
Appendix A

Review and Background Material

A.1 Expected Value, Variance and Covariance (Re-

view)

Expected Value Let X be a random variable. If X is continuous, the expected value
is defined as

E(X) =

∫ ∞
−∞

x f
X

(x) dx.

If X is discrete, the formula is

E(X) =
∑
x

x p
X

(x).

Conditional expectation uses these same formulas, only with conditional densities or prob-
ability mass functions.

Let Y = g(X). The change of variables formula (a very big Theorem1) tells us

E(Y ) =

∫ ∞
−∞

y f
Y

(y) dy =

∫ ∞
−∞

g(x) f
X

(x) dx (A.1)

or, for discrete random variables

E(Y ) =
∑
y

y p
Y

(y) =
∑
x

g(x) p
X

(x).

One useful function g(x) is the indicator function for a set A. IA(x) = 1 if x ∈ A,
and IA(x) = 0 if x /∈ A. The expected value of an indicator function is just a probability

1The change of variables formula holds under very general circumstances; see for example Theorem
16.12 in Billingsley’s Probability and measure [8]. It is extremely convenient and easy to apply, because
there is no need to derive the probability distribution of Y . So for example the sets of values where
fX(x) 6= 0 and fY (y) 6= 0 (and therefore the regions over which you are integrating in expression (A.1))
may be different and you don’t have to think about it. Furthermore, the function g(x) is almost arbitrary.
In particular, it need not be differentiable, a condition you would need if you tried to prove anything for
the continuous case with ordinary calculus.
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because, for discrete random variables,

E(IA(X)) =
∑
x

IA(x) p
X

(x) =
∑
x∈A

p
X

(x) = P (X ∈ A).

For continuous random variables, something similar happens; multiplication by IA(x)
erases the density for x /∈ A, and integration of the product from zero to infinity is just
integration over the set A, yielding P (X ∈ A).

Another useful function is a conditional expectation. If we write the conditional den-
sity

f
Y |X (y|X) =

f
X,Y

(X, y)

f
X

(X)

with the capital letter X, we really mean it. X is a random variable, not a constant, and
for any fixed y, the conditional density is a random variable. The conditional expected
value is another random variable g(x):

E(Y |X) =

∫ ∞
−∞

y f
Y |X (y|X) dy.

This may be a strange-looking function, but still it is a function, and one can take its
expected value using the change of variables formula A.1.

E(E(Y |X)) =

∫ ∞
−∞

g(x) f
X

(x) dx =

∫ ∞
−∞

E(Y |x) f
X

(x) dx.

Provided |E(Y )| < ∞, order of integration or summation may be exchanged2, and we
have the double expectation formula:

E(Y ) = E(E(Y |X)).

You will prove a slightly more general and useful version as an exercise.
The change of variables formula (A.1) still holds if x is a vector, or even if both x

and y are vectors, and integration or summation is replaced by multiple integration or
summation. So, for example if x = (X1, X2)> has joint density fx(x) = f

X1,X2
(x1, x2) and

g(x1, x2) = a1x1 + a2x2,

E(a1X1 + a2X2) =

∫ ∞
−∞

∫ ∞
−∞

(a1x1 + a2x2)f
X1,X2

(x1, x2) dx1dx2

= a1

∫ ∞
−∞

∫ ∞
−∞

x1fX1,X2
(x1, x2) dx1dx2 + a2

∫ ∞
−∞

∫ ∞
−∞

x2fX1,X2
(x1, x2) dx1dx2

= a1E(X1) + a2E(X2).

Using this approach, it is easy to establish the linearity of expected value

E

(
m∑
j=1

ajXj

)
=

m∑
j=1

ajE(Xj) (A.2)

2By Fubini’s Theorem. Again, Billingsley’s Probability and measure [8] is a good source.
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and other familiar properties.
The change of variables formula holds if the function of the random vector is just one

of the variables. So, for example, since g(x1, x2, . . . xp) = x3 is one possible function of
x1, x2, . . . xp, ∫

· · ·
∫
x3 f(x) dx =

∫
· · ·
∫
x3 f(x1, . . . xp) dx1 · · · dxp

= E(X3).

Variance and Covariance Denote E(X) by µ
X

. The variance of X is defined as

V ar(X) = E[(X − µ
X

)2],

and the covariance of X and Y is defined as

Cov(X, Y ) = E[(X − µ
X

)(Y − µ
Y

)].

It is sometimes useful to say that V ar(X) = Cov(X,X).
The correlation between X and Y is

Corr(X, Y ) =
Cov(X, Y )√
V ar(X)V ar(Y )

. (A.3)

Linear combinations Let X1, . . . , Xn1 and Y1, . . . , Yn2 be random variables, and define
the linear combinations L1 and L2 by

L1 = a1X1 + · · ·+ an1Xn1 =

n1∑
i=1

aiXi, and

L2 = b1Y1 + · · ·+ bn2Yn2 =

n2∑
i=1

biYi,

where the aj and bj are constants. Then

cov(L1, L2) =

n1∑
i=1

n2∑
j=1

aibjCov(Xi, Yj). (A.4)

The proof of this useful result is left as an exercise. It says, for example, that

Cov(X1, β1X1 + β2X2 + ε) = β1Cov(X1, X1) + β2Cov(X1, X2) + Cov(X1, ε)

= β1V ar(X1) + β2Cov(X1, X2) + 0,

assuming explanatory variables to be uncorrelated with error terms.
As the example suggests, usually the linear combinations are regression equations or

regression-like equations. In words, (A.4) says that you just calculate the covariance of
each term in L1 with each term in L2, and add. If the random variables are multiplied
by coefficients, multiply each covariance by a product of coefficients.
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Exercises A.1

A.1.1) Let P{X = x} = x
10

for x = 1, 2, 3, 4.

(a) Find E(X). Show your work. My answer is 3.

(b) Find E(X2). Show your work. My answer is 10.

(c) Find V ar(X). Show your work. My answer is 1.

2. The random variable x is uniformly distributed on the integers {−3,−2,−1, 0, 1, 2, 3},
meaning P (x = −1) = P (x = −2) = · · · = P (x = 3) = 1

7
. Let y = x2.

(a) What is E(x)? The answer is a number. Show your work.

(b) Calculate the variance of x. The answer is a number. Show your work.

(c) What is P (y = −1)?

(d) What is P (y = 9)?

(e) What is the probability distribution of y? Give the y values with their proba-
bilities.

(f) What is E(y)? The answer is a number. Did you already do this question?

3. The discrete random variables x and y have joint distribution

x = 1 x = 2 x = 3
y = 1 2/12 3/12 1/12
y = 2 2/12 1/12 3/12

(a) What is the marginal distribution of x? List the values with their probabilities.

(b) What is the marginal distribution of y? List the values with their probabilities.

(c) Are x and y independent? Answer Yes or No and show some work.

(d) Calculate E(x). Show your work.

(e) Denote a “centered” version of x by xc = x− E(x) = x− µx .
i. What is the probability distribution of xc? Give the values with their

probabilities.

ii. What is E(xc)? Show your work.

iii. What is the probability distribution of x2
c? Give the values with their

probabilities.

iv. What is E(x2
c)? Show your work.

(f) What is V ar(x)? If you have been paying attention, you don’t have to show
any work.

(g) Calculate E(y). Show your work.

(h) Calculate V ar(y). Show your work. You may use Question ?? if you wish.
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(i) Calculate Cov(x, y). Show your work. You may use Question ?? if you wish.

(j) Let Z1 = g1(x, y) = x + y. What is the probability distribution of Z1? Show
some work.

(k) Calculate E(Z1). Show your work.

(l) Do we have E(x+ y) = E(x) +E(y)? Answer yes or No. Note that the answer
does not require independence.

(m) Let Z2 = g2(x, y) = xy. What is the probability distribution of Z2? List the
values with their probabilities. Show some work.

(n) Calculate E(Z2). Show your work.

(o) Do we have E(xy) = E(x)E(y)? Answer yes or No. The connection to inde-
pendence is established in Question ??.

4. Here is another joint distribution. The point of this question is that you can have
zero covariance without independence.

x = 1 x = 2 x = 3
y = 1 3/12 1/12 3/12
y = 2 1/12 3/12 1/12

(a) Calculate Cov(x, y). Show your work. You may use Question ?? if you wish.

(b) Are x and y independent? Answer Yes or No and show some work.

A.1.5) Let X ∼ U(0, θ), meaning for f(x) = 1
θ

for 0 < x < θ, and zero otherwise.

(a) Find E(X). Show your work. My answer is θ
2
.

(b) Find E(X2). Show your work. My answer is θ2

3
.

(c) Find V ar(X). Show your work. My answer is θ2

12
.

A.1.6) Let a be a constant and let X be a random variable, either continuous or discrete
(you choose). Use the change of variables formula (A.1) to show that E(a) = a.

A.1.7) Use the change of variables formula to prove the linear property given in expres-
sion (A.2). If you assume independence, you get a zero.

A.1.8) Let X and Y be discrete random variables, with E(|h(X)|) < ∞. Use the change
of variables formula to prove E(h(X)) = E[E(h(X)|Y )]. Because E(|h(X)|) < ∞,
Fubini’s Theorem says that you are free to exchange order of summation. Is the
result of this problem also true for continuous random variables? Why or why not?

A.1.9) Let X and Y be continuous random variables. Prove

P (X ∈ A) =

∫ ∞
−∞

P (X ∈ A|Y = y) f
Y

(y) dy.

This is sometimes called the Law of Total Probability. Is it also true for discrete
random variables? Why or why not? Hint: use indicator functions.
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A.1.10) Let X and Y be continuous random variables. Prove that if X and Y are indepen-
dent, E(XY ) = E(X)E(Y ). Draw an arrow to the place in your answer where you
use independence, and write “This is where I use independence.”

A.1.11) Let X and Y be discrete random variables. Prove that if X and Y are independent,
E(XY ) = E(X)E(Y ). Draw an arrow to the place in your answer where you use
independence, and write “This is where I use independence.”

A.1.12) Let P (X = 0) = 1
2

and P (X = −1) = P (X = 1) = 1
2
, and let Y = X2.

(a) Find Cov(X, Y ).

(b) Are X and Y independent? Answer Yes or No and prove your answer.

(c) Does zero covariance necessarily imply independence? Answer Yes or No.

Below the line, please use only expected value signs, not integrals or summation.

A.1.13) Show that Cov[X, Y ] = E[XY ]− µ
X
µ
Y

.

A.1.14) Show that if the random variables X and Y are independent, Cov(X, Y ) = 0.

A.1.15) Show that V ar(X) = E[X2]− µ2
X

.

A.1.16) In the following, X and Y are random variables, while a and b are fixed constants.
For each pair of statements below, one is true and one is false (that is, not true
in general). State which one is true, and prove it. Zero marks if you prove both
statements are true, even if one of the proofs is correct.

(a) V ar(aX) = aV ar(X), or V ar(aX) = a2V ar(X).

(b) V ar(aX + b) = a2V ar(X) + b2, or V ar(aX + b) = a2V ar(X).

(c) V ar(a) = 0, or V ar(a) = a2.

(d) Cov(aX, bY ) = abCov(X, Y ), or Cov(aX, bY ) = a2V ar(X) + b2V ar(Y ) +
2abCov(X, Y ).

(e) Cov(X + a, Y + b) = Cov(X, Y ) + ab, or Cov(X + a, Y + b) = Cov(X, Y ).

(f) V ar(aX + bY ) = a2V ar(X) + b2V ar(Y ), or V ar(aX + bY ) = a2V ar(X) +
b2V ar(Y ) + 2abCov(X, Y ).

A.1.17) Let X and Y be random variables with Cov(X, Y ) = σxy, while a and b are fixed
constants.

(a) Find Cov(X + a, Y + b)

(b) Find Cov(aX, bY ).

A.1.18) Let Y1, . . . , Yn be numbers, and Y = 1
n

∑n
i=1 Yi. Show
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(a)
∑n

i=1(Yi − Y ) = 0

(b)
∑n

i=1(Yi − Y )2 =
∑n

i=1 Y
2
i − nY

2

(c) The sum of squares Qm =
∑n

i=1(Yi −m)2 is minimized when m = Y .

A.1.19) Let X1, . . . , Xn be random variables, let a1, . . . , an be constants, and let Y =∑n
i=1 aiXi. Derive a general formula for V ar(Y ). Show your work. Now give

the useful special case that applies when X1, . . . , Xn are independent.

A.1.20) Let X1, . . . , Xn be independent and identically distributed random variables (the
standard model of a random sample with replacement). Denoting E(Xi) by µ and
V ar(Xi) by σ2,

(a) Show E(X) = µ; that is, the sample mean is unbiased for µ.

(b) Find V ar(X).

(c) Letting S2 = 1
n−1

∑n
i=1(Xi − X)2 = σ2, show that E(S2) = σ2. That is, the

sample variance is an unbiased estimator of the population variance. Consider
adding and subtracting µ.

A.1.21) Let Y1, . . . , Yn be independent random variables with E(Yi) = µ and V ar(Yi) = σ2

for i = 1, . . . , n. For this question, please use definitions and familiar properties of
expected value, not integrals.

(a) Find E(
∑n

i=1 Yi).

(b) Find V ar (
∑n

i=1 Yi). Show your work. Draw an arrow to the place in your
answer where you use independence, and write “This is where I use indepen-
dence.”

(c) Using your answer to the last question, find V ar(Y ).

(d) A statistic T is an unbiased estimator of a parameter θ if E(T ) = θ. Show that
Y is an unbiased estimator of µ. This is very quick.

(e) Let a1, . . . , an be constants and define the linear combination L by L =
∑n

i=1 aiYi.
What condition on the ai values makes L an unbiased estimator of µ?

(f) Is Y a special case of L? If so, what are the ai values?

(g) What is V ar(L)?

22. In this regression model, the explanatory variables are random. Independently for
i = 1, . . . , n, let Yi = β0 + β1Xi,1 + β2Xi,2 + εi, where E(Xi,1) = µ1, E(Xi,2) = µ2,
E(εi) = 0, V ar(εi) = σ2, εi is independent of both Xi,1 and Xi,2, and

cov

(
Xi,1

Xi,2

)
=

(
φ11 φ12

φ12 φ22

)
(a) What is V ar(Yi)? You may be able to just write down the answer.
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(b) What is Cov(Xi,1, Yi)? Show your work.

(c) What is Cov(Xi,2, Yi)?

23. Prove Equation A.4.

A.2 Matrix Calculations

Basic definitions

A matrix is a rectangular array of numbers. They are usually denoted by boldface letters
like A, while scalars (1×1 matrices) are lower case in italics, like a, b, c. Matrices are also
written by giving their (i, j) element in brackets, like A = [ai,j].

Let A = [ai,j] and B = [bi,j] be n × p matrices of constants, C = [ci,j] be p × q, and
let u and v be scalars (1×1 matrices). Define

Matrix addition: A + B = [ai,j + bi,j]. The matrices must have the same number of
rows and the same number of columns for addition (or subtraction) to be defined.

Matrix multiplication: AC = [
∑p

k=1 ai,kck,j]. Each element of AC is the inner
product of a row of A and a column of C. Thus, the number of columns in A must
equal the number of rows in C. Even if q = n so that multiplication in both orders
is well defined, in general AC 6= CA.

Scalar multiplication: uA = [u · ai,j]

Transposition: A> = [aj,i]

Symmetric matrix : A square matrix D is said to be symmetric if D = D>.

Identity matrix : I is a square matrix with ones on the main diagonal and zeros
elsewhere. IC = C and AI = A.

Diagonal matrix : A square matrix D = [di,j] is said to be diagonal if di,j = 0 for
i 6= j.

Triangular matrix : A square matrix D = [di,j] is said to be triangular if di,j = 0 for
i < j or i > j (or both, in which case it is also diagonal).

Distributive laws for matrix and scalar multiplication are easy to establish and are left as
exercises.

Transpose of a product

The transpose of a product is the product of transposes, in the reverse order: (AC)> =
C>A>.



