
are all variances, the equations (1.20) reveal three inequality constraints: σ12 > 0, σ11 >
σ12 and σ22 > σ12.

By the invariance principle, explicit formulas for the maximum likelihood estimates
φ̂, ω̂1 and ω̂2 are obtained by simply putting hats on the Greek letters in (1.20). To see
what could go wrong, suppose that the observable variables Wi,1 and Wi,2 have other,
unmeasured common influences in addition to Xi, like test anxiety or something. As
discussed in Section 0.4 on omitted variables in regression, the result would be a positive
covariance between ei,1 and ei,2. We will denote cov(ei,1, ei,2) by ω12. The resulting path
diagram is shown in the right panel of Figure 1.7. The covariance matrix of the observable
variables is now (

ω1 + φ φ+ ω12

φ+ ω12 ω2 + φ

)
=

(
σ11 σ12

σ12 σ22

)
.

This second model could well be more realistic than the first, even though the parameters
are not identifiable. There is no doubt that it’s easier to assume zero covariance between
error terms than to guarantee it in practice.

Let’s say that the second model is correct, but we fit the first model anyway. The
model we are fitting says that σ12 = φ, when in fact σ12 = φ+ω12. Assuming the incorrect
model, the maximum likelihood estimate of ω1 is ω̂1 = σ̂11 − σ̂12. But under the correct
model,

ω̂1 = σ̂11 − σ̂12
a.s.→ σ11 − σ12

= (ω1 + φ)− (φ+ ω12)

= ω1 − ω12.

Recall that ω1 = V ar(ei,1). For the estimate of this variance to be negative for large
samples, all that’s required is ω12 > ω1. Is this possible (while keeping the covariance
matrix of (ei,1, ei,2)> positive definite)? Most assuredly. Here’s a numerical example.(

ω1 ω12

ω12 ω2

)
=

(
1 2
2 5

)
.

The point here is that structural equation models imply inequality constraints on the
elements of Σ, the covariance matrix of the observable variables. Model incorrectness
can result in violation of these constraints, and cause numerical maximum likelihood
to leave the parameter space. This is a valuable way to diagnose problems with the
model. Of course negative variance estimates are easiest to notice. Chapter 7 treats
model diagnostics in more detail.

1.6 The Brand Awareness Study Re-visted

We return to the Brand Awareness Example 1.2, given in Section 1.2. A major Canadian
coffee shop chain is trying to break into the U.S. Market. They assess the following vari-
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ables twice on a random sample of coffee-drinking adults. The two measurements of each
variable are conducted at different times by different interviewers asking somewhat differ-
ent questions, in such a way that the errors of measurement may be assumed independent.
The latent variables are

X1: Brand Awareness: True familiarity with the coffee shop chain.

X2: Advertising Awareness: Recall for advertising of the coffee shop chain.

X3: True interest in the product category: Mostly this is how much they really like
doughnuts.

Y1: Purchase Intention: True willingness to go to an outlet of the coffeeshop chain and
make an order.

Y2: Purchase behaviour: True number of dollars spent at the chain during the 2 months
following the interview.

There are two observed versions of each latent variable, all based on self-report. All
observed variables were measured on a scale from 0 to 100 except purchase behaviour,
which is in dollars.

Figure 1.8 shows the path diagram for a surrogate model. It is more detailed than
Figure 1.1 on page 140, in that symbols are indicted on the arrows. You can tell it’s
a surrogate model because of the symbol “1” on the arrows linking latent to observed
variables. The model asserts that all measurement here is double measurement.

The model equations in (1.2) on page 141 are the equations of the original model. The
equations of the centered surrogate model corresponding to Figure 1.8 are

Yi,1 = γ1Xi,1 + γ2Xi,2 + γ3Xi,3 + εi,1 (1.21)

Yi,2 = βYi,1 + γ4Xi,3 + εi,2

Wi,1 = Xi,1 + ei,1

Wi,2 = Xi,1 + ei,2

Wi,3 = Xi,2 + ei,3

Wi,4 = Xi,2 + ei,4

Wi,5 = Xi,3 + ei,5

Wi,6 = Xi,3 + ei,6

Vi,1 = Yi,1 + ei,7

Vi,2 = Yi,1 + ei,8

Vi,3 = Yi,2 + ei,9

Vi,4 = Yi,2 + ei,10,

where all expected values equal zero, V ar(Xi,j) = φjj for j = 1, 2, 3, Cov(Xi,j, Xi,k) = φjk,
V ar(ei,j) = ωj for j = 1, . . . , 10, V ar(εi,1) = ψ1, V ar(εi,2) = ψ2. All the error terms are
independent of one another and of the Xi,j variables.
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Figure 1.8: Brand Awareness Model One
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Before fitting any structural equation model, one should verify that the parameters
are identifiable. Later chapters this text develop a set of standard rules that would allow
us to do the check by just examining the path diagram in Figure 1.8. These rules are
summarized in (someplace; I have not written it yet). For now, we will do the job from
first principles.

The general two-stage model of Section 1.2 is designed to facilitate two-stage proofs of
identifiability. Disregarding intercepts and expected values as usual and assuming other
details in the model specification (1.1),

• The measurement model is di = ΛFi + ei, with cov(Fi) = Φ and cov(ei) = Ω.

• The latent variable model is yi = βyi+Γxi+εi, with cov(xi) = Φx and cov(εi) = Ψ.

• The models are linked by Fi =

(
xi
yi

)
.
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Denoting the common covariance matrix of the data vectors by cov(di) = Σ, the task is to
show that all the Greek-letter model parameters can be recovered from Σ. The two-stage
strategy is

1. Referring to the measurement model, write Σ as a function of the parameter matrices
Λ, Φ and Ω. Then solve for Λ, Φ and Ω in terms of Σ, showing they are identifiable.

2. Referring to the latent variable model, write Φ = cov(Fi) as a function of β, Γ, Φx

and Ψ. Then solve for β, Γ, Φx and Ψ in terms of Φ. Since Φ is already shown
to be a function of Σ in the first stage, this means that the latent variable model
parameters are also functions of Σ, and they are identified.

Double Measurement For the brand awareness example, the measurement part of
the model is a special case of the measurement model for double measurement regression
in section 0.10.3 of Chapter 0. The measurements come in two independent sets, which
may be denoted di,1 and di,2. The full set of observable data is the partitioned random
vector

di =

(
di,1
di,2

)
, where di,1 =


Wi,1

Wi,3

Wi,5

Vi,1
Vi,3

 and di,2 =


Wi,2

Wi,4

Wi,6

Vi,2
Vi,4

 .

The double measurement model equations are

di,1 = Fi + ei,1 (1.22)

di,2 = Fi + ei,2,

where the vector of latent variables Fi has zero covariance with ei,1 and ei,2, cov(ei,1) = Ω1,
cov(ei,2) = Ω2 and cov(ei,1, ei,2) = O. Thus we have a partitioned covariance matrix for
the measurement errors:

cov(di) = Ω =

(
Ω1 O
O Ω2

)
.

For the model of Figure 1.8, the matrices Ω1 and Ω2 happen to be diagonal, but what’s
important is independence of measurement errors between sets, not within.

Using the notation Σ1,1 = cov(di,1), Σ2,2 = cov(di,1) and Σ1,2 = cov(di,1,di,2) (so that
Σ is also a partitioned matrix), we have

Σ1,1 = Φ + Ω1

Σ2,2 = Φ + Ω2

Σ1,2 = Φ,

Solving for the parameter matrices is immediate, yielding

Φ = Σ1,2

Ω1 = Σ1,1 −Σ1,2 (1.23)

Ω2 = Σ2,2 −Σ1,2.
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That establishes identifiability for the double measurement model in general, including
this particular model for the brand awareness data. Identifiability of the double measure-
ment model is so useful that it will be documented as a formal parameter identifiability
rule.