536 APPENDIX A. REVIEW AND BACKGROUND MATERIAL

Linear independence

The idea behind linear independence of a collection of vectors (say, the columns of a
matrix) is that none of them can be written as a linear combination of the others. Formally,
let X be an n×p matrix of constants. The columns of X are said to be linearly dependent
if there exists a p× 1 matrix v 6= 0 with Xv = 0. We will say that the columns of X are
linearly independent if Xv = 0 implies v = 0.

Row and column rank

The row rank of a matrix is the number of linearly independent rows. The column rank is
the number of linearly independent columns. The rank of a matrix is the minimum of the
row rank and the column rank. Thus, the rank of a matrix cannot exceed the minimum
of the number of rows and the number of columns.

Matrix Inverse

Let A and B be square matrices of the same size. B is said to be the inverse of A and
may be written B = A−1. The definition is AB = BA = I. Thus, there are always two
equalities to establish when you are showing that one matrix is the inverse of another.
Matrix inverses have the following properties, which may be proved as exercises.

• If a matrix inverse exists, it is unique.

• A−1> = A>−1

• If the scalar u 6= 0, (uA)−1 = 1
u
A−1.

• Suppose that the square matrices A and B both have inverses. Then (AB)−1 =
B−1A−1.

• If A is a p× p matrix, A−1 exists if and only if the rank of A equals p.

Sometimes the following formula for the inverse of a 2× 2 matrix is useful:(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
(A.5)

In some cases the inverse of the matrix is its transpose. When A> = A−1, the matrix
A is said to be orthogonal, because the column (row) vectors are all at right angles (zero
inner product). In addition, they all have length one, because the inner product of each
column (row) with itself equals one.
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Positive definite matrices

The n× n matrix A is said to be positive definite if

v>Av > 0 (A.6)

for all n× 1 vectors v 6= 0. It is called non-negative definite (or sometimes positive semi-
definite) if v>Av ≥ 0. Positive definiteness is a critical property of variance-covariance
matrices, because it says that the variance of any linear combination is greater than zero.
See (A.15) on page 549.

Determinants

Let A = [ai,j] be an n× n matrix, so that the following applies to square matrices. The
determinant of A, denoted |A|, is defined as a sum of signed elementary products. An
elementary product is a product of elements of A such that there is exactly one element
from every row and every column. The “signed” part is determined as follows.

Let Sn denote the set of all permutations of the set {1, . . . , n}, and denote such a
permutation by σ = (σ1, . . . , σn). Each permutation may be obtained from (1, . . . , n) by
a finite number of switches of numbers. If the number of switches required is even (this
includes zero), let sgn(σ) = +1; if it is odd, let sgn(σ) = −1. Then,

|A| =
∑
σ∈Sn

sgn(σ)
n∏
i=1

ai,σi . (A.7)

Some properties of determinants are:

• |AB| = |A| |B|

• |A>| = |A|

• |A−1| = 1/|A|, and if |A| = 0, A−1 does not exist.

• If A = [ai,j] is triangular, |A| =
∏n

i=1 ai,i. That is, for triangular (including diago-
nal) matrices, the determinant is the product of the elements on the main diagonal.

• Adding a multiple of one row to another row of a matrix, or adding a multiple of a
column to another column leaves the determinant unchanged.

• Exchanging any two rows or any two columns of a matrix multiplies the determinant
by −1.

• Multiplying a single row or column by a constant multiplies the determinant by that
constant, so that |vA| = vn|A|
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Eigenvalues and eigenvectors

Let A = [ai,j] be an n× n matrix, so that the following applies to square matrices. A is
said to have an eigenvalue λ and (non-zero) eigenvector x corresponding to λ if

Ax = λx. (A.8)

Note that λ is a scalar and x 6= 0 is an n×1 matrix, typically chosen so that it has length
one. It is also possible and desirable to choose the eigenvectors so they are mutually
perpendicular (the inner product of any two equals zero).

To solve the eigenvalue equation, write

Ax = λx⇒ Ax− λx = Ax− λIx = (A− λI)x = 0.

If (A − λI)−1 existed, it would be possible to solve for x by multiplying both sides on
the left by (A− λI)−1, yielding x = 0. But the definition specifies x 6= 0, so the inverse
cannot exist for the definition of an eigenvalue to be satisfied. Since (A − λI)−1 fails to
exist precisely when the determinant |A− λI| = 0, the eigenvalues are the λ values that
solve the determinantal equation

|A− λI| = 0.

The left-hand side is a polynomial in λ, called the characteristic polynomial. If the matrix
A is real-valued and also symmetric, then all its eigenvalues are guaranteed to be real-
valued — a handy characteristic not generally true of solutions to polynomial equations.
The eigenvectors can also be chosen to be real, and for our purposes they always will be.

One of the many useful properties of eigenvalues is that the determinant is the
product of the eigenvalues:

|A| =
n∏
i=1

λi

Spectral decomposition of symmetric matrices

The Spectral decomposition theorem3 says that every square and symmetric matrix A =
[ai,j] may be written

A = CDC>, (A.9)

where the columns of C (which may also be denoted x1, . . . ,x1) are the eigenvectors of A,
and the diagonal matrix D contains the corresponding eigenvalues, which are guaranteed
to be real numbers, sorted from largest to smallest.

D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


3The version we will use is the original, due to the Baron Augustin-Louis Cauchy (1789-1857). This

is the guy after whom the Cauchy distribution is named. He is also responsible for the rigorous use of
epsilons and deltas in calculus, and for lots of other good things.
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Because the eigenvectors are orthonormal, C is an orthogonal matrix; that is, CC> =
C>C = I.

The following shows how to get a spectral decomposition from R.

> help(eigen)

> A = rbind(c(-10,2),

+ c(2,5)) # Symmetric

> eigenA = eigen(A); eigenA

$values

[1] 5.262087 -10.262087

$vectors

[,1] [,2]

[1,] 0.1299328 0.9915228

[2,] 0.9915228 -0.1299328

> det(A)

[1] -54

> prod(eigenA$values)

[1] -54

> Lambda = diag(eigenA$values); Lambda

[,1] [,2]

[1,] 5.262087 0.00000

[2,] 0.000000 -10.26209

> P = eigenA$vectors; P

[,1] [,2]

[1,] 0.1299328 0.9915228

[2,] 0.9915228 -0.1299328

> P %*% Lambda %*% t(P) # Matrix multiplication

[,1] [,2]

[1,] -10 2

[2,] 2 5

Another way to express the spectral decomposition is

A =
n∑
i=1

λixix
>
i , (A.10)

where again, x1, . . . ,xn are the eigenvectors of A, and λ1, . . . , λn are the corresponding
eigenvalues. It’s a weighted sum of outer (not inner) products of the eigenvectors; the
weights are the eigenvalues.

Continuing the R example, here is x1x
>
1 . Notice how the diagonal elements add to

one, as they must.
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> eigenA$vectors[,1] %*% t(eigenA$vectors[,1])

[,1] [,2]

[1,] 0.01688253 0.1288313

[2,] 0.12883133 0.9831175

Reproducing (A.10) for completeness,

> prod1 = eigenA$vectors[,1] %*% t(eigenA$vectors[,1])

> prod2 = eigenA$vectors[,2] %*% t(eigenA$vectors[,2])

> eigenA$values[1]

[1] 5.262087

> eigenA$values[1]*prod1 + eigenA$values[2]*prod2

[,1] [,2]

[1,] -10 2

[2,] 2 5

> A

[,1] [,2]

[1,] -10 2

[2,] 2 5

Real symmetric matrices

For a symmetric n×n matrix A, the eigenvalues are all real numbers, and the eigenvectors
can be chosen to be real, perpendicular (inner product zero), and of length one. If a real
symmetric matrix is also non-negative definite, as a variance-covariance matrix must be,
the following conditions are equivalent:

• Rows linearly independent

• Columns linearly independent

• Rank = n

• Positive definite

• Non-singular (A−1 exists)

• Determinant is non-zero

• All eigenvalues are strictly positive

Most of the equivalence is shown using the spectral decomposition theorem.
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Trace of a square matrix

The trace of a square matrix A = [ai,j] is the sum of its diagonal elements. Write

tr(A) =
n∑
i=1

ai,i.

Properties like tr(A+B) = tr(A)+tr(B) follow immediately from the definition. Perhaps
less obvious is the following. Let A be an r×p matrix and B be a p×r matrix, so that the
product matrices AB and BA are both defined. These two matrices are not necessarily
equal; in fact, they need not even be the same size. But still,

tr(AB) = tr(BA). (A.11)

To see this, write

tr(AB) = tr

((
p∑

k=1

ai,kbk,j

))

=
r∑
i=1

p∑
k=1

ai,kbk,i

=

p∑
k=1

r∑
i=1

bk,iai,k

=

p∑
i=1

r∑
k=1

bi,kak,i (Switching i and k)

= tr

((
r∑

k=1

bi,kak,j

))
= tr(BA)

Notice how the indices of summation i and k have been changed. This is legitimate,
because for example

∑r
i=1 ci and

∑r
k=1 ck both mean c1 + · · ·+ cr.

Also, from the spectral decomposition (A.10), the trace is the sum of the eigenvalues:

tr(A) =
n∑
i=1

λi.

This follows easily using (A.11), but actually it applies to any square matrix; the matrix
need not be symmetric.

Similar matrices

The square matrix B is said to be similar to A if there is an invertible matrix P with
B = P−1AP. If B is similar to A, then of course A is similar to B. By the spectral
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decomposition theorem, any square symmetric matrix is similar to a diagonal matrix. In
other words, it is “diagonalizable.”

Similar matrices share important characteristics. If two matrices are similar,

• They have the same eigenvalues.

• Their eigenvectors are in general not the same.

• They have the same determinant.

• One matrix has an inverse if and only if the other one does.

• They have the same rank.

• They have the same trace.

• They have the same number of linearly independent eigenvectors associated with
each distinct eigenvalue.

• They have the same characteristic polynomial.

The vech notation

Sometimes, it is helpful to represent the non-redundant elements of a symmetric matrix
in the form of a column vector. Let A = [ai,j] be an n×n symmetric matrix. A has n(n+1)

2

non-redundant elements: say the main diagonal plus the upper triangular half. Then

vech(A) =



a1,1
...
a1,n

a2,2
...
a2,n

...
an,n


.

The vech operation is distributive: vech(A+B) = vech(A) + vech(B).

Exercises A.2

A.2.1) Which statement is true?

(a) A(B + C) = AB + AC

(b) A(B + C) = BA + CA

(c) Both a and b
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(d) Neither a nor b

A.2.2) Which statement is true?

(a) a(B + C) = aB + aC

(b) a(B + C) = Ba+ Ca

(c) Both a and b

(d) Neither a nor b

A.2.3) Which statement is true?

(a) (B + C)A = AB + AC

(b) (B + C)A = BA + CA

(c) Both a and b

(d) Neither a nor b

A.2.4) Which statement is true?

(a) (AB)> = A>B>

(b) (AB)> = B>A>

(c) Both a and b

(d) Neither a nor b

A.2.5) Which statement is true?

(a) A>> = A

(b) A>>> = A>

(c) Both a and b

(d) Neither a nor b

A.2.6) Suppose that the square matrices A and B both have inverses. Which statement is
true?

(a) (AB)−1 = A−1B−1

(b) (AB)−1 = B−1A−1

(c) Both a and b

(d) Neither a nor b

A.2.7) Which statement is true?

(a) (A + B)> = A> + B>

(b) (A + B)> = B> + A>
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(c) (A + B)> = (B + A)>

(d) All of the above

(e) None of the above

A.2.8) Which statement is true?

(a) tr(A + B) = tr(A) + tr(B)

(b) tr(A + B) = tr(B) + tr(A)

(c) Both a and b

(d) Neither a nor b

A.2.9) Which statement is true?

(a) a tr(B) = tr(aB).

(b) tr(B)a = tr(aB)

(c) Both a and b

(d) Neither a nor b

A.2.10) Which statement is true?

(a) (a+ b)C = aC + bC

(b) (a+ b)C = Ca+ Cb

(c) (a+ b)C = C(a+ b)

(d) All of the above

(e) None of the above

A.2.11) Let A and B be 2× 2 matrices. Either

• Prove AB = BA, or

• Give a numerical example in which AB 6= BA

A.2.12) In the following, A and B are n×p matrices of constants, C is p× q, D is p×n and
a, b, c are scalars. For each statement below, either prove it is true, or prove that it is
not true in general by giving a counter-example. Small numerical counter-examples
are best. To give an idea of the kind of proof required for most of these, denote
element (i, j) of matrix A by [ai,j].

(a) A + B = B + A

(b) a(B + C) = aB + aC

(c) AC = CA

(d) (A + B)> = A> + B>
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(e) (AC)> = C>A>

(f) (A + B)C = AC + BC

(g) (AD)−1 = A−1D−1

A.2.13) Recall that A symmetric means A = A>. Let X be an n by p matrix. Prove that
X>X is symmetric.

A.2.14) The formal definition of a matrix inverse is that an inverse of the matrix A (denoted
A−1) is defined by two properties: A−1A = I and AA−1 = I. If you want to prove
that one matrix is the inverse of another using the definition, you’d have two things
to show. This homework problem establishes that you only need to do it in one
direction.

Let A and B be square matrices with AB = I. Show that A = B−1 and A = B−1.
To make it easy, use well-known properties of determinants.

A.2.15) Prove that inverses are unique, as follows. Let B and C both be inverses of A.
Show that B = C.

A.2.16) Let X be an n by p matrix with n 6= p. Why is it incorrect to say that (X>X)−1 =
X−1X>−1?

A.2.17) Suppose that the matrices A and B both have inverses. Prove that (AB)−1 =
B−1A−1.

A.2.18) Let A be a non-singular matrix. Prove (A−1)> = (A>)−1.

A.2.19) Using (A−1)> = (A>)−1, prove that the inverse of a symmetric matrix is also
symmetric.

A.2.20) Let A be a square matrix with the determinant of A (denoted |A|) equal to zero.
What does this tell you about A−1? No proof is necessary here.

A.2.21) Let a be an n× 1 matrix of real constants. How do you know a>a ≥ 0?

A.2.22) Let A be an n × p matrix of real constants. Is it true that A>A ≥ 0? Briefly
explain.

A.2.23) Let X be an n×p matrix of constants. Recall the definition of linear independence.
The columns of X are said to be linearly dependent if there exists v 6= 0 with
Xv = 0. We will say that the columns of X are linearly independent if Xv = 0
implies v = 0.

(a) Show that if the columns of X are linearly dependent, then the columns of
X>X are also linearly dependent.

(b) Show that if the columns of X are linearly dependent, then the rows of X>X
are linearly dependent.
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(c) Show that if the columns of X are linearly independent, then the columns of
X>X are also linearly independent. Use a>a ≥ 0 and the definition of linear
independence.

(d) Show that if (X>X)−1 exists, then the columns of X are linearly independent.

(e) Show that if the columns of X are linearly independent, then X>X is positive
definite. Does this imply the existence of (X>X)−1? Locate the rule in the
text, and answer Yes or No.

A.2.24) Let A be a square matrix. Show that

(a) If A−1 exists, the columns of A are linearly independent.

(b) If the columns of A are linearly dependent, A−1 cannot exist.

A.2.25) Let A be a symmetric matrix, and A−1 exists. Show that A−1 is also symmetric.

A.2.26) The trace of a square matrix is the sum of its diagonal elements; we write tr(A).
Let A be r × c and B be c× r. Show tr(AB) = tr(BA).

A.2.27) Recall that the square matrix A is said to have an eigenvalue λ and corresponding
eigenvector x 6= 0 if Ax = λx.

(a) Suppose that an eigenvalue of A equals zero. Show that the columns of A are
linearly dependent.

(b) Suppose that the columns of A are linearly dependent. Show that A−1 does
not exist.

(c) Suppose that the columns of A are linearly independent. Show that the eigen-
values of A are all non-zero.

(d) Suppose A−1 exists. Show that the eigenvalues of A−1 are the reciprocals of
the eigenvalues of A. What about the eigenvectors?

A.2.28) The (square) matrix Σ is said to be positive definite if a>Σa > 0 for all vectors
a 6= 0. Show that the diagonal elements of a positive definite matrix are positive
numbers. Hint: Choose the right vector a.

A.2.29) Show that the eigenvalues of a positive definite matrix are strictly positive.