Rule 2a: The Double Measurement Rule. The parameters of the double measurement
model (1.22) are identifiable. There are two sets of measurements. Each latent variable is
measured twice, and all factor loadings equal one. Measurement errors may be correlated
within sets, but not between sets.

For the current Brand Awareness model, the double measurement rule establishes stage
one of the two-stage proof. In the second stage, we recover the parameters of the latent
variable model from Φ, which has already been identified. First of all, Φx, the covariance
matrix of the latent exogenous variables (Xi,1, Xi,2, Xi,3)>, is part of Φ – so it’s identified.
Then, look at the first equation in (1.21), or at the path diagram. It’s just a regression,
so by (16) on page 26, all the parameters are identifiable from the covariance matrix
of (Xi,1, Xi,2, Xi,3, Yi,1)>. That is, we have identified γ1, γ2, γ3 and ψ1. The second line
of (1.21) is also just a regression, and the parameters γ4, β and ψ2 are identified from
the covariance matrix of the variables involved. This completes the second stage. All the
parameters in the model are identifiable.

We proceed to fit the model with lavaan. Familiarity with the material in sec-
tion 0.10.2 starting on page 66 is assumed. The R job begins by loading lavaan, and
then reading and documenting the data.

> # Brand awareness

>

> rm(list=ls()); options(scipen=999)

> # install.packages("lavaan", dependencies = TRUE) # Only need to do this once

> library(lavaan)

This is lavaan 0.6-7

lavaan is BETA software! Please report any bugs.

> coffee = read.table("http://www.utstat.toronto.edu/~brunner/openSEM/data/timmy1.data.txt")

> head(coffee)

w1 w2 w3 w4 w5 w6 v1 v2 v3 v4

1 40 23 26 21 48 38 22 22 15 15

2 45 24 29 23 49 48 26 13 8 13

3 29 21 21 13 42 37 18 12 13 13

4 38 26 18 19 47 42 20 9 12 10

5 47 31 30 18 48 52 26 16 22 16

6 31 24 18 13 39 40 20 12 16 18

>

> # Observed variables

> # w1 = Brand Awareness 1

> # w2 = Brand Awareness 2

> # w3 = Ad Awareness 1

> # w4 = Ad Awareness 2
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> # w5 = Interest 1

> # w6 = Interest 2

> # v1 = Purchase Intention 1

> # v2 = Purchase Intention 2

> # v3 = Purchase Behaviour 1

> # v4 = Purchase Behaviour 2

> # Latent variables

> # L_BrAw = True brand awareness

> # L_AdAw = True advertising awareness

> # L_Inter = True interest in the product category

> # L_PI = True purchase intention

> # L_PBeh = True purchase behaviour

Next, we define and fit the model. lavaan returns the R prompt without any complaints
or warnings.

> torus1 =

+ ’

+ # Latent variable model

+ L_PI ~ gamma1*L_BrAw + gamma2*L_AdAw + gamma3*L_Inter

+ L_PBeh ~ gamma4*L_Inter + beta*L_PI

+ # Measurement model (simple double measurement)

+ L_BrAw =~ 1*w1 + 1*w2

+ L_AdAw =~ 1*w3 + 1*w4

+ L_Inter =~ 1*w5 + 1*w6

+ L_PI =~ 1*v1 + 1*v2

+ L_PBeh =~ 1*v3 + 1*v4

+ # Variances and covariances

+ # Exogenous latent variables

+ L_BrAw ~~ phi11*L_BrAw # Var(L_BrAw) = phi11

+ L_BrAw ~~ phi12*L_AdAw # Cov(L_BrAw,L_AdAw) = phi12

+ L_BrAw ~~ phi13*L_Inter # Cov(L_BrAw,L_Inter) = phi13

+ L_AdAw ~~ phi22*L_AdAw # Var(L_AdAw) = phi22

+ L_AdAw ~~ phi23*L_Inter # Cov(L_AdAw,L_Inter) = phi23

+ L_Inter ~~ phi33*L_Inter # Var(L_Inter) = phi33

+ # Errors in the latent model (epsilons)

+ L_PI ~~ psi1*L_PI # Var(epsilon1) = psi1

+ L_PBeh ~~ psi2*L_PBeh # Var(epsilon2) = psi2

+ # Measurement errors

+ w1 ~~ omega1*w1 # Var(e1) = omega1

+ w2 ~~ omega2*w2 # Var(e2) = omega2

+ w3 ~~ omega3*w3 # Var(e3) = omega3

+ w4 ~~ omega4*w4 # Var(e4) = omega4

+ w5 ~~ omega5*w5 # Var(e5) = omega5

+ w6 ~~ omega6*w6 # Var(e6) = omega6

+ v1 ~~ omega7*v1 # Var(e7) = omega7

+ v2 ~~ omega8*v2 # Var(e8) = omega8
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+ v3 ~~ omega9*v3 # Var(e9) = omega9

+ v4 ~~ omega10*v4 # Var(e10) = omega10

+ # Bounds (Variances are positive)

+ phi11 > 0; phi22 > 0; phi33 > 0

+ psi1 > 0; psi2 > 0

+ omega1 > 0; omega2 > 0; omega3 > 0; omega4 > 0; omega5 > 0

+ omega6 > 0; omega7 > 0; omega8 > 0; omega9 > 0; omega10 > 0

+ ’ # End of model torus1

>

> fit1 = lavaan(torus1, data=coffee)

>

Looking just at the fit of the model,

> show(fit1)

lavaan 0.6-7 ended normally after 113 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 23

Number of inequality constraints 15

Number of observations 200

Model Test User Model:

Test statistic 77.752

Degrees of freedom 32

P-value (Chi-square) 0.000

By the likelihood ratio test, the model does not fit19. A close look at the output of
summary and partable reveals nothing out of the ordinary. We need determine why
the model did not fit, and fix it if possible. To do this, a divide and conquer strategy
can be helpful. We’ll split the problem into parts, and look first at the measurement
model. Figure 1.9 shows a model in which the structure in the latent variable model is
discarded, and the measurement model is preserved. Note the shorthand way of expressing
all possible covariances among the latent variables. By the first stage of the two-stage
proof of identifiability, all the parameters of this model are identifiable.

The model is fully specified in the model string torus2. It’s very explicit, but naming
all the variances and covariances makes it tedious to type.