A.2.30) Recall the spectral decomposition of a real symmetric matrix (For example, a variance-
covariance matrix). Any such matrix Σ can be written as Σ = CDC>, where C is
a matrix whose columns are the (orthonormal) eigenvectors of Σ, D is a diagonal
matrix of the corresponding (non-negative) eigenvalues, and C>C = CC> = I.

(a) Let Σ be a real symmetric matrix with eigenvalues that are all strictly positive.

i. What is D−1?

ii. Show Σ−1 = CD−1C>. So, the inverse exists.
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(b) Let the eigenvalues of Σ be non-negative.

i. What do you think D1/2 might be?

ii. Define Σ1/2 as CD1/2C>. Show Σ1/2 is symmetric.

iii. Show Σ1/2Σ1/2 = Σ.

iv. Show that if the columns of Σ are linearly independent, then the columns
of Σ1/2 are also linearly independent.

(c) Now return to the situation where the eigenvalues of the square symmetric
matrix Σ are all strictly positive. Define Σ−1/2 as CD−1/2C>, where the
elements of the diagonal matrix D−1/2 are the reciprocals of the corresponding
elements of D1/2.

i. Show that the inverse of Σ1/2 is Σ−1/2, justifying the notation.

ii. Show Σ−1/2Σ−1/2 = Σ−1.

A.2.31) In the following, let Σ be a real symmetric matrix, so that its eigenvalues are all
real.

(a) Suppose thatΣ has an inverse. Using the definition of linear independence,
show that the columns of Σ are linearly independent.

(b) Let the columns of Σ be linearly independent, and also let Σ be at least non-
negative definite (as, for example, a variance-covariance matrix must be). Show
that Σ is strictly positive definite.

A.2.32) Show that if the real symmetric matrix Σ is positive definite, then Σ−1 is also
positive definite.

A.2.33) Using the spectral decomposition (A.10) and tr(AB) = tr(BA), show that the trace
of a square symmetric matrix is the sum of its eigenvalues.

A.2.34) Recall that the square matrix B is said to be similar to A if there is an invertible
matrix P with B = P−1AP. Useing this definition, prove the following.

(a) Any square symmetric matrix is similar to a diagonal matrix.

(b) Similar matrices have the same eigenvalues, but their eigenvectors are not the
same in greneral.

(c) Similar matrices have the same determinant.

(d) If two matrices are similar, one has an inverse if and only if the other one does.

(e) Similar matrices have the same rank.

(f) Similar matrices have the same trace.
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A.3 Random Vectors and Matrices

A random matrix is just a matrix of random variables. Their joint probability distribution
is the distribution of the random matrix. Random matrices with just one column (say, p)
may be called random vectors.

Expected Value and Variance-Covariance

Expected Value

The expected value of a matrix is defined as the matrix of expected values. Denoting the
p× c random matrix X by [Xi,j],

E(X) = [E(Xi,j)].

Immediately we have natural properties like

E(X + Y) = E([Xi,j + Yi,j])

= [E(Xi,j + Yi,j)]

= [E(Xi,j) + E(Yi,j)]

= [E(Xi,j)] + [E(Yi,j)]

= E(X) + E(Y).

Let A = [ai,j] be an r × p matrix of constants, while X is still a p × c random matrix.
Then

E(AX) = E

((
p∑

k=1

ai,kXk,j

))

=

(
E

(
p∑

k=1

ai,kXk,j

))

=

(
p∑

k=1

ai,kE(Xk,j)

)
= AE(X).

Similar calculations yield E(XB) = E(X)B, where B is a matrix of constants. This
yields the useful formula

E(AXB) = AE(X)B. (A.12)

Variance-Covariance Matrices

Let X be a p × 1 random vector with E(X) = µ. The variance-covariance matrix of X
(sometimes just called the covariance matrix ), denoted by cov(X), is defined as

cov(X) = E
{

(X− µ)(X− µ)>
}
. (A.13)
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The covariance matrix cov(X) is a p × p matrix of constants. To see exactly what it is,
suppose p = 3. Then

cov(X) = E


 X1 − µ1

X2 − µ2

X3 − µ3

( X1 − µ1 X2 − µ2 X3 − µ3

)
= E


 (X1 − µ1)2 (X1 − µ1)(X2 − µ2) (X1 − µ1)(X3 − µ3)

(X2 − µ2)(X1 − µ1) (X2 − µ2)2 (X2 − µ2)(X3 − µ3)
(X3 − µ3)(X1 − µ1) (X3 − µ3)(X2 − µ2) (X3 − µ3)2


=

 E{(X1 − µ1)2} E{(X1 − µ1)(X2 − µ2)} E{(X1 − µ1)(X3 − µ3)}
E{(X2 − µ2)(X1 − µ1)} E{(X2 − µ2)2} E{(X2 − µ2)(X3 − µ3)}
E{(X3 − µ3)(X1 − µ1)} E{(X3 − µ3)(X2 − µ2)} E{(X3 − µ3)2}


=

 cov(X1) Cov(X1, X2) Cov(X1, X3)
Cov(X1, X2) cov(X2) Cov(X2, X3)
Cov(X1, X3) Cov(X2, X3) cov(X3)

 .

So, the covariance matrix cov(X) is a p× p symmetric matrix with variances on the main
diagonal and covariances on the off-diagonals.

The matrix of covariances between two random vectors may also be written in a
convenient way. Let X be a p × 1 random vector with E(X) = µx and let Y be a q × 1
random vector with E(Y) = µy. The p × q matrix of covariances between the elements
of X and the elements of Y is

cov(X,Y) = E
{

(X− µx)(Y − µy)>
}
. (A.14)

The following rule is analogous to V ar(aX) = a2 V ar(X) for scalars. Let X be a p × 1
random vector with E(X) = µ and cov(X) = Σ, while A = [ai,j] is an r × p matrix of
constants. Then

cov(AX) = E
{

(AX−Aµ)(AX−Aµ)>
}

= E
{

A(X− µ) (A(X− µ))>
}

= E
{
A(X− µ)(X− µ)>A>

}
= AE{(X− µ)(X− µ)>}A>

= Acov(X)A>

= AΣA> (A.15)
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Similarly,

cov(AX,BY) = E
{

(AX−Aµx)(BY −Bµy)
>}

= E
{

A(X− µ)
(
B(Y − µy)

)>}
= E

{
A(X− µ)(Y − µy)>B>

}
= AE{(X− µ)(Y − µy)>}B>

= Acov(X,Y)B>

= AΣxyB
> (A.16)

For scalars, V ar(X+ b) = V ar(X), and the same applies to vectors. Covariances are also
unaffected by adding a constant; this amounts to shifting the whole joint distribution by
a fixed amount, which has no effect on relationships among variables. So, the following
rule is “obvious.” Let X be a p × 1 random vector with E(X) = µ and let b be a p × 1
vector of constants. Then cov(X + b) = cov(X). To see this, note E(X + b) = µ+ b and
write

cov(X + b) = E
{

(X + b− (µ+ b))(X + b− (µ+ b))>
}

= E
{

(X− µ)(X− µ)>
}

= cov(X) (A.17)

A similar rule apples to cov(X + b,Y + c). A direct calculation is not even necessary,
though it is a valuable exercise. Think of stacking X and Y one on top of another, to
form a bigger random vector. Then,

cov

(
X
Y

)
=

(
cov(X) cov(X,Y)

cov(X,Y)> cov(Y)

)
.

This is an example of a partitioned matrix – a matrix of matrices. At any rate, it is
clear from (A.17) that adding a stack of constant vectors to the stack of random vectors
has no effect upon the (partitioned) covariance matrix, and in particular no effect upon
cov(X,Y).

Linear combinations In a direct analogy to (A.4) on page 530, let X1, . . . ,Xn1 and
Y1, . . . ,Yn2 be random vectors, and define the linear combinations L1 and L2 by

L1 = A1X1 + · · ·+ An1Xn1 =

n1∑
i=1

AiXi, and

L2 = B1Y1 + · · ·+ Bn2Yn2 =

n2∑
i=1

BiYi,

where the Aj and Bj are matrices of constants. It is assumed that the dimensions of
the matrices allow the operations to be carried out. For example, the Aj all must have
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the same number of rows, and the Bj must have the same number of rows. The result
analogous to (A.4) is

cov(L1,L2) =

n1∑
i=1

n2∑
j=1

Aicov(Xi,Yj)B
>
j . (A.18)

In words, (A.18) says that you just calculate the covariance matrix of each term in L1

with each term in L2 and add, treating the constant matrices as in (A.16).
To prove (A.18),

cov(L1,L2) = E{(L1 − E(L1)) (L2 − E(L2))>}

= E


(

n1∑
i=1

AiXi −
n1∑
i=1

AiE(Xi)

)(
n2∑
i=1

BiYi −
n2∑
i=1

BiE(Yi)

)>
= E


(

n1∑
i=1

Ai (Xi − E(Xi))

)(
n2∑
i=1

Bi (Yi − E(Yi))

)>
= E

{(
n1∑
i=1

Ai (Xi − E(Xi))

)(
n2∑
i=1

(Yi − E(Yi))
>B>i

)}

= E

{
n1∑
i=1

n2∑
i=1

Ai (Xi − E(Xi)) (Yi − E(Yi))
>B>i

}

=

n1∑
i=1

n2∑
i=1

AiE
{

(Xi − E(Xi)) (Yi − E(Yi))
>
}

B>i

=

n1∑
i=1

n2∑
j=1

Aicov(Xi,Yj)B
>
j �

Exercises A.3 This exercise set has an unusual feature. Some of the questions ask you
to prove things that are false. That is, they are not true in general. In such cases, just
write “The statement is false,” and give a brief explanation to make it clear that you are
not just guessing. The explanation is essential for full marks. A small counter-example is
always good enough.

A.3.1) Let X = [Xj] be a random matrix. Show E(X>) = E(X)>.

A.3.2) Let X and Y be random matrices of the same dimensions. Show E(X + Y) =
E(X) + E(Y). Recall the definition E(Z) = [E(Zi,j)].

A.3.3) Let X be a random matrix, and B be a matrix of constants. Show E(XB) = E(X)B.
Recall the definition AB = [

∑
k ai,kbk,j].

A.3.4) Let X be a p×1 random vector. Starting with Definition (A.13) on page 548, prove
cov(X) = 0..
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A.3.5) Let the p×1 random vector X have expected value µ and variance-covariance matrix
Σ, and let A be an m× p matrix of constants. Prove that the variance-covariance
matrix of AX is either

• AΣA>, or

• A2Σ.

Pick one and prove it. Start with the definition of a variance-covariance ma-
trix (A.13) on page 548.

A.3.6) If the p× 1 random vector X has mean µ and variance-covariance matrix Σ, show
Σ = E(XX>)− µµ>.

A.3.7) Starting with Definition (A.14) on page 549, show cov(X,Y) = cov(Y,X)..

A.3.8) Starting with Definition (A.14) on page 549, show cov(X,Y) = E(XY>)− µxµ>y .

A.3.9) Starting with Definition (A.14) on page 549, show cov(X,Y) = 0..

A.3.10) Let X be a p × 1 random vector with expected value µ and variance-covariance
matrix Σ, and let v be a p× 1 vector of constants.

(a) Let the scalar random variable Y = v>X. What is V ar(Y )? Use this to prove
tell you that any variance-covariance matrix must be positive semi-definite.
(See the definition on Page 537.)

(b) Using the definition of an eigenvalue (A.8) on Page 538, show that eigenvalues
of a variance-covariance matrix cannot be negative4.

(c) How do you know that the determinant of a variance-covariance matrix must
be greater than or equal to zero? The answer is one short sentence.

(d) Let X and Y be scalar random variables. Using what you have shown about the
determinant, show −1 ≤ Corr(X, Y ) ≤ 1. See the definition of a correlation
on Page 530 if necessary. You have just proved the Cauchy-Schwarz inequality
using probability tools.

A.3.11) Let the p×1 random vector X have mean µ and variance-covariance matrix Σ, and
let c be a p × 1 vector of constants. Find cov(X + c). Show your work, starting
with the definition (A.13). Don’t use the centering rule yet.

A.3.12) Let X be a p× 1 random vector with mean µx and variance-covariance matrix Σx,
and let Y be a q × 1 random vector with mean µy and variance-covariance matrix

Σy. Recall that cov(X,Y) is the p×q matrix cov(X,Y) = E
(
(X− µx)(Y − µy)>

)
.

Don’t use the centering rule yet.

(a) What is the (i, j) element of cov(X,Y)?

4This property of covariance matrices can sometimes be used to detect problems with the numerical
estimation of structural equation models.
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(b) Find an expression for cov(X + Y) in terms of Σx, Σy and cov(X,Y). Show
your work.

(c) Simplify further for the special case where Cov(Xi, Yj) = 0 for all i and j.

(d) Let c be a p× 1 vector of constants and d be a q× 1 vector of constants. Find
cov(X + c,Y + d). Show your work.

A.3.13) Prove (??). This is the basis of the centering rule, so you are not allowed to use the
centering rule.

A.3.14) Use the centering rule to show cov(AX + BY) = Acov(X)A> + Bcov(Y)B>..

A.3.15) Use the centering rule to find cov(AX + BY + c). What do you need to specify
about the dimensions of the matrices for this to be true?

A.3.16) Write down cov(AX + BY) for the case where X and Y are independent. There is
no need to show any work.

A.3.17) Use the centering rule to find cov(AX + c,BX + d). Must A and B have the same
number of rows?

A.3.18) Let X1, . . . , Xn be scalar random variables. Use the centering rule to show

V ar

(
n∑
i=1

Xi

)
=

n∑
i=1

V ar(Xi) +
∑
i6=j

Cov(Xi, Xj).

A.4 The Multivariate Normal Distribution

The p × 1 random vector X is said to have a multivariate normal distribution, and we
write X ∼ Np(µ,Σ), if X has (joint) density

f(x) =
1

|Σ| 12 (2π)
p
2

exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
, (A.19)

where µ is p× 1 and Σ is p× p symmetric and positive definite. Positive definite means
that for any non-zero p× 1 vector a, we have a>Σa > 0.

• Since the one-dimensional random variable Y =
∑p

i=1 aiXi may be written as Y =
a>X and V ar(Y ) = cov(a>X) = a>Σa, it is natural to require that Σ be positive
definite. All it means is that every non-zero linear combination of X values has a
positive variance.

• Σ positive definite is equivalent to Σ−1 positive definite.

The multivariate normal reduces to the univariate normal when p = 1. Other properties
of the multivariate normal include the following.
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1. E(X) = µ

2. cov(X) = Σ

3. If c is a vector of constants, X + c ∼ Np(c + µ,Σ)

4. If A is a q × p matrix of constants, AX ∼ Nq(Aµ,AΣA>).

5. Linear combinations of multivariate normals are multivariate normal.

6. All the marginals (dimension less than p) of X are (multivariate) normal, but it is
possible in theory to have a collection of univariate normals whose joint distribution
is not multivariate normal.

7. For the multivariate normal, zero covariance implies independence. The multivariate
normal is the only continuous distribution with this property.

8. The random variable (X − µ)>Σ−1(X − µ) has a chi-squared distribution with p
degrees of freedom.

9. After a bit of work, the multivariate normal likelihood may be written as

L(µ,Σ) = |Σ|−n/2(2π)−np/2 exp−n
2

{
tr(Σ̂Σ

−1
) + (x− µ)>Σ−1(x− µ)

}
, (A.20)

where Σ̂ = 1
n

∑n
i=1(xi − x)(xi − x)> is the sample variance-covariance matrix (it

would be unbiased if divided by n− 1).

Here’s how Expression (A.20) above for L(µ,Σ) is obtained.

L(µ,Σ) =
n∏
i=1

1

|Σ| 12 (2π)
p
2

exp

{
−1

2
(xi − µ)>Σ−1(xi − µ)

}

= |Σ|−n/2(2π)−np/2 exp

{
−1

2

n∑
i=1

(xi − µ)>Σ−1(xi − µ)

}



A.4. THE MULTIVARIATE NORMAL DISTRIBUTION 555

Adding and subtracting x in
∑n

i=1(xi − µ)>Σ−1(xi − µ), we get
n∑
i=1

(xi − µ)>Σ−1(xi − µ) =
n∑
i=1

(xi − x + x− µ)>Σ−1(xi − x + x− µ)

=
n∑
i=1

(ai + b)>Σ−1(ai + b)

=
n∑
i=1

(
a>i Σ−1ai + a>i Σ−1b + b>Σ−1ai + b>Σ−1b

)
=

(
n∑
i=1

a>i Σ−1ai

)
+ 0 + 0 + nb>Σ−1b

=
n∑
i=1

(xi − x)>Σ−1(xi − x) + n (x− µ)>Σ−1(x− µ)

Now, because
∑n

i=1(xi−x)>Σ−1(xi−x) is a 1× 1 matrix, it equals its own trace and we
can use tr(AB) = tr(BA).

n∑
i=1

(xi − x)>Σ−1(xi − x) = tr

{
n∑
i=1

(xi − x)>Σ−1(xi − x)

}

=
n∑
i=1

tr
{

(xi − x)>Σ−1(xi − x)
}

=
n∑
i=1

tr
{
Σ−1(xi − x)(xi − x)>

}
= tr

{
n∑
i=1

Σ−1(xi − x)(xi − x)>

}

= tr

{
Σ−1

n∑
i=1

(xi − x)(xi − x)>

}

= n tr

{
Σ−1 1

n

n∑
i=1

(xi − x)(xi − x)>

}
= n tr

(
Σ−1Σ̂

)
,

where Σ̂ = 1
n

∑n
i=1(xi−x)(xi−x)> is the sample variance-covariance matrix. Substituting

for
∑n

i=1(xi − µ)>Σ−1(xi − µ),

L(µ,Σ) = |Σ|−n/2(2π)−np/2 exp

{
−1

2

n∑
i=1

(xi − µ)>Σ−1(xi − µ)

}

= |Σ|−n/2(2π)−np/2 exp−n
2

{
tr(Σ̂Σ

−1
) + (x− µ)>Σ−1(x− µ)

}
.
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Notice how the multivariate normal likelihood depends on the sample data only through
the sufficient statistic (X, Σ̂).

Exercises A.4

A.4.1) Let X1 be Normal(µ1, σ
2
1), and X2 be Normal(µ2, σ

2
2), independent of X1. What is

the joint distribution of Y1 = X1 +X2 and Y2 = X1 −X2? What is required for Y1

and Y2 to be independent?

A.4.2) Let X = (X1, X2, X3)> be multivariate normal with

µ =

 1
0
6

 and Σ =

 1 0 0
0 2 0
0 0 1

 .

Let Y1 = X1 +X2 and Y2 = X2 +X3. Find the joint distribution of Y1 and Y2.

A.4.3) Let X1 be Normal(µ1, σ
2
1), and X2 be Normal(µ2, σ

2
2), independent of X1. What is

the joint distribution of Y1 = X1 +X2 and Y2 = X1 −X2? What is required for Y1

and Y2 to be independent? Hint: Use matrices.

A.4.4) Let Y = Xβ + ε, where X is an n×p matrix of known constants, β is a p×1 vector
of unknown constants, and ε is multivariate normal with mean zero and covariance
matrix σ2In, where σ2 > 0 is a constant. In the following, it may be helpful to recall
that (A−1)> = (A>)−1.

(a) What is the distribution of Y?

(b) The maximum likelihood estimate (MLE) of β is β̂ = (X>X)−1X>Y. What
is the distribution of β̂? Show the calculations.

(c) Let Ŷ = Xβ̂. What is the distribution of Ŷ? Show the calculations.

(d) Let the vector of residuals e = (Y − Ŷ). What is the distribution of e? Show
the calculations. Simplify both the expected value (which is zero) and the
covariance matrix.

A.4.5) Show that if X ∼ N(µ,Σ), Y = (X−µ)>Σ−1(X−µ) has a chi-square distribution
with p degrees of freedom.

A.4.6) Write down a scalar version of formula (A.20) for the multivariate normal likelihood,
showing that you understand the notation. Then derive your formula from the
univariate normal likelihood.

A.4.7) Prove the formula (A.20) for the multivariate normal likelihood. Show all the cal-
culations.

A.4.8) Prove that for any positive definite Σ, the likelihood (A.20) is maximized when
x = µ. How do you know this maximum must be unique? Cite the necessary
matrix facts from Section A.2 of this Appendix.
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A.5 A Bit of Large Sample Theory

For this part, it helps to start by going down to the basement and taking a look at the
foundations of the building. There is an underlying sample space Ω, consisting of sample
points ω ∈ Ω5. The specific nature of a point ω in applications depends on what is being
observed. For example, if we were observing whether a single individual is male or female,
Ω might be {F,M}. If we selected a pair of individuals and observed their genders in
order, Ω might be {(F, F ), (F,M), (M,F ), (M,M)}. If we selected n individuals and just
counted the number of females, Ω might be {0, . . . , n}. For limits problems, the points in
Ω are infinite sequences.

Let A be a class of subsets of Ω (that is, a set of events), and let P be a probability
function that assigns numbers between zero and one inclusive to the elements of A. A
random variable X = X(ω) is a function that maps Ω into some other space, typically
R or Rk. Think of taking a measurement: if Ω is a set of students, X(ω) might be the
cumulative grade point average of student ω.

Suppose the random variable X maps Ω into the set of real numbers R. Then X
induces a probability measure on a class6 B of subsets of R, by means of

Pr{X ∈ B} = P({ω ∈ Ω : X(ω) ∈ B})

for B ∈ B.
Suppose we have a sample of data X1(ω), . . . , Xn(ω), and we calculate a function of

the sample data T = T (X1, . . . , Xn). For example T could be a statistic like the sample
mean X. It is helpful to write T = Tn(ω), to indicate that T is a random variable (a
function from Ω into R) that depend upon the sample size n.

Frequently it is useful to let n→∞, because when the sequence T1, T2, . . . converges,
it is an indication of what happens when the sample is large enough. But this is not just a
sequence of numbers; it is a sequence of functions. Several different types of convergence
are meaningful.

A.5.1 Modes of Convergence

Throughout, let T1, T2, . . . be a sequence of random variables, and let T be another random
variable. It is quite possible and often useful for T = T (ω) to be a constant — that
is, a constant function of ω. In that case T is a “degenerate” random variable, with
P{T = c} = 1 for some constant c.

Almost Sure Convergence

We say that Tn converges almost surely to T , and write Tn
a.s.→ if

P{ω : lim
n→∞

Tn(ω) = T (ω)} = 1.

5Throughout most of this book, Ω is a covariance matrix. The symbol will briefly have its usual
meaning here, just for the discussion of almost sure convergence

6I’m thinking of the Borel σ-algebra, but there is no need to go that far.
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That is, except possibly for ω ∈ A with P(A) = 0, Tn(ω) converges to the random variable
T (ω) like an ordinary limit, and all the usual rules apply — for example, the limit of a
continuous function is the continuous function of the limit, L’Hôpital’s rule and so on.
Almost sure convergence is also called convergence with probability one, or sometimes
strong convergence.

Almost sure convergence may be the most technically “advanced” mode of conver-
gence, but it is also perhaps the easiest to work with, because you treat the sequence
T1, T2, . . . like numbers, find the limit, and then mention that the result applies “except
possibly on a set of probability zero.”

The main entry point to establishing almost sure convergence is the Strong Law of
Large Numbers, which involves almost sure convergence to a constant. Let X1, . . . Xn be
independent and identically distributed random variables with expected value µ. Denote
the sample mean as usual by Xn = 1

n

∑n
i=1Xi. The Strong Law of Large Numbers (SLLN)

says
Xn

a.s.→ µ. (A.21)

The only condition required for this to hold is the existence of the expected value.
Let X1, . . . Xn be independent and identically distributed random variables; let X be

a general random variable from this same distribution, and Y = g(X). The change of
variables formula (A.1) can be combined with the Strong Law of Large Numbers to write

1

n

n∑
i=1

g(Xi) =
1

n

n∑
i=1

Yi
a.s.→ E(Y ) = E(g(X)). (A.22)

This means that sample moments converge almost surely to population moments:

1

n

n∑
i=1

Xk
i
a.s.→ E(Xk)

It even yields rules like
1

n

n∑
i=1

U2
i ViW

3
i
a.s.→ E(U2VW 3).

Convergence in Probability

We say that Tn converges in probability to T , and write Tn
P→ T if for all ε > 0,

lim
n→∞

P{|Tn − T | < ε} = 1.

Convergence in probability is implied by almost sure convergence, so corresponding to the
Strong Law of Large Numbers is the Weak Law of Large Numbers (WLLN). Let X1, . . . Xn

be independent and identically distributed random variables with expected value µ. Then
the sample mean converges in probability to µ:

Xn
P→ µ. (A.23)
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A change of variables rule like expression (A.22) holds, and sample moments converge
in probability to population moments. These rules follow from the corresponding facts
about almost sure convergence.

Another way of establishing convergence in probability to a constant without using
the definition is the Variance Rule. Let θ be a constant. Then if limn→∞E(Tn) = θ and

limn→∞ V ar(Tn) = 0, it follows that Tn
P→ θ. But convergence in probability does not

imply the conditions of the Variance Rule.

Convergence in Distribution

Denote the cumulative distribution functions of T1, T2, . . . by F1(t), F2(t), . . . respectively,
and denote the cumulative distribution function of T by F (t). We say that Tn converges

in distribution to T , and write Tn
d→ T if for every point t at which F is continuous,

lim
n→∞

Fn(t) = F (t).

The main entry point to convergence in distribution is the Central Limit Theorem.
Let X1, . . . Xn be independent and identically distributed random variables with mean µ
and variance σ2. Then

Zn =

√
n(Xn − µ)

σ

d→ Z ∼ N(0, 1).

In applications, the sample standard deviation may be substituted for σ, and the result
still holds.

A useful tool is provided by the univariate delta method7. Let
√
n(Xn − θ)

d→ X, and
let g(x) be a function with g′(θ) 6= 0 and g′′(x) continuous at x = θ. Then

√
n(g(Xn)− g(θ))

d→ g′(θ)X.

In particular,
√
n(g(Xn)− g(µ))

d→ Y ∼ N(0, g′(µ)2σ2).

Connections among the Modes of Convergence

• Tn
a.s.→ T ⇒ Tn

P→ T ⇒ Tn
d→ T .

• If a is a constant, Tn
d→ a⇒ Tn

P→ a.

Sometimes we say the distribution of the sample mean is approximately normal, or asymp-
totically normal. This is justified by the Central Limit Theorem, but it does not mean
that Xn converges in distribution to a normal random variable. The Law of Large Num-
bers says that Xn converges almost surely (and in probability) to a constant, µ. This

7The delta method is named after the way it is proved; it uses Taylor’s theorem, and the “delta” part
is connected to the definition of a derivative. We will just use it.
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means Xn converges to µ in distribution as well. So why would we say that for large n,
the sample mean is approximately N(µ, σ

2

n
)?

What we have is Zn =
√
n(Xn−µ)

σ

d→ Z ∼ N(0, 1). So,

Pr{Xn ≤ x} = Pr

{√
n(Xn − µ)

σ
≤
√
n(x− µ)

σ

}
= Pr

{
Zn ≤

√
n(x− µ)

σ

}
≈ Φ

(√
n(x− µ)

σ

)
,

where Φ(·) is the cumulative distribution function of a standard normal.
Now suppose that Y is exactly N(µ, σ

2

n
). Then,

Pr{Y ≤ x} = Pr

{√
n(Y − µ)

σ
≤
√
n(x− µ)

σ

}
= Pr

{
Z ≤

√
n(x− µ)

σ

}
= Φ

(√
n(x− µ)

σ

)
.

So we see that the Central Limit Theorem tells us to calculate probabilities for Xn just
as we would if Xn had a distribution that was exactly normal with expected value µ and
variance σ2

n
. This the justification for saying that the sample mean is “asymptotically

normal,” and writing Xn
·∼ N(µ, σ

2

n
). Here are three additional remarks.

• Quantities like 1
n

∑n
i=1 X

2
i and 1

n

∑n
i=1XiYi and so on are asymptotically normal

too, because they are just sample means.

• The delta method says that smooth functions of the sample mean are asymptotically
normal.

• All this generalizes nicely to the multivariate case.

A.5.2 Consistency

For this application, T1, T2, . . . are not just random variables: They are statistics8 that

estimate some parameter θ. The statistic Tn is said to be consistent for θ if Tn
P→ θ for

all θ ∈ Θ.
Let us take a closer look at this important concept. Using the definition of convergence

in probability, saying that Tn is consistent for θ means that for any tiny positive constant
ε, no matter how tiny,

lim
n→∞

P{|Tn − θ| < ε} = 1.

So, take an arbitrarily small interval around the true parameter value. For any given
sample size n, a certain amount of the probability distribution of Tn falls between θ − ε

8A statistic is a function of the sample data that does not depend functionally upon any unknown
parameter. That is, symbol for the parameter does not appear in the formula for the statistic.
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and θ+ ε. Consistency means that in the limit, all the probability falls in this interval, no
matter how small the interval is. Basically, consistency is saying that for a large enough
sample size, the statistic (estimator) will probably be close to parameter it is estimating
— regardless of how strict your definitions of “probably” and “close” might be.

Even better than ordinary consistency is strong consistency, which means Tn
a.s.→ θ.

Instead of saying Tn will probably be close to θ, strong consistency says that for a large
enough sample size, the probability that it will be close equals one. Because almost
sure convergence implies convergence in probability, strong consistency implies ordinary
consistency.

One last remark is that while consistency is an important property in an estimator, in
a way it is the least we should expect. Consistency means that with an infinite amount
of data, we would know the truth. If this is not the case, something is seriously wrong9.

Exercises A.5.2

A.5.1) Let X1, . . . , Xn be a random sample from a continuous distribution with density

f(x; θ) =
1

θ1/2
√

2π
e−

x2

2θ ,

where the parameter θ > 0. Propose a reasonable estimator for the parameter θ,
and use the Law of Large Numbers to show that your estimator is consistent.

A.5.2) Let X1, . . . , Xn be a random sample from a Binomial distribution with parameters
3 and θ. That is,

P (Xi = xi) =

(
3

xi

)
θxi(1− θ)3−xi ,

for xi = 0, 1, 2, 3. Find a reasonable estimator of θ, and prove that it is strongly
consistent. Where you get your estimator does not really matter, but please state
how you thought of it.

A.5.3) Let X1, . . . , Xn be a random sample from a continuous distribution with density

f(x; τ) =
τ 1/2

√
2π

e−
τx2

2 ,

where the parameter τ > 0. Let

τ̂ =
n∑n

i=1 X
2
i

.

Is τ̂ consistent for τ? Answer Yes or No and prove your answer. Hint: You can
just write down E(X2) by inspection. This is a very familiar distribution; have
confidence!

9In structural equation models, a parameter that is not identifiable cannot be estimated consistently.
This is why model identification is such an important topic.
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A.5.4) Independently for i = 1, . . . , n, let

Yi = βXi + εi,

where E(Xi) = E(εi) = 0, V ar(Xi) = σ2
x, V ar(εi) = σ2

ε , and εi is independent of
Xi. Let

β̂ =

∑n
i=1 XiYi∑n
i=1 X

2
i

.

Is β̂ consistent for β? Answer Yes or No and prove your answer.

A.5.5) Another Method of Moments estimator for Problem A.5.2 is β̂2 = Y n
Xn

.

(a) Show that β̂2
p→ β in most of the parameter space.

(b) However, consistency means that the estimator converges to the parameter in

probability everywhere in the parameter space. Where does β̂2 fail, and why?

A.5.6) LetX1, . . . , Xn be a random sample from a Gamma distribution with α = β = θ > 0.
That is, the density is

f(x; θ) =
1

θθΓ(θ)
e−x/θxθ−1,

for x > 0. Let θ̂ = Xn. Is θ̂ consistent for θ? Answer Yes or No and prove your
answer.

A.5.7) Let X1, . . . , Xn be a random sample from a distribution with expected value µ and
variance σ2

x. Independently of X1, . . . , Xn, let Y1, . . . , Yn be a random sample from
a distribution with the same expected value µ and variance σ2

y. Let Let Tn =

αXn + (1 − α)Y n, where 0 ≤ α ≤ 1. Is Tn always a consistent estimator of µ?
Answer Yes or No and show your work.