> torus2 =

+ ’

19In this example, I follow my usual practice of relying on the likelihood ratio test to determine whether
a model fits adequately. This choice is not very popular among practitioners of structural equation
modelling, because standard models so often fail the test when applied to real data. See Chapter 7.
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Figure 1.9: Brand Awareness Model Two
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+ # Measurement model (still simple double measurement)

+ L_BrAw =~ 1*w1 + 1*w2

+ L_AdAw =~ 1*w3 + 1*w4

+ L_Inter =~ 1*w5 + 1*w6

+ L_PI =~ 1*v1 + 1*v2

+ L_PBeh =~ 1*v3 + 1*v4

+ # Variances and covariances

+ # Latent variables

+ L_BrAw ~~ phi11*L_BrAw # Var(L_BrAw) = phi11

+ L_BrAw ~~ phi12*L_AdAw # Cov(L_BrAw, L_AdAw) = phi12

+ L_BrAw ~~ phi13*L_Inter # Cov(L_BrAw, L_Inter) = phi13

+ L_BrAw ~~ phi14*L_PI # Cov(L_BrAw, L_PI) = phi14

+ L_BrAw ~~ phi15*L_PBeh # Cov(L_BrAw, L_PBeh) = phi15

+

+ L_AdAw ~~ phi22*L_AdAw # Var(L_AdAw) = phi22

+ L_AdAw ~~ phi23*L_Inter # Cov(L_AdAw, L_Inter) = phi23

+ L_AdAw ~~ phi24*L_PI # Cov(L_AdAw, L_PI) = phi24

+ L_AdAw ~~ phi25*L_PBeh # Cov(L_AdAw, L_PBeh) = phi25

+

+ L_Inter ~~ phi33*L_Inter # Var(L_Inter) = phi33

+ L_Inter ~~ phi34*L_PI # Cov(L_Inter, L_PI) = phi34

+ L_Inter ~~ phi35*L_PBeh # Cov(L_Inter, L_PBeh) = phi35

+

+ L_PI ~~ phi44*L_PI # Var(L_PI) = phi44

+ L_PI ~~ phi45*L_PBeh # Cov(L_PI, L_PBeh) = phi45

+
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+ L_PBeh ~~ phi55*L_PBeh # Var(L_PBeh) = phi55

+ # Measurement errors

+ w1 ~~ omega1*w1 # Var(e1) = omega1

+ w2 ~~ omega2*w2 # Var(e2) = omega2

+ w3 ~~ omega3*w3 # Var(e3) = omega3

+ w4 ~~ omega4*w4 # Var(e4) = omega4

+ w5 ~~ omega5*w5 # Var(e5) = omega5

+ w6 ~~ omega6*w6 # Var(e6) = omega6

+ v1 ~~ omega7*v1 # Var(e7) = omega7

+ v2 ~~ omega8*v2 # Var(e8) = omega8

+ v3 ~~ omega9*v3 # Var(e9) = omega9

+ v4 ~~ omega10*v4 # Var(e10) = omega10

+ # Bounds (Variances are positive)

+ phi11 > 0; phi22 > 0; phi33 > 0; phi44 > 0; phi55 > 0

+ omega1 > 0; omega2 > 0; omega3 > 0; omega4 > 0; omega5 > 0

+ omega6 > 0; omega7 > 0; omega8 > 0; omega9 > 0; omega10 > 0

+ ’ # End of model torus2

>

> fit2 = lavaan(torus2, data=coffee)

There has to be a better way, and there is. In the model torus2b, only the measurement
model is specified.

> torus2b =

+ ’

+ # Measurement model (still simple double measurement)

+ L_BrAw =~ 1*w1 + 1*w2

+ L_AdAw =~ 1*w3 + 1*w4

+ L_Inter =~ 1*w5 + 1*w6

+ L_PI =~ 1*v1 + 1*v2

+ L_PBeh =~ 1*v3 + 1*v4

+ # Leave off everything else and see what happens.

+ ’ # End of model torus2b

The lavaan function chokes on this, because it requires more detail. However, the cfa
function (for confirmatory factor analysis – see Chapter 3) assumes by default that all the
latent variables have non-zero covariances, and does not require the user to name them20.

> fit2b = cfa(torus2b, data=coffee)

That’s a lot better. The models torus2 and torus2b are 100% equivalent, except that
the parameters in torus2 have labels. The fit (that is, lack of fit) is identical.

20Actually, the lavaan function will name your parameters for you too. Syntax like L PI ∼
gamma1*L BrAw + gamma2*L AdAw + gamma3*L Inter looks like you are transcribing a model equation,
but technically those Greek letter names are just optional labels for the regression parameters, which
have their own internal names.
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> show(fit2)

lavaan 0.6-7 ended normally after 124 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 25

Number of inequality constraints 15

Number of observations 200

Model Test User Model:

Test statistic 76.380

Degrees of freedom 30

P-value (Chi-square) 0.000

> show(fit2b)

lavaan 0.6-7 ended normally after 139 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 25

Number of observations 200

Model Test User Model:

Test statistic 76.380

Degrees of freedom 30

P-value (Chi-square) 0.000

The measurement model does not fit21, and we need to fix it. Now, the model asserts
a kind of double measurement, but it’s a restricted kind in which all the measurement
errors are all independent. Maybe independence does not hold, and that’s causing the
lack of fit.

In the proof of identifiability for this example, the measurement model had two sets
of measurements, with errors of measurement potentially correlated within sets but not
between sets. The proposal here is just to put in the non-zero covariances between sets,
so identifiability has already been established. Figure 1.10 shows the resulting model.
Measurement set one is red, and measurement set two is blue.

In the model string torus3, the non-zero covariances among measurement error terms

21It’s a bit tempting to observe that the difference between the models torus1 and torus2 is that
torus1 imposes some structure in the relationships among the latent variables. In fact, it can be shown
that the only difference between the two models is the lack of some arrows in torus1. So it would seem
that one could test the difference between the two models with a likelihood ratio test, and thereby assess
the fit of the latent variable model. That’s not a good idea, though. When a full model does not fit the
data, testing for difference between full and restricted models can be very misleading.
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Figure 1.10: Brand Awareness Model Three
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are specified without explicitly naming the parameters. This saves a fair amount of typing.

> torus3 =

+ ’

+ # Measurement model (still simple double measurement)

+ L_BrAw =~ 1*w1 + 1*w2

+ L_AdAw =~ 1*w3 + 1*w4

+ L_Inter =~ 1*w5 + 1*w6

+ L_PI =~ 1*v1 + 1*v2

+ L_PBeh =~ 1*v3 + 1*v4

+ # Add covariances between measurement error terms, without naming them

+ w1 ~~ w3; w1 ~~ w5; w1 ~~ v1; w1 ~~ v3

+ w3 ~~ w5; w3 ~~ v1; w3 ~~ v3
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+ w5 ~~ v1; w5 ~~ v3

+ v1 ~~ v3

+ w2 ~~ w4; w2 ~~ w6; w2 ~~ v2; w2 ~~ v4

+ w4 ~~ w6; w4 ~~ v2; w4 ~~ v4

+ w6 ~~ v2; w6 ~~ v4

+ v2 ~~ v4

+ ’ # End of model torus3

When we try to fit this nice model, there is trouble.

> fit3 = cfa(torus3, data=coffee)

Warning message:

In lav_object_post_check(object) :

lavaan WARNING: the covariance matrix of the residuals of the observed

variables (theta) is not positive definite;

use lavInspect(fit, "theta") to investigate.

The phrase “residuals of the observed variables” refers to the measurement error terms.
These are denoted by ei,1, . . . , ei,10 in (1.21). Presumably they are called “residuals”
because of the analogy between residuals and error terms in regression. Following the
suggestion to try lavInspect,

> lavInspect(fit3, "theta")

w1 w2 w3 w4 w5 w6 v1 v2 v3 v4

w1 10.617

w2 0.000 10.477

w3 2.700 0.000 11.704

w4 0.000 -1.726 0.000 11.263

w5 1.246 0.000 0.475 0.000 8.786

w6 0.000 -3.239 0.000 -1.904 0.000 5.053

v1 3.208 0.000 2.999 0.000 3.933 0.000 13.013

v2 0.000 -2.484 0.000 -1.490 0.000 -3.382 0.000 6.854

v3 0.555 0.000 -0.485 0.000 1.049 0.000 0.875 0.000 4.699

v4 0.000 -1.408 0.000 -1.756 0.000 -0.663 0.000 -1.499 0.000 3.911

Note how the covariances between even-numbered variables and odd-numbered variables
are all zero. This is definitely the estimated covariance matrix of (ei,1, . . . , ei,10)>. An
application of eigen(lavInspect(fit3, "theta"))$values reveals one negative eigen-
value, so the matrix is not positive definite, and the numerical search for the MLE has
left the parameter space. It is nice that lavaan checks for this.