A.5.8) Let X1, . . . , Xn be a random sample from a distribution with mean µ. Show that
Tn = 1

n+400

∑n
i=1Xi is consistent for µ.

A.5.9) Let X1, . . . , Xn be a random sample from a distribution with mean µ and variance

σ2. Prove that the sample variance S2 =
∑n
i=1(Xi−X)2

n−1
is consistent for σ2.

A.5.10) Let (X1, Y1), . . . , (Xn, Yn) be a random sample from a bivariate distribution with
E(Xi) = µx, E(Yi) = µy, V ar(Xi) = σ2

x, V ar(Yi) = σ2
y, and Cov(Xi, Yi) = σxy.

Show that the sample covariance Sxy =
∑n
i=1(Xi−X)(Yi−Y )

n−1
is a consistent estimator of

σxy.

A.5.11) Let X1, . . . , Xn be a random sample from a Poisson distribution with parameter λ.
You know that E(Xi) = V ar(Xi) = λ; there is no need to prove it.

From the Strong Law of Large Numbers, it follows immediately that Xn is strongly
consistent for λ. Let

λ̂ =

∑n
i=1(Xi −Xn)2

n− 4
.
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Is λ̂ also consistent for λ? Answer Yes or No and prove your answer.

A.5.3 Convergence of random vectors

Almost all applied problems are multi-parameter, and that certainly applies to the ones
in this book. Parameter estimates are usually random vectors. It is very convenient
that in terms of convergence, the multivariate case is very similar to the univariate case
just discussed. The is based on material in Thomas Ferguson’s beautiful little book A
course in large sample theory, which is highly recommended. All quantities in boldface
are vectors in Rm unless otherwise indicated.

1. Definitions

? Tn
a.s.→ T means P{ω : limn→∞Tn(ω) = T(ω)} = 1.

? Tn
P→ T means ∀ε > 0, limn→∞ P{||Tn −T|| < ε} = 1.

? Tn
d→ T means for every continuity point t of FT, limn→∞ FTn(t) = FT(t).

2. Tn
a.s.→ T⇒ Tn

P→ T⇒ Tn
d→ T.

3. If a is a vector of constants, Tn
d→ a⇒ Tn

P→ a.

4. Strong Law of Large Numbers: Let X1, . . .Xn be independent and identically dis-
tributed random vectors with finite first moment, and let X be a general random
vector from the same distribution. Then Xn

a.s.→ E(X).

5. Central Limit Theorem: Let X1, . . . ,Xn be i.i.d. random vectors with expected
value vector µ and covariance matrix Σ. Then

√
n(Xn−µ) converges in distribution

to a multivariate normal with mean 0 and covariance matrix Σ.

6. Slutsky Theorems for Convergence in Distribution:

(a) If Tn ∈ Rm, Tn
d→ T and if f : Rm → Rq (where q ≤ m) is continuous except

possibly on a set C with P (T ∈ C) = 0, then f(Tn)
d→ f(T).

(b) If Tn
d→ T and (Tn −Yn)

P→ 0, then Yn
d→ T.

(c) If Tn ∈ Rd, Yn ∈ Rk, Tn
d→ T and Yn

P→ c, then(
Tn

Yn

)
d→
(

T
c

)
7. Slutsky Theorems for Convergence in Probability:

(a) If Tn ∈ Rm, Tn
P→ T and if f : Rm → Rq (where q ≤ m) is continuous except

possibly on a set C with P (T ∈ C) = 0, then f(Tn)
P→ f(T).
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(b) If Tn
P→ T and (Tn −Yn)

P→ 0, then Yn
P→ T.

(c) If Tn ∈ Rd, Yn ∈ Rk, Tn
P→ T and Yn

P→ Y, then

(
Tn

Yn

)
P→
(

T
Y

)

8. Delta Method (Theorem of Cramér, Ferguson p. 45): Let g : Rd → Rk be such that

the elements of ġ(x) =
[
∂gi
∂xj

]
k×d

are continuous in a neighborhood of θ ∈ Rd. If Tn

is a sequence of d-dimensional random vectors such that
√
n(Tn − θ)

d→ T, then
√
n(g(Tn) − g(θ))

d→ ġ(θ)T. In particular, if
√
n(Tn − θ)

d→ T ∼ N(0,Σ), then
√
n(g(Tn)− g(θ))

d→ Y ∼ N(0, ġ(θ)Σġ(θ)>).

In the multivariate delta method, the matrix ġ(θ) is the Jacobian of the transformation
g. The idea is that smooth functions of asymptotically normal random variables are also
asymptotically normal.

Asymptotic normality of variances and covariances

The following theorem says that even for non-normal data, the unique elements of the
sample variance-covariance matrix have a joint distribution that is approximately multi-
variate normal for large samples. The means are the corresponding elements of the true
variance-covariance matrix, and the asymptotic variance-covariance matrix (of the vari-
ances and covariances) is L/n, where L is given below. The proof is a good workout in
the Slutsky lemmas.

Theorem A.1 Let d1, . . . ,dn be a random sample from a k-dimensional distribution with
expected value µ, covariance matrix Σ, and finite fourth moments. Define w = vech{(d1−
µ)(d1 − µ)>} and let L = cov(w). Then

√
n
(
vech(Σ̂−Σ)

)
d→ t ∼ N(0,L).
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Proof

Σ̂ =
1

n

n∑
i=1

(di − dn)(di − dn)>

=
1

n

n∑
i=1

(di − µ+ µ− dn)(di − µ+ µ− dn)>

=
1

n

n∑
i=1

(di − µ)(di − µ)>

+
1

n

n∑
i=1

(di − µ)(µ− dn)> +
1

n

n∑
i=1

(µ− dn)(di − µ)>

+ (µ− dn)(µ− dn)>

=
1

n

n∑
i=1

(di − µ)(di − µ)>

+ (dn − µ)(µ− dn)> + (µ− dn)(dn − µ)> + (dn − µ)(dn − µ)>

=
1

n

n∑
i=1

(di − µ)(di − µ)> − (dn − µ)(dn − µ)>.

So,

√
n(Σ̂−Σ) =

√
n

(
1

n

n∑
i=1

(di − µ)(di − µ)>

)
−
√
n(dn − µ)(dn − µ)>.

The second term goes to zero in probability, because the Central Limit Theorem (item 5

in the list of large-sample results) says that
√
n(µ− dn)

d→ Y ∼ N(0,Σ), while the Law

of Large Numbers (item 4) tells us dn − µ
P→ 0. Then Slutsky Lemma 6c implies √n(µ− dn)

dn − µ

 d→

 Y

0

 ,

and Slutsky Lemma 6a (continuous mapping) establishes
√
n(dn−µ)(dn−µ)>

d→ Y0> =

0⇒
√
n(dn − µ)(dn − µ)>

P→ 0.

Therefore by Slutsky Lemma 6b,
√
n(Σ̂−Σ) and

√
n(
∼
Σ −Σ) converge in distribution

to the same random matrix, where
∼
Σ= 1

n

∑n
i=1(di − µ)(di − µ)>. Now vech

(∼
Σ
)

is just

the mean of n independent and identically distributed random vectors, each with mean
vech (Σ) and covariance matrix L as given by the theorem. The Central Limit Theorem

then implies
√
n
(
vech(

∼
Σ −Σ)

)
d→ T ∼ N(0,L), and the conclusion follows. �

Using the delta method instead The multivariate delta method (item 8 in the list of
large-sample results) can also be used to establish Theorem A.1. The details are a useful
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illustration of how to apply the delta method. The calculations will be carried out for a
2× 2 covariance matrix, and the extension to larger problems will be clear.

Independently for i = 1, . . . , n, let

di =

(
xi
yi

)
with E(di) =

(
µx
µy

)
and cov(di) = Σ =

(
σ2
x σxy

σxy σ2
y

)
.

The sample variance of x (with n in the denominator, which is more convenient for
asymptotics) is

σ̂2
x = 1

n

∑n
i=1(xi − x̄n)2 = 1

n

∑n
i=1 x

2
i − x̄2

n,

and the sample covariance of x and y is

σ̂xy = 1
n

∑n
i=1(xi − x̄n)(yi − ȳn) = 1

n

∑n
i=1 xiyi − x̄nȳn.

It’s clear that the sample variances and covariances are functions of a collection of sample
means. The sample means can be assembled into a vector

Tn =



x̄n

1
n

∑n
i=1 x

2
i

ȳn

1
n

∑n
i=1 y

2
i

1
n

∑n
i=1 xiyi


.

To apply the multivariate central limit theorem we need the vectors that are being aver-
aged in order to get Tn. That’s easy:

Ti =


xi
x2
i

yi
y2
i

xiyi

 , with E(Ti) = µ =


E(x)
E(x2)
E(y)
E(y2)
E(xy)

 =


µx

σ2
x + µ2

x

µy
σ2
y + µ2

y

σxy + µxµy

 .

Denoting cov(Ti) by W, the central limit theorem (item 5 in the list of large-sample

results) yields
√
n(Xn − µ)

d→ T ∼ N(0,W).

Using the notation

t =


t1
t2
t3
t4
t5

 , let g(t) =

 g1(t)
g2(t)
g3(t)

 =

 t2 − t21
t5 − t1t3
t4 − t23

 .
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This yields

g(Tn) =

 σ̂2
x

σ̂xy
σ̂2
y

 and g(µ) =

 σ2
x

σxy
σ2
y

 .

In other words, g(Tn) = vech(Σ̂n) and g(µ) = vech(Σ). By the delta method,

√
n
(
g(Tn)− g(µ)

) d→ T ∼ N
(
0, ġ(µ)Wġ(µ)>

)
That is, vech(Σ̂n) is asymptotically multivariate normal, with asymptotic mean vech(Σ),
and asymptotic covariance matrix 1

n
ġ(µ)Wġ(µ)>. It is worth the effort to calculate the

asymptotic covariance matrix for this two-variable case.
Using elementary formulas for variance and covariance together with a slightly ex-

tended version of the change of variables formula (A.1), the matrix W = cov(Ti) may be
written (in upper triangular form and without parentheses on the expected values to fit
more material on the page) as

W = cov


xi
x2i
yi
y2i
xiyi

 =


Ex2 − (Ex)2 Ex3 − ExEx2 Exy − ExEy Exy2 − ExEy2 Ex2y − ExExy

Ex4 − (Ex2)2 Ex2y − Ex2Ey Ex2y2 − Ex2Ey2 Ex3y − Ex2Exy
Ey2 − (Ey)2 Ey3 − EyEy2 Exy2 − EyExy

Ey4 − (Ey2)2 Exy3 − Ey2Exy
Ex2y2 − (Exy)2


Recall that

g(t) =

 g1(t)
g2(t)
g3(t)

 =

 t2 − t21
t5 − t1t3
t4 − t23

 .

The Jacobian evaluated at a general point t is [∂gi
∂tj

]. In this case,

ġ(t) =


∂g1
∂t1

∂g1
∂t2

∂g1
∂t3

∂g1
∂t4

∂g1
∂t5

∂g2
∂t1

∂g2
∂t2

∂g2
∂t3

∂g2
∂t4

∂g2
∂t5

∂g3
∂t1

∂g3
∂t2

∂g3
∂t3

∂g3
∂t4

∂g3
∂t5


=

 −2t1 1 0 0 0
−t3 0 −t1 0 1
0 0 −2t3 0 0

 .

The asymptotic covariance matrix of vech(Σ̂n) is 1
n
ġ(µ)Wġ(µ)>. Carrying out the matrix

multiplication and substituting10,

10This is a substantial clerical task, with many opportunities for error. I used a combination of Sage
(see Appendix B) and manual editing.
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cov

 σ̂2
x

σ̂xy
σ̂2
y

 .
=

1

n



3µ4
x + 6µ2

xσ
2
x − σ4

x

− 4E(x3)µx + E(x4)

3µ3
xµy + 3µxµyσ

2
x + 3µ2

xσxy
− σ2

xσxy − 3E(x2y)µx −E(x3)µy
+ E(x3y)

3µ2
xµ

2
y+µ2

yσ
2
x+µ2

xσ
2
y−σ2

xσ
2
y+

4µxµyσxy − 2E(xy2)µx
− 2E(x2y)µy + E(x2y2)

3µ2
xµ

2
y + µ2

yσ
2
x + µ2

xσ
2
y +

4µxµyσxy − 2E(xy2)µx −
2E(x2y)µy−σ2

xy+E(x2y2)

3µxµ
3
y + 3µxµyσ

2
y + 3µ2

yσxy −
σxyσ

2
y −E(y3)µx − 3E(xy2)µy +

E(xy3)

3µ4
y+6µ2

yσ
2
y−σ4

y−4E(y3)µy+
E(y4)


.

(A.24)

The extension to larger numbers of variables is clear, though the details are unavoidably
messy. The advantage of the delta method over the proof of Theorem A.1 is that you
can see where it’s going in advance. As soon as the sample variance and covariance are
written as a function of sample means, consistency is guaranteed by the law of large
numbers and continuous mapping, and asymptotic normality is guaranteed by the delta
method. This applies regardless of how many variables there are. The actual calculation
of ġ(µ)Wġ(µ)> is necessary only if you need the formulas for another purpose.

A.6 Estimation and inference

A.6.1 Statistical Models

A statistical model is a set of assertions that partly specify the probability distribution
of the observable data. The specification may be direct or indirect. As an example
of direct specification, let X1, . . . , Xn be a random sample from a normal distribution
with expected value µ and variance σ2. As an example of indirect specification, let
Yi = β0 + β1xi1 + · · ·+ βkxik + εi for i = 1, . . . , n, where

β0, . . . , βk are unknown constants. xij are known constants.
ε1, . . . , εn are independent N(0, σ2) random variables.
σ2 is an unknown constant.

Statistical models leave something unknown. Otherwise, they are probability models.
The unknown part of the model for the data is called the parameter. Usually, parameters
are numbers or vectors of numbers – unknown constants. They are usually denoted by θ
or θ or other Greek letters.

The parameter space is the set of values that can be taken on by the parameter, and
will be denoted by Θ, with θ ∈ Θ. For the normal random sample example, the parameter
space is Θ = {(µ, σ2) : −∞ < µ < ∞, σ2 > 0}. For the regression example given above,
Θ = {(β0, . . . , βk, σ

2) : −∞ < βj <∞, σ2 > 0}.
Parameters need not be numbers. For example, let X1, . . . , Xn be a random sample

from a continuous distribution with unknown distribution function F (x). The param-
eter is the unknown distribution function F (x), and the parameter space is a space of
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distribution functions. We may be interested only in a function of the parameter, like

µ =

∫ ∞
−∞

xf(x) dx

The rest of F (x) is just a nuisance parameter.
We will use the following framework for parameter estimation and statistical infer-

ence. The data are D1, . . . , Dn (the letter D stands for data). The distribution of these
independent and identically distributed random variables depends on the parameter θ,
which is an element of the parameter space Θ. That is,

D1, . . . , Dn
i.i.d.∼ Pθ, θ ∈ Θ.

Both the data values and the parameter may be vectors, even though they are not written
in boldface.

To give one more example, the data vector could be D = X1, . . .Xn, a vector of
independent multivariate normals of dimension p. The parameter space is {θ = (µ,Σ) :
µ ∈ Rp, and Σ is a p× p symmetric positive definite matrix. Pθ is the joint distribution
function of X1, . . .Xn, with joint density

f(x1, . . .xn) =
n∏
i=1

f(xi;µ,Σ),

where f(xi;µ,Σ) is the multivariate normal density (A.19) on page 553.
For the model D ∼ Pθ, θ ∈ Θ, we don’t know θ. We never know θ. All we can do is

guess. We will estimate θ (or a function of θ) based on the observable data. Let T denote

an estimator of θ (or a function of θ): T = T (D) For example, if D = X1, . . . , Xn
i.i.d∼

N(µ, σ2), the usual estimator is T = (X,S2). For an ordinary fixed-x multiple regression

model, T = (β̂,MSE). In these and in all other cases, T is a statistic, a random variable
or vector that can be computed from the data without knowing the values of any unknown
parameters.