It is possible that the numerical search left the parameter space because the model is
wrong, but it’s also possible that the problem was caused by sub-optimal starting values.
Method-of-moments estimates make excellent starting values. As usual, if identifiability
has been established by obtaining explicit solutions to the covariance structure equa-
tions, then putting hats on the solutions yields method-of-moments estimates. Using the
solution (1.23), estimates for the brand awareness data are calculated as follows.
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> # Checking why torus3 left the parameter space.

> # Obtain MOM estimates for use as starting values.

>

> d1 = as.matrix(coffee[,c(1,3,5,7,9)]) # Measurement set one

> d2 = as.matrix(coffee[,c(2,4,6,8,10)]) # Measurement set two

> Phi_hat = cov(d1,d2); Phi_hat

w2 w4 w6 v2 v4

w1 10.186131 6.670427 15.123116 11.928618 8.162688

w3 6.655075 8.684598 12.766332 11.339975 6.893844

w5 7.627940 6.536859 16.409548 10.881683 6.290829

v1 8.347940 7.563392 16.891960 15.024598 10.119975

v3 4.674573 3.738015 7.650754 6.998216 17.746859

This matrix isn’t symmetric, so it’s not in the parameter space. That’s easy to fix.

> # Make it symmetric

> Phi_hat = (Phi_hat + t(Phi_hat) )/2; Phi_hat

w2 w4 w6 v2 v4

w1 10.186131 6.662751 11.375528 10.138279 6.418631

w3 6.662751 8.684598 9.651595 9.451683 5.315930

w5 11.375528 9.651595 16.409548 13.886822 6.970791

v1 10.138279 9.451683 13.886822 15.024598 8.559095

v3 6.418631 5.315930 6.970791 8.559095 17.746859

> eigen(Phi_hat)$values # Is it positive definite?

[1] 50.164191 12.097980 2.925981 1.668071 1.195511

So Φ̂ is okay. Computing and testing the estimated covariance matrices of the error terms,

> Omega1_hat = cov(d1) - Phi_hat

> Omega2_hat = cov(d2) - Phi_hat

> eigen(Omega1_hat)$values # Is Omega1_hat positive definite?

[1] 26.402687 9.301147 8.288868 5.106178 2.868356

> eigen(Omega2_hat)$values # Is Omega2_hat positive definite?

[1] 12.867799 11.828405 9.847771 4.712254 -3.393667

The method-of-moments estimate Ω̂2 is not positive definite. If we used it as a source
of starting values, we would be starting the numerical search for the MLE outside of the
parameter space. This is not going to be helpful. My conclusion is that this model is
incompatible with the data, and it’s time to consider another one.

Recall that the two measurements of each latent variable are different. One of the
interviews is in-person, and the other is by telephone call-back. Maybe they’re not really
equivalent. Perhaps one in each set (say number two, the call-backs) should have a
coefficient not equal to one. Figure 1.11 illustrates the model. We are back to independent
error terms for the present. Proof of identifiability is deferred until (one of those two-
variable rules).
Fitting the model,
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Figure 1.11: Brand Awareness Model Four
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> torus4 =

+ ’

+ # Measurement model (still simple double measurement)

+ L_BrAw =~ 1*w1 + lambda2*w2

+ L_AdAw =~ 1*w3 + lambda4*w4

+ L_Inter =~ 1*w5 + lambda6*w6

+ L_PI =~ 1*v1 + lambda8*v2

+ L_PBeh =~ 1*v3 + lambda10*v4

+ ’ # End of model torus4

> fit4 = cfa(torus4, data=coffee)

> show(fit4)

lavaan 0.6-7 ended normally after 161 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 30

Number of observations 200

Model Test User Model:

Test statistic 17.837

Degrees of freedom 25

P-value (Chi-square) 0.849

The measurement model fits! Now combine it with the latent variable model, as shown
in Figure 1.12.
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Figure 1.12: Brand Awareness Model Five
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It is easy to edit model string torus1 to put the λj parameters in the measurement
model. Showing just the first part of the model string,

> torus5 =

+ ’

+ # Latent variable model

+ L_PI ~ gamma1*L_BrAw + gamma2*L_AdAw + gamma3*L_Inter

+ L_PBeh ~ gamma4*L_Inter + beta*L_PI

+ # Measurement model

+ L_BrAw =~ 1*w1 + lambda2*w2

+ L_AdAw =~ 1*w3 + lambda4*w4

+ L_Inter =~ 1*w5 + lambda6*w6

+ L_PI =~ 1*v1 + lambda8*v2

+ L_PBeh =~ 1*v3 + lambda10*v4

Fitting the model,
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> fit5 = lavaan(torus5, data=coffee)

Warning messages:

1: In lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, :

lavaan WARNING:

Could not compute standard errors! The information matrix could

not be inverted. This may be a symptom that the model is not

identified.

2: In lav_object_post_check(object) :

lavaan WARNING: covariance matrix of latent variables

is not positive definite;

use lavInspect(fit, "cov.lv") to investigate.

The parameters of this model are definitely identifiable, so that’s not the problem. The
search has left the parameter space, and since the measurement model fits, the source
of the trouble must be in the fit of the latent variable model. The output of summary
contains some clues. Let us examine it one piece at a time.

> summary(fit5)

lavaan 0.6-7 ended normally after 2096 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 28

Number of inequality constraints 15

Number of observations 200

Model Test User Model:

Test statistic 31.127

Degrees of freedom 27

P-value (Chi-square) 0.266

Parameter Estimates:

Standard errors Standard

Information Expected

Information saturated (h1) model Structured

It used a lot of iterations (2,096), which can be an indication that the numerical search
wandered off into nowhere. For comparison, fit4 (the good measurement model with
λ2, λ4, . . . , λ10) found a good solution in 161 iterations, and fit3 (the full double mea-
surement model) found a solution outside the parameter space in 193 iterations, when
the method-of-moments estimator was also outside the parameter space. The fit we are
considering (fit5) actually passes the goodness of fit test, with G2 = 31.127, p = 0.266.
It’s still unacceptable, though, because the solution is outside the parameter space.

Continuing to look at the output of summary,
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Latent Variables:

Estimate Std.Err z-value P(>|z|)

L_BrAw =~

w1 1.000

w2 (lmb2) 0.535 NA

L_AdAw =~

w3 1.000

w4 (lmb4) 0.552 NA

L_Inter =~

w5 1.000

w6 (lmb6) 1.094 NA

L_PI =~

v1 1.000

v2 (lmb8) 0.708 NA

L_PBeh =~

v3 1.000

v4 (lm10) 1.034 NA

Comparing the estimates from the good measurement model,

> coef(fit4)

lambda2 lambda4 lambda6 lambda8 lambda10

0.530 0.543 1.090 0.708 1.029

w1~~w1 w2~~w2 w3~~w3 w4~~w4 w5~~w5

5.106 12.955 7.034 13.401 6.205

w6~~w6 v1~~v1 v2~~v2 v3~~v3 v4~~v4

6.134 8.322 10.301 4.440 3.993

L_BrAw~~L_BrAw L_AdAw~~L_AdAw L_Inter~~L_Inter L_PI~~L_PI L_PBeh~~L_PBeh

19.135 15.914 14.980 21.128 17.155

L_BrAw~~L_AdAw L_BrAw~~L_Inter L_BrAw~~L_PI L_BrAw~~L_PBeh L_AdAw~~L_Inter

12.297 13.502 16.248 7.883 11.306

L_AdAw~~L_PI L_AdAw~~L_PBeh L_Inter~~L_PI L_Inter~~L_PBeh L_PI~~L_PBeh

15.070 6.144 15.564 6.533 9.619

Looking at just the first line, we see that the λ̂j from fit5 are almost identical to the
ones from fit4, which means that they are above suspicion. Continuing to look at the
output of summary(fit5),

Regressions:

Estimate Std.Err z-value P(>|z|)

L_PI ~

L_BrAw (gmm1) 47.719 NA

L_AdAw (gmm2) -156.406 NA

L_Inter (gmm3) 80.361 NA

L_PBeh ~

L_Inter (gmm4) -0.156 NA

L_PI (beta) 0.570 NA
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Now we see a problem. The estimates of γ1, γ2 and γ3 are very large in absolute value.
Consider that the observable versions of all the variables involved are on a scale from zero
to one hundred, and that one of the coefficients linking the latent version to the observable
version is set to one. This means that the latent variables are also approximately on a
scale from zero to one hundred. γ̂1 = 47.719 means that a one-point change in brand
awareness is thought to produce a 47-point change in purchase intention. This is entirely
unbelievable. Furthermore, the extremely large negative value of γ̂2 means that a very
small increase in advertising awareness produces produces a decrease in purchase intention
that is off the scale. This is even worse. The first three estimates are all extremely suspect.
In contrast, the next two, γ̂4 and β̂, seem unremarkable.

Looking at the estimated variances and covariances,

Covariances:

Estimate Std.Err z-value P(>|z|)

L_BrAw ~~

L_AdAw (ph12) 12.498 NA

L_Inter (ph13) 13.407 NA

L_AdAw ~~

L_Inter (ph23) 11.621 NA

Variances:

Estimate Std.Err z-value P(>|z|)

L_BrAw (ph11) 18.730 NA

L_AdAw (ph22) 9.691 NA

L_Inter (ph33) 14.851 NA

.L_PI (psi1) 260.320 NA

.L_PBeh (psi2) 12.623 NA

.w1 (omg1) 5.511 NA

.w2 (omg2) 12.959 NA

.w3 (omg3) 13.263 NA

.w4 (omg4) 15.139 NA

.w5 (omg5) 6.335 NA

.w6 (omg6) 6.158 NA

.v1 (omg7) 8.341 NA

.v2 (omg8) 10.301 NA

.v3 (omg9) 4.524 NA

.v4 (om10) 3.903 NA

The only thing that jumps out is the large value of ψ̂1, the variance of the error term
feeding into latent purchase intention. Looking back at Figure 1.12, it is clear that all the
obvious signs of pathology are in the latent regression linking latent purchase intention
to latent brand awareness, advertising awareness, and interest in the product.

Following the suggestion in the warning message, we take a look at the estimated
variance-covariance matrix of the latent variables, which is not positive definite.

> lavInspect(fit5, "cov.lv")

L_BrAw L_AdAw L_Intr L_PI L_PBeh



192 CHAPTER 1. INTRODUCTION TO STRUCTURAL EQUATION MODELS

L_BrAw 18.730

L_AdAw 12.498 9.691

L_Inter 13.407 11.621 14.851

L_PI 16.411 14.534 15.565 21.059

L_PBeh 7.261 6.469 6.554 9.572 17.054

At first, nothing seems obviously wrong; for example, all the estimated variances are
positive. It’s true that one of the eigenvalues is negative (I checked), but this is something
we can trust lavaan to get right.

Comparison with lavInspect(fit4, "cov.lv") is really helpful. Recall that fit4

was the successful fit of the measurement model, so this is the real MLE of the covariance
matrix of the latent variables. It’s shown in Table 1.1. The biggest difference between

Table 1.1: MLE of the covariance matrix of latent variables for Brand Awareness data

lavInspect(fit4, "cov.lv")

L_BrAw L_AdAw L_Intr L_PI L_PBeh

L_BrAw 19.135

L_AdAw 12.297 15.914

L_Inter 13.502 11.306 14.980

L_PI 16.248 15.070 15.564 21.128

L_PBeh 7.883 6.144 6.533 9.619 17.155

these two matrices is in the estimated variance for L AdAw, latent advertising awareness.
The value in fit5 is 9.691, while the value in fit4 is 15.914. The fit4 value is the real
MLE of the variance of this latent exogenous variable, and has a lot more credibility.

In fact, the low variance in question causes the estimated variance-covariance matrix of
just the exogenous latent variables to not be positive definite22. Again, we see a problem
with estimation in the same part of the latent variable model. It’s in the first stage, the
latent regression linking latent purchase intention to latent brand awareness, advertising
awareness, and interest in the product.

In general, when a numerical search leaves the parameter space, it could be either
because of the starting values, or because the model is wrong. Here, it seems very likely
to be the starting values. The reason is that this is just a regression, and its parameters
are one-to-one with a set of variances and covariances that have already been estimated
successfully. This point will become clear as we work to obtain better starting values,
based on the estimated variances and covariances in fit4. Again, fit4 comes from the
successful measurement model represented in Figure 1.11, the one with λ2, λ4, . . . , λ10.

It would be possible to accomplish our goal by translating the regression notation
of (16), but it is more informative to derive the starting values using the current notation.
Let xi denote the vector of latent exogenous variables (Xi,1, Xi,2, Xi,3)>. There was trouble
estimating Φx = cov(xi), but we already have a good estimate: the first three rows and
columns of Table 1.1. So we’ll use that.

22I played around with it.
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Write the sub-model we’re considering as yi,1 = γ>xi + εi,1, where γ = (γ1, γ2, γ3)>.
We need estimates of γ and ψ1 = var(εi,1) to use as starting values. Basic variance and
covariance calculations yield

cov(xi, yi,1) = Φxγ

var(yi,1) = γ>Φxγ + ψ1

Use Φx,y1 to denote cov(xi, yi,1), the vector of three covariances between the exogenous
variables and purchase intention. Estimates are directly available from Table 1.1. Starting

values for the estimate of γ will be the very respectable estimate γ̂ = Φ̂
−1

x Φ̂x,y1 . Using the

estimated variance of purchase intention from Table 1.1, we get ψ̂1 = φ̂4,4−γ̂>Φ̂xγ̂ = φ̂4,4−
Φ̂
>
x,y1

Φ̂
−1

x Φ̂x,y1 . These estimates are one-to-one functions of the MLE from a closely related
model for these data, so they should be very good starting values for the parameters of
the model in Figure 1.12. Calculating,

> # The names of all these quantities should include "hat."

> Phi = lavInspect(fit4, "cov.lv")

> Phix = Phi[1:3,1:3]; Phix

L_BrAw L_AdAw L_Inter

L_BrAw 19.13510 12.29660 13.50213

L_AdAw 12.29660 15.91372 11.30579

L_Inter 13.50213 11.30579 14.98033

> Phixy = as.matrix(Phi[1:3,4]); Phixy

[,1]

L_BrAw 16.24761

L_AdAw 15.07005

L_Inter 15.56443

> gamma = t(Phixy) %*% solve(Phix); gamma

L_BrAw L_AdAw L_Inter

[1,] 0.1996458 0.3932861 0.5622287

> psi1 = Phi[4,4] - as.numeric(gamma %*% Phix %*% t(gamma)); psi1

[1] 3.206661

These numbers are much more reasonable than the ones from fit5. Let’s see if we can
get away with specifying just 10 starting values. We’ll drop the inequality constraints
too, since lavaan will issue a warning if any variance estimate is negative.