How do we get a recipe for T? Guess? It’s good to be systematic. Lots of methods
are available. We will consider two: Method of moments and Maximum Likelihood.

A.6.2 Method of Moments Estimation

The following is based on a random sample like (X1, Y1), . . . , (Xn, Yn). Moments are
quantities like E{Xi}, E{X2

i }, E{XiYi}, E{WiX
2
i Y

3
i }, and so on. Central moments are

moments of centered random variables, such as

E{(Xi − µx)2}

E{(Xi − µx)(Yi − µy)}

E{(Xi − µx)2(Yi − µy)3(Zi − µz)2}
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These are all population moments. Sample moments are analogous to population mo-
ments, and are natural estimators.

Population moment Sample moment

E{Xi} 1
n

∑n
i=1Xi

E{X2
i } 1

n

∑n
i=1X

2
i

E{XiYi} 1
n

∑n
i=1XiYi

E{(Xi − µx)2} 1
n

∑n
i=1(Xi −Xn)2

E{(Xi − µx)(Yi − µy)} 1
n

∑n
i=1(Xi −Xn)(Yi − Y n)

E{(Xi − µx)(Yi − µy)2} 1
n

∑n
i=1(Xi −Xn)(Yi − Y n)2

The method of moments is based on estimating population moments by the corresponding
sample moments. For the model D ∼ Pθ with θ ∈ Θ, the population moments are a
function of θ. The procedure is to first find θ as a function of the population moments,
and then estimate θ with that function of the sample moments.

Let m denote a vector of population moments, and let m̂ denote the corresponding
vector of sample moments. First, find m = g(θ). Then solve for θ, obtaining θ = g−1(m).

Let θ̂ = g−1(m̂). It doesn’t matter if you solve first or put hats on first11.

For example, suppose X1, . . . , Xn
i.i.d∼ U(0, θ). That is, the data are a random sample

from a uniform distribution on (0, θ), so that the model density is f(x) = 1
θ

for 0 < x < θ.
First, find the moment (expected value).

E(Xi) =

∫ θ

0

x
1

θ
dx

=
1

θ

∫ θ

0

x dx

=
1

θ

x2

2

∣∣∣∣θ
0

=
1

2θ
(θ2 − 0)

=
θ

2

So m = θ
2
⇔ θ = 2m, and θ̂ = 2X.

Sample problem Let X1, . . . , Xn be a random sample from a uniform distribution on
(0, θ). Estimate θ by the Method of Moments for the following data. Your answer is a
number. Show some work. Data: 4.09 0.13 0.84 3.83 2.13 4.67 4.61 0.40 4.19

0.71.
11 For most models the function g is well behaved, with continuous mixed partial derivatives. In

that case the multivariate delta method from the end of Section A.5 guarantees that θ̂ is asymptotically
multivariate normal even when the data are definitely not normal. This yields distribution-free tests and
confidence intervals with surprisingly little effort.
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Answer X = 2.56 so θ̂ = 2X = 2 ∗ 2.56 = 5.12.
Method of moments estimators are not unique. What moments you use are up to you.

E(X2
i ) =

1

θ

∫ θ

0

x2 dx =
θ2

3

So set m = θ2

3
⇔ θ =

√
3m, and

θ̂ =

√√√√ 3

n

n∑
i=1

X2
i ,

which is not equal to 2X. Presumably estimates based on lower-order moments are better
in some sense, but I don’t know the details.

To compare the two estimates θ̂1 = 2X and θ̂2 =
√

3
n

∑n
i=1 X

2
i for the numerical

example,

x 4.09 0.13 0.84 3.83 2.13 4.67 4.61 0.40 4.19 0.71

x^2 16.7281 0.0169 0.7056 14.6689 4.5369 21.8089 21.2521 0.16 17.5561 0.5041

yielding θ̂1 = 5.12 and θ̂2 = 5.42.

Method of Moments estimator for the normal Let X1, . . . , Xn
i.i.d∼ N(µ, σ2). From

the moment-generating function or a textbook, E(Xi) = µ and E(X2
i ) = σ2 +µ2. Solving

for the parameters, µ = E(Xi) and σ2 = E(X2
i ) − (E(Xi))

2. The Method of Moments

estimators are µ̂ = X and σ̂2 = 1
n

∑n
i=1 X

2
i −X

2
= 1

n

∑n
i=1(Xi −X)2.

A regression example Independently for i = 1, . . . , n, let Yi = β0 + β1Xi + εi, where

• E(Xi) = µx, V ar(Xi) = σ2
x

• E(εi) = 0, V ar(εi) = σ2
ε

• Xi and εi are independent.

The distributions of Xi and εi are unknown, so they are part of the parameter. The
parameter is (β0, β1, Fε(ε), Fx(x)). As mentioned earlier, there is no conceptual problem
with parameters that are functions (infinite-dimensional) instead of just real numbers or
vectors.

We want to estimate β0 and β1, a two-dimensional function of the parameter. First,
calculate some moments.

E(Xi) = µx V ar(Xi) = σ2
x

E(Yi) = β0 + β1µx Cov(Xi, Yi) = β1σ
2
x
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Use the Centering Rule on Page ?? to get the last one:

Cov(Xi, Yi) = E(
c

X i

c

Y i)

= E{
c

X i (β1

c

X i +εi)}

= E{β1

c

X
2
i +

c

X i εi)}

= β1E{
c

X
2
i}+ E{

c

X i}E{εi}
= β1σ

2
x

Putting hats on first (optional), we solve Y = β̂0 + β̂1X and σ̂xy = β̂1σ̂
2
x for β̂0 and β̂1,

obtaining

β̂1 =
σ̂xy
σ̂2
x

=

∑n
i=1(Xi −Xn)(Yi − Y n)∑n

i=1(Xi −Xn)2
and

β̂0 = Y − β̂1X

These happen to be the same as the least-squares estimates.
Since β̂0 and β̂1 are nice differentiable functions of various quantities that are essentially

sample means, the multivariate delta method from the end of Section A.5 implies that
the asymptotic joint distribution of β̂0 and β̂1 is bivariate normal. This holds regardless
of the distributions of Xi and εi, provided only that their moments exist, and opens the
door to distribution-free tests and confidence intervals. The story for multiple regression
is almost exactly the same. The only requirement is a sample large enough for the Central
Limt Theorem to work.

A.6.3 Maximum Likelihood Estimation

The idea behind maximum likelihood is to estimate the unknown parameter by the quan-
tity that makes the probability of obtaining the observed data as large as possible. This
probability is represented12 by the likelihood function

L(θ) =
n∏
i=1

f(di; θ),

where f(di; θ) is the density or probability mass function evaluated at di.

Let θ̂ denote the usual Maximum Likelihood Estimate (MLE). That is, it is the pa-
rameter value for which the likelihood function is greatest, over all θ ∈ Θ. Because the
log is an increasing function, maximizing the likelihood is equivalent to maximizing the
log likelihood, which will be denoted

`(θ) = lnL(θ).

12If the data are discrete, the likelihood function is exactly the probability of observing the data that
actually were observed. In the continuous case the likelihood function is approximately proportional to
the probability of observing a data vector that falls into a small region surrounding the vector (point)
that was observed.
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In elementary situations where the support of the distribution does not depend on the
parameter, you get the MLE by closing your eyes, differentiating the log likelihood, setting
the derivative to zero, and solving for θ. Then if you are being careful, you carry out the
second derivative test; if `′′(θ̂) < 0, the log likelihood is concave down at your answer,
and you have found the maximum. Here is an example, useful mostly to clarify ideas and
serve as a contrast to more realistic cases.

Example Let D1, . . . , Dn be a random sample (independent and identically distributed
random variables) from a distribution with density f(y) = θ

(d+1)θ+1 for d > 0, where the
unknown parameter θ is strictly greater than zero. The log likelihood is

`(θ) = ln
n∏
i=1

θ

(di + 1)θ+1

=
n∑
i=1

(ln θ − (θ + 1) ln(di + 1))

= n ln θ − (θ + 1)
n∑
i=1

ln(di + 1)

Differentiating with respect to θ,

`′(θ) =
n

θ
−

n∑
i=1

ln(di + 1)
set
= 0

⇒ θ =
n∑n

i=1 ln(di + 1)
.

Carrying out the second derivative test,

`′′(θ) = −nθ−2 = − n
θ2
< 0,

so the log likelihood function is concave down and we have located a maximum. This
justifies writing θ̂ = n/

∑n
i=1 ln(di + 1). In R, if the data were in a numeric vector called

d, the MLE would be thetahat = 1/mean(log(d+1)).

Some Very Basic Math

If the calculations in that last example seemed obvious, you can skip this section.
I have noticed that a major obstacle for many students when doing maximum likeli-

hood calculations is a set of basic mathematical operations they actually know. But the
mechanics are rusty, or the notation used in Statistics is troublesome. So, with sincere
apologies to those who don’t need this, here are some basic rules.

• The distributive law: a(b+ c) = ab+ ac. You may see this in a form like

θ
n∑
i=1

xi =
n∑
i=1

θxi
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• Power of a product is the product of powers: (ab)c = ac bc. You may see this in a
form like (

n∏
i=1

xi

)α

=
n∏
i=1

xαi

• Multiplication is addition of exponents: abac = ab+c. You may see this in a form
like

n∏
i=1

θe−θxi = θn exp(−θ
n∑
i=1

xi)

• Powering is multiplication of exponents: (ab)c = abc. You may see this in a form
like

(eµt+
1
2
σ2t2)n = enµt+

1
2
nσ2t2

• Log of a product is sum of logs: ln(ab) = ln(a) + ln(b). You may see this in a form
like

ln
n∏
i=1

xi =
n∑
i=1

lnxi

• Log of a power is the exponent times the log: ln(ab) = b ln(a). You may see this in
a form like

ln(θn) = n ln θ

• The log is the inverse of the exponential function: ln(ea) = a. You may see this in
a form like

ln

(
θn exp(−θ

n∑
i=1

xi)

)
= n ln θ − θ

n∑
i=1

xi

Exercises A.6.3

1. Choose the correct answer.

(a)
∏n

i=1 e
xi =

i. exp(
∏n

i=1 xi)

ii. enxi

iii. exp(
∑n

i=1 xi)

(b)
∏n

i=1 λe
−λxi =

i. λe−λ
nxi

ii. λne−λnxi

iii. λn exp(−λ
∑n

i=1 xi)

iv. λn exp(−nλ
∑n

i=1 xi)

v. λn exp(−λn
∑n

i=1 xi)
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(c)
∏n

i=1 a
b
i =

i. nab

ii. anb

iii. (
∏n

i=1 ai)
b

(d)
∏n

i=1 a
bi =

i. nabi

ii. anbi

iii.
∑n

i=1 a
bi

iv. a
∏n
i=1 bi

v. a
∑n
i=1 bi

(e)
(
eλ(et−1)

)n
=

i. neλ(et−1)

ii. enλ(et−1)

iii. eλ(ent−1)

iv. enλ(et−n)

(f)
(∏n

i=1 e
−λxi

)2
=

i. e−2nλxi

ii. e−2λ
∑n
i=1 xi

iii. 2e−λ
∑n
i=1 xi

2. True, or False?

(a)
∑n

i=1
1
xi

= 1∑n
i=1 xi

(b)
∏n

i=1
1
xi

= 1∏n
i=1 xi

(c) a
b+c

= a
b

+ a
c

(d) ln(a+ b) = ln(a) + ln(b)

(e) ea+b = ea + eb

(f) ea+b = eaeb

(g) eab = eaeb

(h)
∏n

i=1(xi + yi) =
∏n

i=1 xi +
∏n

i=1 yi

(i) ln(
∏n

i=1 a
b
i) = b

∑n
i=1 ln(ai)

(j)
∑n

i=1

∏n
j=1 aj = n

∏n
j=1 aj

(k)
∑n

i=1

∏n
j=1 ai =

∑n
i=1 a

n
i

(l)
∑n

i=1

∏n
j=1 ai,j =

∏n
j=1

∑n
i=1 ai,j

3. Simplify as much as possible.
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(a) ln
∏n

i=1 θ
xi(1− θ)1−xi

(b) ln
∏n

i=1

(
m
xi

)
θx(1− θ)m−xi

(c) ln
∏n

i=1
e−λλxi
xi!

(d) ln
∏n

i=1 θ(1− θ)xi−1

(e) ln
∏n

i=1
1
θ
e−xi/θ

(f) ln
∏n

i=1
1

βαΓ(α)
e−xi/βxα−1

i

(g) ln
∏n

i=1
1

2ν/2Γ(ν/2)
e−xi/2x

ν/2−1
i

(h) ln
∏n

i=1
1

σ
√

2π
e−

(xi−µ)
2

2σ2

(i)
∏n

i=1
1

β−αI(α ≤ xi ≤ β) (Express in terms of the minimum and maximum y1

and yn.)

Maximum likelihood for the multivariate normal

Maximum likelihood estimation for the multivariate normal distribution plays an impor-
tant role in this book. It’s a case where closing your eyes and differentiating will get you
nowhere. It’s helpful to express the MLE as a theorem, making it easy to reference in the
main body of the text.

Theorem A.2 Let x1, . . . ,xn be a random sample from a Np(µ,Σ) distribution. The

unique maximum likelihood estimate is µ̂ = x and Σ̂ = 1
n

∑n
i=1(xi − x)(xi − x)>.

When I am producing proofs for a student audience, I frequently wonder whether I should
provide a model of how to write a clean proof, or give a longer proof that is easier to follow.
Perhaps because I’m naturally long-winded anyway, I often wind up giving more detail.
Here, I will try doing it both ways. The brief one comes first. If you can fill in the gaps
without too much effort, great. If necessary or if you wish, look at the second proof.

Proof One Rather than maximizing the likelihood, equivalently minimize

− 2

n
log

L(µ,Σ)

L(µ̂, Σ̂)
= tr(Σ̂Σ

−1
)− log |Σ̂Σ

−1
| − p+ (x− µ)>Σ−1(x− µ).

Because Σ is positive definite, the last term is nonnegative, and equal to zero if and only

if µ = x. Setting µ = x, the task is now to minimize tr(Σ̂Σ
−1

)− log |Σ̂Σ
−1
|.

The matrix Σ̂Σ−1 is similar to Σ−1/2Σ̂Σ−1/2, so the eigenvalues of Σ̂Σ−1 are real, and
positive with probability one. Thus,

tr(Σ̂Σ
−1

)− log |Σ̂Σ
−1
| =

p∑
j=1

λj −
p∑
j=1

log λj =

p∑
j=1

(λj − log λj) .

Each term in the sum is positive, and uniquely minimized when λj = 1. So to maximize the
likelihood, all the eigenvalues of Σ must equal one. By the spectral decomposition (A.9),

Σ−1/2Σ̂Σ−1/2 = CDC> = CIpC
> = Ip, so that Σ = Σ̂. �
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Proof Two Rather than maximizing the likelihood, equivalently, (1) Divide the likeli-
hood by a well-chosen expression that is constant with respect to µ and Σ, (2) Take the
natural log, (3) Multiply by − 2

n
, and (4) minimize the result. Using Property 9 of the

multivariate normal on page 554,

− 2

n
log

L(µ,Σ)

L(µ̂, Σ̂)
= − 2

n
log
|Σ|−n/2(2π)−np/2 exp−n

2

{
tr(Σ̂Σ

−1
) + (x− µ)>Σ−1(x− µ)

}
|Σ̂|−n/2(2π)−np/2 exp−n

2

{
tr(Σ̂Σ̂

−1
) + (x− x)>Σ̂

−1
(x− x)

}
= − 2

n
log
|Σ|−n/2 exp−n

2

{
tr(Σ̂Σ

−1
) + (x− µ)>Σ−1(x− µ)

}
|Σ̂|−n/2 exp−n

2
{tr(Ip) + 0}

= − 2

n
log

 |Σ| exp
{
tr(Σ̂Σ

−1
) + (x− µ)>Σ−1(x− µ)

}
|Σ̂| exp {p}

−
n
2

= log

 |Σ| exp
{
tr(Σ̂Σ

−1
) + (x− µ)>Σ−1(x− µ)

}
|Σ̂|ep


= log

|Σ|
|Σ̂|

+ tr(Σ̂Σ
−1

) + (x− µ)>Σ−1(x− µ)− p

= tr(Σ̂Σ
−1

)− log
|Σ̂|
|Σ|
− p+ (x− µ)>Σ−1(x− µ)

= tr(Σ̂Σ
−1

)− log |Σ̂Σ
−1
| − p+ (x− µ)>Σ−1(x− µ)

If Σ is positive definite, so is Σ−1. Therefore the last term is nonnegative, and equal to
zero if and only if x − µ = 0 ⇐⇒ µ = x. That is, the function is minimized when
µ = x, regardless of what the positive definite matrix Σ happens to be.