> torus6 =

+ ’

+ # Latent variable model

+ L_PI ~ gamma1*L_BrAw + start(0.1996458)*L_BrAw +

+ gamma2*L_AdAw + start(0.3932861)*L_AdAw +

+ gamma3*L_Inter + start(0.5622287)*L_Inter

+ L_PBeh ~ gamma4*L_Inter + beta*L_PI

+ # Measurement model

+ L_BrAw =~ 1*w1 + lambda2*w2

+ L_AdAw =~ 1*w3 + lambda4*w4
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+ L_Inter =~ 1*w5 + lambda6*w6

+ L_PI =~ 1*v1 + lambda8*v2

+ L_PBeh =~ 1*v3 + lambda10*v4

+ # Variances and covariances

+ # Exogenous latent variables

+ L_BrAw ~~ phi11*L_BrAw + start(19.13510)*L_BrAw # Var(L_BrAw) = phi11

+ L_BrAw ~~ phi12*L_AdAw + start(12.29660)*L_AdAw # Cov(L_BrAw,L_AdAw) = phi12

+ L_BrAw ~~ phi13*L_Inter + start(13.50213)*L_Inter # Cov(L_BrAw,L_Inter) = phi13

+ L_AdAw ~~ phi22*L_AdAw + start(15.91372)*L_AdAw # Var(L_AdAw) = phi22

+ L_AdAw ~~ phi23*L_Inter + start(11.30579)*L_Inter # Cov(L_AdAw,L_Inter) = phi23

+ L_Inter ~~ phi33*L_Inter + start(14.98033)*L_Inter # Var(L_Inter) = phi33

+ # Errors in the latent model (epsilons)

+ L_PI ~~ psi1*L_PI + start(3.206661)*L_PI # Var(epsilon1) = psi1

+ L_PBeh ~~ psi2*L_PBeh # Var(epsilon2) = psi2

+ # Measurement errors

+ w1 ~~ omega1*w1 # Var(e1) = omega1

+ w2 ~~ omega2*w2 # Var(e2) = omega2

+ w3 ~~ omega3*w3 # Var(e3) = omega3

+ w4 ~~ omega4*w4 # Var(e4) = omega4

+ w5 ~~ omega5*w5 # Var(e5) = omega5

+ w6 ~~ omega6*w6 # Var(e6) = omega6

+ v1 ~~ omega7*v1 # Var(e7) = omega7

+ v2 ~~ omega8*v2 # Var(e8) = omega8

+ v3 ~~ omega9*v3 # Var(e9) = omega9

+ v4 ~~ omega10*v4 # Var(e10) = omega10

+ ’ # End of model torus6

> fit6 = lavaan(torus6, data=coffee)

>

lavaan returns the R prompt with minimal time lag and no warning messages, which is
a good sign.

> fit6

lavaan 0.6-7 ended normally after 108 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 28

Number of inequality constraints 15

Number of observations 200

Model Test User Model:

Test statistic 18.962

Degrees of freedom 27

P-value (Chi-square) 0.871
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Finally, the model fits! summary gives numerical estimates of all the parameters, along
with standard errors (square roots of the diagonal elements of the inverse of the observed
Fisher information matrix), and large-sample z-tests of the null hypothesis that the pa-
rameter equals zero.

> summary(fit6)

lavaan 0.6-7 ended normally after 108 iterations

Estimator ML

Optimization method NLMINB

Number of free parameters 28

Number of observations 200

Model Test User Model:

Test statistic 18.962

Degrees of freedom 27

P-value (Chi-square) 0.871

Parameter Estimates:

Standard errors Standard

Information Expected

Information saturated (h1) model Structured

Latent Variables:

Estimate Std.Err z-value P(>|z|)

L_BrAw =~

w1 1.000

w2 (lmb2) 0.528 0.077 6.861 0.000

L_AdAw =~

w3 1.000

w4 (lmb4) 0.543 0.090 6.013 0.000

L_Inter =~

w5 1.000

w6 (lmb6) 1.092 0.081 13.528 0.000

L_PI =~

v1 1.000

v2 (lmb8) 0.707 0.066 10.745 0.000

L_PBeh =~

v3 1.000

v4 (lm10) 1.040 0.110 9.457 0.000

Regressions:

Estimate Std.Err z-value P(>|z|)

L_PI ~
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L_BrAw (gmm1) 0.229 0.145 1.581 0.114

L_AdAw (gmm2) 0.369 0.161 2.285 0.022

L_Inter (gmm3) 0.553 0.170 3.253 0.001

L_PBeh ~

L_Inter (gmm4) -0.129 0.257 -0.502 0.615

L_PI (beta) 0.546 0.224 2.438 0.015

Covariances:

Estimate Std.Err z-value P(>|z|)

L_BrAw ~~

L_AdAw (ph12) 12.301 1.864 6.598 0.000

L_Inter (ph13) 13.480 1.831 7.360 0.000

L_AdAw ~~

L_Inter (ph23) 11.312 1.694 6.679 0.000

Variances:

Estimate Std.Err z-value P(>|z|)

L_BrAw (ph11) 19.200 3.110 6.174 0.000

L_AdAw (ph22) 15.910 3.033 5.246 0.000

L_Inter (ph33) 14.961 2.153 6.949 0.000

.L_PI (psi1) 3.301 1.340 2.463 0.014

.L_PBeh (psi2) 12.620 2.097 6.019 0.000

.w1 (omg1) 5.041 2.075 2.430 0.015

.w2 (omg2) 12.974 1.413 9.179 0.000

.w3 (omg3) 7.038 2.218 3.172 0.002

.w4 (omg4) 13.400 1.477 9.074 0.000

.w5 (omg5) 6.224 0.960 6.484 0.000

.w6 (omg6) 6.098 1.063 5.735 0.000

.v1 (omg7) 8.280 1.479 5.598 0.000

.v2 (omg8) 10.299 1.215 8.477 0.000

.v3 (omg9) 4.612 1.682 2.742 0.006

.v4 (om10) 3.809 1.789 2.129 0.033

The estimates of λ2, . . . , λ10 are essentially the same as the estimates from fit4, which is
good. Comparing other estimates to the starting values we supplied,

> parTable(fit6)

id lhs op rhs user block group free ustart exo label plabel start est se

1 1 L_PI ~ L_BrAw 1 1 1 1 0.200 0 gamma1 .p1. 0.200 0.229 0.145

2 2 L_PI ~ L_AdAw 1 1 1 2 0.393 0 gamma2 .p2. 0.393 0.369 0.161

3 3 L_PI ~ L_Inter 1 1 1 3 0.562 0 gamma3 .p3. 0.562 0.553 0.170

4 4 L_PBeh ~ L_Inter 1 1 1 4 NA 0 gamma4 .p4. 0.000 -0.129 0.257

5 5 L_PBeh ~ L_PI 1 1 1 5 NA 0 beta .p5. 0.000 0.546 0.224

6 6 L_BrAw =~ w1 1 1 1 0 1.000 0 .p6. 1.000 1.000 0.000

7 7 L_BrAw =~ w2 1 1 1 6 NA 0 lambda2 .p7. 0.476 0.528 0.077

8 8 L_AdAw =~ w3 1 1 1 0 1.000 0 .p8. 1.000 1.000 0.000

9 9 L_AdAw =~ w4 1 1 1 7 NA 0 lambda4 .p9. 0.421 0.543 0.090

10 10 L_Inter =~ w5 1 1 1 0 1.000 0 .p10. 1.000 1.000 0.000

11 11 L_Inter =~ w6 1 1 1 8 NA 0 lambda6 .p11. 0.724 1.092 0.081



1.6. THE BRAND AWARENESS STUDY RE-VISTED 197

12 12 L_PI =~ v1 1 1 1 0 1.000 0 .p12. 1.000 1.000 0.000

13 13 L_PI =~ v2 1 1 1 9 NA 0 lambda8 .p13. 0.594 0.707 0.066

14 14 L_PBeh =~ v3 1 1 1 0 1.000 0 .p14. 1.000 1.000 0.000

15 15 L_PBeh =~ v4 1 1 1 10 NA 0 lambda10 .p15. 0.807 1.040 0.110

16 16 L_BrAw ~~ L_BrAw 1 1 1 11 19.135 0 phi11 .p16. 19.135 19.200 3.110

17 17 L_BrAw ~~ L_AdAw 1 1 1 12 12.297 0 phi12 .p17. 12.297 12.301 1.864

18 18 L_BrAw ~~ L_Inter 1 1 1 13 13.502 0 phi13 .p18. 13.502 13.480 1.831

19 19 L_AdAw ~~ L_AdAw 1 1 1 14 15.914 0 phi22 .p19. 15.914 15.910 3.033

20 20 L_AdAw ~~ L_Inter 1 1 1 15 11.306 0 phi23 .p20. 11.306 11.312 1.694

21 21 L_Inter ~~ L_Inter 1 1 1 16 14.980 0 phi33 .p21. 14.980 14.961 2.153

22 22 L_PI ~~ L_PI 1 1 1 17 3.207 0 psi1 .p22. 3.207 3.301 1.340

23 23 L_PBeh ~~ L_PBeh 1 1 1 18 NA 0 psi2 .p23. 0.050 12.620 2.097

24 24 w1 ~~ w1 1 1 1 19 NA 0 omega1 .p24. 12.120 5.041 2.075

25 25 w2 ~~ w2 1 1 1 20 NA 0 omega2 .p25. 9.162 12.974 1.413

26 26 w3 ~~ w3 1 1 1 21 NA 0 omega3 .p26. 11.474 7.038 2.218

27 27 w4 ~~ w4 1 1 1 22 NA 0 omega4 .p27. 9.046 13.400 1.477

28 28 w5 ~~ w5 1 1 1 23 NA 0 omega5 .p28. 10.593 6.224 0.960

29 29 w6 ~~ w6 1 1 1 24 NA 0 omega6 .p29. 11.965 6.098 1.063

30 30 v1 ~~ v1 1 1 1 25 NA 0 omega7 .p30. 14.725 8.280 1.479

31 31 v2 ~~ v2 1 1 1 26 NA 0 omega8 .p31. 10.439 10.299 1.215

32 32 v3 ~~ v3 1 1 1 27 NA 0 omega9 .p32. 10.797 4.612 1.682

33 33 v4 ~~ v4 1 1 1 28 NA 0 omega10 .p33. 11.085 3.809 1.789

The column ustart shows the user-supplied starting values, start shows all the starting
values, and est contains the parameter estimates (MLEs). It is clear that where starting
values were supplied, the search moved from them just a little bit, at most. They were
very good.

The output of summary, shows that that the coefficients linking the Set Two measure-
ments to the latent variables are all significantly different from zero; they’d better be!
But are they all significantly different from one? Starting with a likelihood ratio test of
the null hypothesis that all five coefficients equal one,

> # Likelihood ratio test of

> # H0: lambda2 = lambda4 = lambda6 = lambda8 = lambda10 = 1

> anova(fit1,fit6)

Chi-Squared Difference Test

Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)

fit6 27 10947 11039 18.962

fit1 32 10996 11071 77.752 58.789 5 0.00000000002162 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

For the corresponding Wald test, it is convenient to use the publicly available function
Wtest.

# For Wald tests: Wtest = function(L,Tn,Vn,h=0) # H0: L theta = h

source("http://www.utstat.utoronto.ca/~brunner/Rfunctions/Wtest.txt")

As the comment indicates, Wtest allows testing of the linear null hypothesis H0 : Lθ = h,

based on maximum likelihood. The argument Tn is the maximum likelihood estimate θ̂n,
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and Vn is its asymptotic covariance matrix. It is helpful to display θ̂n, just to verify the
order of the parameters.

> thetahat = coef(fit6); thetahat

gamma1 gamma2 gamma3 gamma4 beta lambda2 lambda4 lambda6 lambda8

0.229 0.369 0.553 -0.129 0.546 0.528 0.543 1.092 0.707

lambda10 phi11 phi12 phi13 phi22 phi23 phi33 psi1 psi2

1.040 19.200 12.301 13.480 15.910 11.312 14.961 3.301 12.620

omega1 omega2 omega3 omega4 omega5 omega6 omega7 omega8 omega9

5.041 12.974 7.038 13.400 6.224 6.098 8.280 10.299 4.612

omega10

3.809

> LL = rbind(c(0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

+ c(0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

+ c(0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

+ c(0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

+ c(0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))

> hh = c(1,1,1,1,1)

> Wtest(LL,thetahat,vcov(fit6),hh)

W df p-value

84.5066737182521876547980 5.0000000000000000000000 0.0000000000000001110223

Both the likelihood ratio test and the Wald test confirm overwhelmingly that the coeffi-
cients in question are not all one. To test the individual coefficients, it’s convenient to use
the MLEs and standard errors from parTable. The next-to-last column is the parameter
estimate, and the last column is the standard error. The following code computes the z
statistics for H0 : θj = 1 for all the parameters but then displays only the relevant ones.

> pt6 = parTable(fit6); dim(pt6)

[1] 33 15

> z = as.numeric( (pt6[,14]-1)/pt6[,15] )

> # Extract only meaningful z statistics (lambda_j)

> z = z[c(7,9,11,13,15)]

> names(z) = c(’lambda2’, ’lambda4’, ’lambda6’, ’lambda8’, ’lambda10’)

> z

lambda2 lambda4 lambda6 lambda8 lambda10

-6.1368432 -5.0581710 1.1367154 -4.4540676 0.3614714

> pt6[c(7,9,11,13,15),14] # Corresponding theta-hats

[1] 0.5278696 0.5431214 1.0917385 0.7069418 1.0397428

And we see that the 1.09 and the 1.04 are not significantly different from one.

1.7 Criticisms of structural equation modeling

Not everybody likes structural equation modeling. One objection is subjectivity. It’s true
that quite a lot of theoretical input is required to use this tool on a data set. One cannot
compose a path diagram (or equivalently, a system of model equations) without making
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some very definite assertions about the way the process works. Statisticians might object
that they are not subject matter experts, perhaps with the sub-text that they don’t want
to think too hard about it, and especially they don’t want to read books and articles in
a foreign discipline. The solution to this problem is either find a collaborator, or go do
something more theoretical.

Scientists, too, may feel uncomfortable. It’s not the math; they are already resigned
to the fact that they need to use statistical methods they do not understand all the way
down to the bedrock. The problem is that they see themselves as empiricists. They have
gone to a lot of trouble to collect the data, and now they want to hear what the data
have to say. They do not want to impose their conjectures on the data23; it strikes them
as unscientific.

One such scientist once said to a friend of mine (Lennon Li) something like “All
these variables are connected to each other. Why not just run arrows from everything
to everything else, and then test whether the coefficients are zero?” Lennon was faced
with the task of explaining parameter identifiability to a busy, impatient, sleep-deprived
physician who was already running late. In the end, Lennon wound up doing almost all
the modeling himself. He did the best he could, but it was not an optimal outcome.