This establishes µ̂ = x. Setting µ = x, the last term vanishes, and the task is now to
minimize

tr(Σ̂Σ
−1

)− log |Σ̂Σ
−1
| (A.25)

over all symmetric and positive definite Σ.

Recall that the square matrix B is said to be similar to A if there is an invertible matrix
P with B = P−1AP. Similar matrices share important characteristics; for example,
they have the same eigenvalues, and the numbers of times each eigenvalue occurs (the
multiplicities) are the same for the two matrices.

Choosing P = Σ−1/2, write

Σ−1/2
(
Σ̂Σ−1

)
Σ1/2 = Σ−1/2Σ̂Σ−1/2.

Thus Σ−1/2Σ̂Σ−1/2 is similar to Σ̂Σ−1. The matrix Σ̂ has an inverse with probability
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one13. Therefore the symmetric matrix Σ−1/2Σ̂Σ−1/2 has an inverse, is positive definite,
and all its eigenvalues are strictly positive. This means the eigenvalues of Σ̂Σ−1 are
positive too, and

tr(Σ̂Σ
−1

)− log |Σ̂Σ
−1
| =

p∑
j=1

λj − log

p∏
j=1

λj

=

p∑
j=1

λj −
p∑
j=1

log λj

=

p∑
j=1

(λj − log λj) . (A.26)

For x > 0, the function y = x − log x > 0, and achieves a unique minimum when x = 1.

Thus (A.26) can be minimized by choosing Σ so that the eigenvalues of Σ̂Σ
−1

all equal

one. Such a choice is possible, because Σ = Σ̂ yields Σ̂Σ
−1

= Ip. The conclusion is that

Σ̂ is a maximum likelihood estimator of Σ. Now we will see it is the only one. Let Σ be

another covariance matrix such that all the eigenvalues of Σ̂Σ
−1

equal one.
The similarity of Σ−1/2Σ̂Σ−1/2 to Σ̂Σ−1 means that the eigenvalues of Σ−1/2Σ̂Σ−1/2

are also all equal to one. Thus by the spectral decomposition theorem (A.9),

Σ−1/2Σ̂Σ−1/2 = CDC>

= CIpC
> = CC> = Ip,

because the eigenvectors in the columns of C are orthonormal. Then,

Ip = Σ−1/2Σ̂Σ−1/2

⇐⇒ Σ1/2 Ip Σ1/2 = Σ1/2
(
Σ−1/2Σ̂Σ−1/2

)
Σ1/2

⇐⇒ Σ = Σ̂.

This establishes that with probability one, the likelihood function has a unique maximum
at µ = x and and Σ = Σ̂. �

A.6.4 Numerical maximum likelihood

In this course, as in much of applied statistics, you will find that you can write the log
likelihood and differentiate it easily enough, but when you set the derivatives to zero,
you obtain a set of equations that are impossible to solve explicitly. This means that the
problem needs to be solved numerically. That is, you use a computer to calculate the

13The multivariate normal distribution is continuous, and for that reason, so is the joint distribution
of the unique variances and covariances in Σ̂. The set of variances and covariances such that one of the
columns is a linear combination of others is a set of volume zero in Rp(p+1)/2, and hence has probability
zero.
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value of the log likelihood for a set of parameter values, and you search until you have
found the biggest one.

But how do you search? It’s easy in one or two dimensions, but structural equation
models can easily involve dozens, scores or even hundreds of parameters. It’s a bit like
being dropped by helicopter onto a mountain range, and asked to find the highest peak
blindfolded. All you can do is walk uphill. The gradient is the direction of steepest
increase, so walk that way. How big a step should you take? That’s a good question.
When you come to a place where the surface is level, or approximately level, stop. How
level is level enough? That’s another good question. Once you find a “level” place, you
can check to see if the surface is concave down there. If so, you’re at a maximum. Is it
the global maximum (the real MLE), or just a local maximum? It’s usually impossible
to tell for sure. You can get the helicopter to drop you in several different places fairly
far apart, and if you always arrive at the same maximum you will feel more confident
of your answer. But it could still be just a local maximum that is easy to reach. The
main thing to observe is that where you start is very important. Another point is that
for realistically big problems, you need high-grade, professionally written software.

The following example is one that you can do by hand, though maybe not with your
eyes closed. But it will serve to illustrate the basic ideas of numerical maximum likelihood.

Example A.6.1 Normal with Mean Equal to Standard Deviation

Let D1, . . . , Dn be a random sample from a normal distribution with mean θ and variance
θ2. A sample of size 50 yields:

5.85 -15.02 -13.24 -1.63 -0.07 -2.40 -3.02 -3.19 -5.16 0.79 -1.03 -10.69

-12.96 -4.55 0.57 -7.94 -6.80 2.95 -9.01 -9.33 -11.93 -7.13 10.34 -1.01

-4.18 -1.30 -7.56 -1.25 -4.64 -4.88 -4.06 -1.91 -1.81 -6.92 -13.27 -5.52

4.40 -12.17 -4.55 -5.82 -0.81 -19.28 -4.97 -7.78 -5.07 -5.45 -4.27 -4.98

-9.56 -9.33

Find the maximum likelihood estimate of θ. You only need an approximate value; one
decimal place of accuracy will do.

Again, this is a problem that can be solved explicitly by differentiation, and the reader
is invited to give it a try before proceeding. Have the answer? Is it still the same day you
started? Now for the numerical solution. First, write the log likelihood as

`(θ) = ln
n∏
i=1

1

|θ|
√

2π
e−

(di−θ)
2

2θ2

= −n ln |θ| − n

2
ln(2π)−

∑n
i=1 d

2
i

2θ2
+

∑n
i=1 di
θ

− n

2
.

We will do this in R. The data are in a file called norm1.data. Read it. Remember
that > is the R prompt.
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> D <- scan("norm1.data")

Read 50 items

Now define a function to compute the log likelihood.

loglike1 <- function(theta) # Assume data are in a vector called D

{

sumdsq <- sum(D^2); sumd <- sum(D); n <- length(D)

loglike1 <- -n * log(abs(theta)) - (n/2)*log(2*pi) - sumdsq/(2*theta^2) +

sumd/theta - n/2

loglike1 # Return value of function

} # End definition of function loglike1

Just to show how the function works, compute it at a couple of values, say θ = 2 and
θ = −2.

> loglike1(2)

[1] -574.2965

> loglike1(-2)

[1] -321.7465

Negative values of the parameter look more promising, but it is time to get systematic.
The following is called a grid search. It is brutal, inefficient, and usually effective. It is
too slow to be practical for large problems, but this is a one-dimensional parameter and
we are only asked for one decimal place of accuracy. Where should we start? Since the
parameter is the mean of the distribution, it should be safe to search within the range of
the data. Start with widely spaced values and then refine the search. All we are doing
is to calculate the log likelihood for a set of (equally spaced) parameter values and see
where it is greatest. After all, that is the idea behind the MLE.

> min(D); max(D)

[1] -19.28

[1] 10.34

> Theta <- -20:10

> cbind(Theta,loglike1(Theta))

Theta

[1,] -20 -211.5302

[2,] -19 -208.6709

[3,] -18 -205.6623

[4,] -17 -202.4911

[5,] -16 -199.1423

[6,] -15 -195.6002

[7,] -14 -191.8486

[8,] -13 -187.8720

[9,] -12 -183.6580

[10,] -11 -179.2022
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[11,] -10 -174.5179

[12,] -9 -169.6565

[13,] -8 -164.7513

[14,] -7 -160.1163

[15,] -6 -156.4896

[16,] -5 -155.6956

[17,] -4 -162.7285

[18,] -3 -193.8796

[19,] -2 -321.7465

[20,] -1 -1188.0659

[21,] 0 NaN

[22,] 1 -1693.1659

[23,] 2 -574.2965

[24,] 3 -362.2463

[25,] 4 -289.0035

[26,] 5 -256.7156

[27,] 6 -240.6729

[28,] 7 -232.2734

[29,] 8 -227.8888

[30,] 9 -225.7788

[31,] 10 -225.0279

First, we notice that at θ = 0, the log likelihood is indeed Not a Number. For this
problem, the parameter space is all the real numbers except zero – unless one wants to
think of a normal random variable with zero variance as being degenerate at µ; that is,
P (D = µ) = 1. (In his case, what would the data look like?)

But the log likelihood is greatest around θ = −5. We are asked for one decimal place
of accuracy, so,

> Theta <- seq(from=-5.5,to=-4.5,by=0.1)

> Loglike <- loglike1(Theta)

> cbind(Theta,Loglike)

Theta Loglike

[1,] -5.5 -155.5445

[2,] -5.4 -155.4692

[3,] -5.3 -155.4413

[4,] -5.2 -155.4660

[5,] -5.1 -155.5487

[6,] -5.0 -155.6956

[7,] -4.9 -155.9136

[8,] -4.8 -156.2106

[9,] -4.7 -156.5950

[10,] -4.6 -157.0767

[11,] -4.5 -157.6665

> thetahat <- Theta[Loglike==max(Loglike)]
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> # Theta such that Loglike is the maximum of Loglike

> thetahat

[1] -5.3

To one decimal place of accuracy, the maximum is at θ = −5.3. It would be easy to refine
the grid and get more accuracy, but that will do. This is the last time we will see our
friend the grid search, but you may find the approach useful in homework.

Now let’s do the search in a more sophisticated way, using R’s nlm (non-linear mini-
mization) function. 14 The nlm function has quite a few arguments; try help(nlm). The
ones you always need are the first two: the name of the function, and a starting value (or
vector of starting values, for multiparameter problems).

Where should we start? Since the parameter equals the expected value of the distribu-
tion, how about the sample mean? It is often a good strategy to use Method of Moment
estimators as starting values for numerical maximum likelihood. Method of Moments
estimation is reviewed in Section ??.

One characteristic that nlm shares with most optimization routines is that it likes to
minimize rather than maximizing. So we will minimize the negative of the log likelihood
function. For this, it is necessary to define a new function, loglike2.

> mean(D)

[1] -5.051

> loglike2 <- function(theta) { loglike2 <- -loglike1(theta); loglike2 }

> nlm(loglike2,mean(D))

$minimum

[1] 155.4413

$estimate

[1] -5.295305

$gradient

[1] -1.386921e-05

$code

[1] 1

$iterations

[1] 4

By default, nlm returns a list with four elements; minimum is the value of the function
at the point where it reaches its minimum, estimate is the value at which the minimum

14The nlm function is good but generic. See Numerical Recipes for a really good discussion of routines
for numerically minimizing a function. They also provide source code. The Numerical Recipes books have
versions for the Pascal, Fortran and Basic languages as well as C. This is a case where a book definitely
delivers more than the title promises. It may be a cookbook, but it is a very good cookbook written by
expert chemists.
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was located; that’s the MLE. Gradient is the slope in the direction of greatest increase;
it should be near zero. Code is a diagnosis of how well the optimization went; the value
of 1 means everything seemed okay. See help(nlm) for more detail.

We could have gotten just the MLE with

> nlm(loglike2,mean(D))$estimate

[1] -5.295305

That’s the answer, but the numerical approach misses some interesting features of the
problem, which can be done with paper and pencil in this simple case. Differentiating the
log likelihood separately for θ < 0 and θ > 0 to get rid of the absolute value sign, and
then re-uniting the two cases since the answer is the same, we get

`′(θ) = −n
θ

+

∑n
i=1 d

2
i

θ3
−
∑n

i=1 di
θ2

.

Setting `′(θ) = 0 and re-arranging terms, we get

nθ2 + (
n∑
i=1

di)θ − (
n∑
i=1

d2
i ) = 0.

Of course this expression is not valid at θ = 0, because the function we are differentiating
is not even defined there. The quadratic formula yields two solutions:

−
∑n

i=1 di ±
√

(
∑n

i=1 di)
2 + 4n

∑n
i=1 d

2
i

2n
=

1

2

(
−d±

√
d

2
+ 4

∑n
i=1 d

2
i

n

)
, (A.27)

where d is the sample mean.
Let’s calculate these for the given data.

> meand <- mean(D) ; meandsq <- sum(D^2)/length(D)

> (-meand + sqrt(meand^2 + 4*meandsq) )/2

[1] 10.3463

> (-meand - sqrt(meand^2 + 4*meandsq) )/2

[1] -5.2953

The second solution is the one we found with the numerical search. What about the other
one? Is it a minimum? Maximum? Saddle point? The second derivative test will tell us.
The second derivative is

`′′(θ) =
n

θ2
− 3

∑n
i=1 d

2
i

θ4
+

2
∑n

i=1 di
θ3

.

Substituting A.27 into this does not promise to be much fun, so we will be content with
a numerical answer for this particular data set. Call the first root t1 and the second one
(our MLE) t2.
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> t1 <- (-meand + sqrt(meand^2 + 4*meandsq) )/2 ; t1

[1] 10.3463

> t2 <- (-meand - sqrt(meand^2 + 4*meandsq) )/2 ; t2

[1] -5.2953

> n <- length(D)

> # Now calculaate second derivative at t1 and t2

> n/t1^2 - 3*sum(D^2)/t1^4 + 2*sum(D)/t1^3

[1] -0.7061484

> n/t2^2 - 3*sum(D^2)/t2^4 + 2*sum(D)/t2^3

[1] -5.267197

The second derivative is negative in both cases; they are both local maxima! Which peak
is higher?

> loglike1(t1)

[1] -224.9832

> loglike1(t2)

[1] -155.4413

So the maximum we found is higher, which makes sense because it’s within the range of
the data. But we only found it because we started searching near the correct answer.

Let’s plot the log likelihood function, and see what this thing looks like. We know
that because the natural log function goes to minus infinity as its (positive) argument
approaches zero, the log likelihood plunges to −∞ at θ = 0. A plot would look like a
giant icicle and we would not be able to see any detail where it matters. So we will zoom
in by limiting the range of the y axis. Here is the R code.

Theta <- seq(from=-15,to=20,by=0.25); Theta <- Theta[Theta!=0]

Loglike <- loglike1(Theta)

# Check where to break off the icicle

max(Loglike); Loglike[Theta==-3]; Loglike[Theta==3]

plot(Theta,Loglike,type=’l’,xlim=c(-15,20),ylim=c(-375,-155),

xlab=expression(theta),ylab="Log Likelihood")

# This is how you get Greek letters.

Here is the picture. You can see the local maxima around θ = −5 and θ = 10, and also
that the one for negative θ is a higher.

Presumably we would have reached the bad answer if we had started the search in a
bad place. Let’s try starting the search at θ = +3.

> nlm(loglike2,3)

$minimum

[1] 283.7589



A.6. ESTIMATION AND INFERENCE 585

Figure A.1: Log Likelihood for Example A.6.1
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$estimate

[1] 64.83292

$gradient

[1] 0.701077

$code

[1] 4

$iterations

[1] 100

What happened?! The answer is way off, nowhere near the positive root of 10.3463. And
the minimum (of minus the log likelihood) is over 283, when it would have been 224.9832
at θ = 10.3463.

What happened was that the slope of the function was very steep at our starting value
of θ = 3, so nlm took a huge step in a positive direction. It was too big, and landed in
a nearly flat place. Then nlm wandered around until it ran out of its default number
of iterations (notice iterations=100). The exit code of 4 means maximum number of
iterations exceeded.

It should be better if we start close to the answer, say at θ = 8.

> nlm(loglike2,8)

$minimum

[1] 224.9832
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$estimate

[1] 10.34629

$gradient

[1] -4.120564e-08

$code

[1] 1

$iterations

[1] 6

That’s better. The moral of this story is clear. Good starting are very important.
Now let us look at an example of a multi-parameter problem where an explicit formula

for the MLE is impossible, and numerical methods are required.