Actually, I have a lot of sympathy for the empirically-oriented user who is reluctant
to engage in modeling. Frequently, the objection is not to modeling or theorizing per
se, but to mixing this enterprise with the statistical analysis. It’s a reasonable position,
but I do have a few questions. First of all, is the data set strictly observational, or
have some variables been manipulated by random assignment to treatment conditions?
In the latter case, causal inference is the objective, and surely arrows should be going
from the manipulated variables to others that could be deemed outcomes. Structural
equation methods may have some advantages over a traditional statistical analysis. See
Chapter ??. If it’s a purely observational study, here is another question for the skeptical
user. Have you ever used ordinary linear regression on data like these? If so, you’ve had
to decide which were the explanatory variables, and which were the response variables.
How did you decide? It seems that you may have already been doing structural equation
modeling of a basic sort. Do you agree that in regression, most explanatory variables are
measured with error? If so, see Chapter 0. It’s a slippery slope.

Sometimes, the objection is not so much to constructing models that will be incorpo-
rated into the statistical method, but to the interpretation of those models as causal. To
be explicit about this, the objection is to drawing causal conclusions from observational
data. We are back to the correlation-causation issue. One response is that while of course
one cannot firmly establish cause and effect without random assignment, at least one can
propose a causal model, and reject it if it does not fit the data. That being said, frequently

23If this sounds like an objection to Bayesian statistics, I agree. There is no doubt that even strictly
frequentist structural equation modeling makes heavy use of prior information. Without some opinion
based on past data or experience, how can you draw a path diagram? As I see it, both Bayesians and
frequentists incorporate prior information into the statistical model, while Bayesians also have a prior
distribution on the parameters. In fact, one could say that for the Bayesian, the model is part of the
prior, though in simple applications that part of the prior distribution is degenerate. This statement
applies to statistical models in general, not just to structural equation models.
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(but not always), a model with causality flowing in one direction fits exactly as well as
another model with causality flowing in the opposite direction. Some theoretical input
is required. When one variable is collected at an earlier time period, it’s easy. Other
cases can be more challenging. As will be seen in Chapter 4, successful models of mutual
influence are also possible under some circumstances.

Unfortunately, it is not so easy to dispose of the correlation-causation issue. Consider
two variables that are both impacted by variables for which no observable measures are
available. These unmeasured variables are aptly named “confounding” variables, because
they really do confuse matters. Are x and y correlated because x influences y, or is
it because they are both influenced by the unmeasured variables? Or, are d1 and d2

correlated because d1 and d2 are both influenced by a latent variable F (that’s what the
model says), or is it because they are both influenced by the unmeasured variables?

Recalling that error terms represent “all other influences,” a path diagram that ac-
knowledges the unmeasured influencers would have an extra curved, double-headed arrow
— between an exogenous variable and an error term, as in Figure 6, or between two error
terms as in Figure 1.7. In such cases, parameter identifiability is likely to be lost24.

It’s sometimes possible to model one’s way out of the problem, and come up with
another model that is both believable, and whose parameters are identifiable. If this is
not possible, the analyst is in an uncomfortable position. The choice may be between
proceeding ot fit a model that no thoughtful person could believe (hoping that it’s not
“too wrong”), and simply giving up. Even if one chooses to hold one’s nose and proceed,
it does not always work. As shown in Example 1.5.1, correlated error terms can lead to
an MLE that is firmly, reliably and significantly outside the parameter space. In such
a situation, one should not trust any of the estimates or tests associated with the fitted
model. To proceed is basically fraudulent. I was in this situation once, and I had to back
out of a project with a valued collaborator. I’m still sorry about that, Ana.

This is just one aspect of a larger problem that makes it difficult for some researchers
to embrace structural equation modeling. The problem is that sometimes, a superficially
reasonable model with identifiable parameters, simply do not fit. Then on further re-
flection, the analyst comes up with a model that is more believable. Unfortunately, the
parameters of this more believable model are not identifiable. The analyst may suspect
the problem with identifiability, without being able to confirm it mathematically. In any
case, he or she tries to fit the model, and it blows up. Maybe it’s the starting values.
As we saw in Section 0.10.2 lack of identifiability can produce numerical problems that
are hard to distinguish from the ones caused by bad starting values. So the analyst tries
different starting values, but it blows up every time. A few experiences like this with
different data sets are enough to turn anyone off.

I can see two possible remedies. The first is to know, not just guess, whether param-

24A notable exception is the double measurement design of Section 0.10.3 in Chapter 0; also see
the calculations leading to (1.23) on page 177. There, the measurement error terms for each set of
measurements are allowed to be correlated, though they are not allowed to be correlated between sets.
The virtue of this is that it’s quite natural for the measurements in one set to be contaminated by common
influences. Minimizing such contamination between sets is something that can be accomplished by good
study design.
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eters are identifiable. I hope this book helps. The second remedy is better data – that
is, data from a study that was designed with a particular structural equation model in
mind. Identifiability issues are taken care of at the planning stage. Potential confounding
variables are included in the data set, with adequate measurements. Correlations between
measurement errors are minimized by carrying out some of the measurements in varying
ways. For example, ask farmers how may cows they have, but also count them from aerial
photographs.

This is an ideal state of affairs. Mostly, structural equation models are applied to data
that were collected with other considerations in mind. In such cases, we do the best we
can.

1.8 The rest of the book

In structural equation modeling, it is imperative to check parameter identifiability before
proceeding to model fitting. The most direct way to check is to solve the covariance
structure equations for the unknown parameters, but that can be a big job. Fortunately,
there is a set of rules that often allow one to verify identifiability simply by examining the
path diagram, without explicitly solving any equations. The next task is to derive these
rules.

We will follow the logic of proving identifiability in two steps, as in the Brand Aware-
ness example of Section 1.6. In the general two-stage model of Section 1.2, the parameters
of the measurement model (Φ and Λ) are first recovered from Σ, the variance-covariance
matrix of a vector of an observable data vector. Then, the parameters of the latent vari-
able model (Φ,Γ,β and Ψ) are recovered from Φ. Since Φ has already been shown to
be a function of Σ, this shows that all the parameters are a function of Σ, and hence are
identifiable.

Chapters 2 and 3 treat the measurement model. This is also a major topic in its own
right, and goes by the name factor analysis. Chapter 4 is entitled path analysis. It treats
models in which a set of endogenous variables may be influenced by a set of exogenous
variables, and the endogenous variables may in turn influence other endogenous variables.
This is an accurate description of the latent variable model, and the principles developed
in Chapter 4 apply directly to the latent variable model. In Chapter 4, however, as in
traditional path analysis, the models are described as if all the variables were observable.
This makes the exposition easier, and in spite of the dangers of ignoring measurement
error (see Chapter 0), surface path models can occasionally be useful.

Though there is other discussion and a number of examples, the main task of chap-
ters 3 and 4 is develop a set of simple rules for parameter identifiability. These rules
are assembled and stated verbally at the beginning of Chapter 6. Illustrations are given.
Chapter 6 goes on to document a set of additional methods for dealing with identifiability
issues when the standard rules do not apply. The burden of computation is considerably
eased by the use of computer algebra.

When I apply structural equation models, I tend to decide whether a model fits by
simply applying the likelihood ratio test for goodness of fit. This is not a particularly
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popular choice, and Chapter 7 presents a wider range of options. The reader will not be
surprised to learn that in the end, I conclude that I am right.

At this point, the reader has the classical structural equation modeling toolkit, perhaps
with a deeper understanding of identifiability than usual. The remainder of the book will
cover topics including the following. This will be more complete once I have finished
writing it.

• True experimental studies (MIMIC)

• Groebner basis

• Categorical data

• Multiple groups

•
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