Example A.6.2 The Gamma Distribution

Let D1, . . . , Dn be a random sample from a Gamma distribution with parameters
α > 0 and β > 0. The probability density function is

f(x;α, β) =
1

βαΓ(α)
e−x/βxα−1

for x > 0, and zero otherwise. Here is a random sample of size n = 50. For this example,
the data are simulated using R, with known parameter values α = 2 and β = 3. The seed
for the random, number generator is set so the pseudo-random numbers can be recovered
if necessary.

> set.seed(3201); alpha=2; beta=3

> D <- round(rgamma(50,shape=alpha, scale=beta),2); D

[1] 20.87 13.74 5.13 2.76 4.73 2.66 11.74 0.75 22.07 10.49 7.26 5.82 13.08

[14] 1.79 4.57 1.40 1.13 6.84 3.21 0.38 11.24 1.72 4.69 1.96 7.87 8.49

[27] 5.31 3.40 5.24 1.64 7.17 9.60 6.97 10.87 5.23 5.53 15.80 6.40 11.25

[40] 4.91 12.05 5.44 12.62 1.81 2.70 3.03 4.09 12.29 3.23 10.94

> mean(D); alpha*beta

[1] 6.8782

[1] 6

> var(D); alpha*beta^2

[1] 24.90303

[1] 18

The parameter vector θ = (α, β), and the parameter space Θ is the first quadrant of
R2.

Θ = {(α, β) : α > 0, β > 0}
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The log likelihood is

`(α, β) = ln
n∏
i=1

1

βαΓ(α)
e−di/βdα−1

i

= ln

β−nα Γ(α)−n exp(− 1

β

n∑
i=1

di)

(
n∏
i=1

di

)α−1


= −nα ln β − n ln Γ(α)− 1

β

n∑
i=1

di + (α− 1)
n∑
i=1

ln di.

The next step would be to partially differentiate the log likelihood with respect to α and
β, set both partial derivatives to zero, and solve two equations in two unknowns. But
even if you are confident that the gamma function is differentiable (it is), you will be
unable to solve the equations. It has to be done numerically.

Define an R function for the minus log likelihood. Notice the lgamma function, a direct
numerical approximation of ln Γ(α). The plan is to numerically minimize the minus log
likelihood function over all (α, β) pairs, for this particular set of data values.

> # Gamma minus log likelihood: alpha=a, beta=b

> gmll <- function(theta,datta)

+ {

+ a <- theta[1]; b <- theta[2]

+ n <- length(datta); sumd <- sum(datta); sumlogd <- sum(log(datta))

+ gmll <- n*a*log(b) + n*lgamma(a) + sumd/b - (a-1)*sumlogd

+ gmll

+ } # End function gmll

Where should the numerical search start? One approach is to start at reasonable esti-
mates of α and β — estimates that can be calculated directly rather than by a numerical
approximation. As in Example A.6.1, Method of Moments estimators are a convenient,
high-quality choice.

For a gamma distribution, E(D) = αβ and V ar(D) = αβ2. So,

α =
E(D)2

V ar(D)
and β =

V ar(D)

E(D)
.

Replacing population moments by sample moments and writing
∼
α and

∼
β for the resulting

Method of Moments estimators, we obtain

∼
α=

D
2

S2
D

and
∼
β=

S2
D

D
,

where D is the sample mean and S2
D is the sample variance. For these data, the Method

of Moments estimates are reasonably close to the correct values of α = 2 and β = 3, but
they are not perfect. Parameter estimates are not the same as parameters!
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> momalpha <- mean(D)^2/var(D); momalpha

[1] 1.899754

> mombeta <- var(D)/mean(D); mombeta

[1] 3.620574

Now for the numerical search. This time, we will request that the nlm function return
the Hessian at the place where the search stops. The Hessian is defined as follows.
Suppose we are minimizing a function g(θ1, . . . , θk) – say, a minus log likelihood. The
Hessian is a k × k matrix of mixed partial derivatives. It may be written in terms of its
(i, j) element s

H =

[
∂2g

∂θi∂θj

]
. (A.28)

In the following, notice how the nlm function assumes that the first argument of the
function being minimized is a vector of arguments over which we should minimize, and
any other arguments (in this case, the name of the data vector) can be specified by name
in the nlm function call.

> gammasearch = nlm(gmll,c(momalpha,mombeta),hessian=T,datta=D); gammasearch

$minimum

[1] 142.0316

$estimate

[1] 1.805930 3.808674

$gradient

[1] 2.847002e-05 9.133932e-06

$hessian

[,1] [,2]

[1,] 36.68932 13.127271

[2,] 13.12727 6.222282

$code

[1] 1

$iterations

[1] 6

> eigen(gammasearch$hessian)$values

[1] 41.565137 1.346466

The nlm object gammasearch is a linked list. The item minimum is the value of the minus
log likelihood function where the search stops. The item estimate is the point at which
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the search stops, so α̂ = 1.805930 and β̂ = 3.808674. The gradient is(
− ∂`
∂α

,− ∂`
∂β

)>
.

Besides being the direction of steepest decrease, it’s something that should be zero at the
MLE. And indeed it is, give or take a bit of numerical inaccuracy.

The Hessian at the stopping place is in gammasearch$hessian. The Hessian is the
matrix of mixed partial derivatives defined by

H =

[
∂2(−`)
∂θi∂θj

]
. (A.29)

The rules about Hessian matrices are

• If the second derivatives are continuous, H is symmetric.

• If the gradient is zero at a point and |H| 6= 0

– If H is positive definite, there is a local minimum at the point.

– If H is negative definite, there is a local maximum at the point.

– If H has both positive and negative eigenvalues, the point is a saddle point.

The eigen command returns a linked list; one item is an array of the eigenvalues, and
the other is the eigenvectors in the form of a matrix. Since for real symmetric matrices,
positive definite is equivalent to all positive eigenvalues, it is convenient to check the
eigenvalues to determine whether the numerical search has located a minimum. In this
case it has. Finally, code=1 means normal termination of the search, and iterations=6

means the function took 6 steps downhill to reach its target.
It is very helpful to have the true parameter values α = 2 and β = 3 for this example.

α̂ = 1.8 seems pretty close, while and β̂ = 3.8 seems farther off. This is a reminder of
how informative confidence intervals and tests can be.

A.6.5 The Invariance Principle

The Invariance Principle of maximum likelihood estimation says that the MLE of a func-
tion is that function of the MLE. An example comes first, followed by formal details.

Example A.6.3 Parameterizing in Terms of Odds Rather than Probability

Let D1, . . . , Dn be a random sample from a Bernoulli distribution (1=Yes, 0=No) with
parameter θ, 0 < θ < 1. The parameter space is Θ = (0, 1), and the likelihood function is

L(θ) =
n∏
i=1

θdi(1− θ)1−di = θ
∑n
i=1 di(1− θ)n−

∑n
i=1 di .
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Differentiating the log likelihood with respect to θ, setting the derivative to zero and
solving yields the usual estimate θ̂ = d, the sample proportion.

Now suppose that instead of the probability, we write this model in terms of the odds
of Di = 1, a re-parameterization that is often useful in categorical data analysis. Denote
the odds by θ′. The definition of odds is

θ′ =
θ

1− θ
= g(θ). (A.30)

As θ ranges from zero to one, θ′ ranges from zero to infinity. So there is a new parameter
space: θ′ ∈ Θ′ = (0,∞).

To write the likelihood function in terms of θ′, first solve for θ, obtaining

θ =
θ′

1 + θ′
= g−1(θ′).

The likelihood in terms of θ′ is then

L(g−1(θ′)) = θ
∑n
i=1 di(1− θ)n−

∑n
i=1 di

=

(
θ′

1 + θ′

)∑n
i=1 di

(
1− θ′

1 + θ′

)n−∑n
i=1 di

=

(
θ′

1 + θ′

)∑n
i=1 di

(
1 + θ′ − θ′

1 + θ′

)n−∑n
i=1 di

=
θ′

∑n
i=1 di

(1 + θ′)n
.

Note how re-parameterization changes the functional form of the likelihood function. The
general formula is L′(θ′) = L(g−1(θ′). For this example,

L′(θ′) =
θ′

∑n
i=1 di

(1 + θ′)n
. (A.31)

At this point one could differentiate the log of (A.31) with respect to θ′, set the
derivative to zero, and solve for θ′. The point of the invariance principle is that this is
unnecessary. The maximum likelihood estimator of g(θ) is g(θ̂), so one need only look
at (A.30) and write

θ̂′ =
θ̂

1− θ̂
=

d

1− d
.

It is often convenient to parameterize a statistical model in more than one way. The
invariance principle can save a lot of work in practice, because it says that you only have
to maximize the likelihood function once. It is useful theoretically too.

In Example A.6.3, the likelihood function has only one maximum and the function g
linking θ′ to θ′ is one-to-one, which is why we can write g−1. This is the situation where
the invariance principle is clearest and most useful. Here is a proof.
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Let the parameter θ ∈ Θ, and re-parameterize by θ′ = g(θ). The new parameter
space is Θ′ = {θ′ : θ′ = g(θ), θ ∈ Θ}. The function g : Θ → Θ′ is one-to-one, meaning
that there exists a function g−1 such that g−1(g(θ)) = θ for all θ ∈ Θ. Suppose the

likelihood function L(θ) has a unique maximum at θ̂ ∈ Θ, so that for all θ ∈ Θ with

θ 6= θ̂, L(θ̂) > L(θ). For every θ ∈ Θ,

L(θ) = L(g−1(g(θ))) = L(g−1(θ′)) = L′(θ′)

Maximizing L′(θ′) over θ′ ∈ Θ′ yields θ̂′ satisfying L′(θ̂′) ≥ L′(θ′) for all θ′ ∈ Θ′. The

invariance principle says θ̂′ = g(θ̂).

Let θ0 = g−1(θ̂′) so that g(θ0) = θ̂′. The objective is to show that this value θ0 ∈ Θ

equals θ̂. Suppose on the contrary that θ0 6= θ̂. Then because the maximum of L(θ) over

Θ is unique, L(θ̂) > L(θ0). Therefore,

L(g−1(g(θ̂))) > L(g−1(g(θ0)))

⇒ L′(g(θ̂)) > L′(g(θ0))

⇒ L′(g(θ̂)) > L′(θ̂′).

Since g(θ̂) ∈ Θ′, this contradicts L′(θ̂′) ≥ L′(θ′) for all θ′ ∈ Θ′, showing θ̂ = θ0. Not

leaving anything to the imagination, we then have g(θ̂) = g(θ0) = θ̂′.
This concludes the proof, but it may be useful to establish the “obvious” fact that

uniqueness of the maximum over Θ implies uniqueness of the maximum over Θ′. If θ̂′1
and θ̂′2 are two points in Θ′ with L′(θ̂′1) ≥ L′(θ′) and L′(θ̂′2) ≥ L′(θ′) for all θ′ ∈ Θ′, the

preceding argument shows that g(θ̂) = θ̂′1 and g(θ̂) = θ̂′2. Because function values are

unique, this can only happen if θ̂′1 = θ̂′2

Exercises A.6.4

A.6.1) For each of the following distributions, derive a general expression for the Maximum
Likelihood Estimator (MLE). Carry out the second derivative test to make sure you
have a maximum. (What is the relationship of this to the Hessian?) Then use the
data to calculate a numerical estimate.

(a) p(x) = θ(1− θ)x for x = 0, 1, . . ., where 0 < θ < 1. Data: 4, 0, 1, 0, 1, 3,

2, 16, 3, 0, 4, 3, 6, 16, 0, 0, 1, 1, 6, 10. Answer: 0.2061856

(b) f(x) = α
xα+1 for x > 1, where α > 0. Data: 1.37, 2.89, 1.52, 1.77, 1.04,

2.71, 1.19, 1.13, 15.66, 1.43 Answer: 1.469102

(c) f(x) = τ√
2π
e−

τ2x2

2 , for x real, where τ > 0. Data: 1.45, 0.47, -3.33, 0.82,

-1.59, -0.37, -1.56, -0.20 Answer: 0.6451059

(d) f(x) = 1
θ
e−x/θ for x > 0, where θ > 0. Data: 0.28, 1.72, 0.08, 1.22,

1.86, 0.62, 2.44, 2.48, 2.96 Answer: 1.517778
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A.6.2) The univariate normal density is

f(y|µ, σ2) =
1

σ
√

2π
e

(y−µ)2

σ2

(a) Show that the univariate normal likelihood may be written

L(µ, σ2) = (2πσ2)−n/2 exp− n

2σ2

{
σ̂2 + (y − µ)2

}
,

where σ̂2 = 1
n

∑n
i=1(yi − y)2. Hint: Add and subtract y.

(b) How does this expression allow you to see without differentiating that the MLE
of µ is y?

A.6.3) Let X1, . . . , X5 be a random sample from a Gamma distribution with parameters
α > 0 and β = 1. That is, the density is

f(x;α) =
1

Γ(α)
e−xxα−1

for x > 0, and zero otherwise.

The five data values are 2.06, 1.08, 0.96, 1.32, 1.53. Find an approximate numerical
value of the maximum likelihood estimate of α. Your final answer is one number.
For this question you will hand in a one-page printout. On the back, you will write
a brief explanation of what you did.

A.6.4) For each of the following distributions, try to derive a general expression for the
Maximum Likelihood Estimator (MLE). Then, use R’s nlm function to obtain the
MLE numerically for the data supplied for the problem. The data are in a separate
HTML document, because it saves a lot of effort to copy and paste rather than typing
the data in by hand, and PDF documents can contain invisible characters that mess
things up. NOTE! Put them here as well as in assignment HTML document.

(a) f(x) = 1
π[1+(x−θ)2]

for x real, where −∞ < θ <∞.

-3.77 -3.57 4.10 4.87 -4.18 -4.59 -5.27 -8.33 5.55 -4.35 -0.55 5.57

-34.78 5.05 2.18 4.12 -3.24 3.78 -3.57 4.86

For this one, try at least two different starting values and plot the minus log
likelihood function!

(b) f(x) = 1
2
e−|x−θ| for x real, where −∞ < θ <∞.

3.36 0.90 2.10 1.81 1.62 0.16 2.01 3.35 4.75 4.27 2.04

(c) f(x) = Γ(α+β)
Γ(α)Γ(β)

xα−1(1− x)β−1 for 0 < x < 1, where α > 0 and β > 0.

0.45 0.42 0.38 0.26 0.43 0.24 0.32 0.50 0.44 0.29 0.45 0.29 0.29 0.32 0.30

0.32 0.30 0.38 0.43 0.35 0.32 0.33 0.29 0.20 0.46 0.31 0.35 0.27 0.29 0.46

0.43 0.37 0.32 0.28 0.20 0.26 0.39 0.35 0.35 0.24 0.36 0.28 0.32 0.23 0.25

0.43 0.30 0.43 0.33 0.37
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If you are getting a lot of warnings, maybe it’s because the numerical search is
leaving the parameter space. If so and if you are using R, try help(nlminb).

For each distribution, be able to state (briefly) why differentiating the log likelihood
and setting the derivative to zero does not work. For the computer part, bring to
the quiz one sheet of printed output for each of the 3 distributions. The three sheets
should be separate, because you may hand only one of them in. Each printed page
should show the following, in this order.

• Definition of the function that computes the likelihood, or log likelihood, or
minus log likelihood or whatever.

• How you got the data into R – probably a scan statement.

• Listing of the data for the problem.

• The nlm statement and resulting output.

A.6.5) Let Y = Xβ + ε, where X is an n×p matrix of known constants, β is a p×1 vector
of unknown constants, and ε is multivariate normal with mean zero and covariance
matrix σ2In, with σ2 > 0 an unknown constant.

(a) What is the distribution of Y? There is no need to show any work.

(b) Assuming that the columns of X are linearly independent, show that the max-
imum likelihood estimate of β is β̂ = (X>X)−1X>Y . Don’t use derivatives.
The trick is to add and subtract β̂, distribute the expected value, and simplify.
Does your answer apply for any value of σ2? Why or why not?

(c) Given the MLE of β, find the MLE of σ2. Show your work. This time you
may differentiate.

A.6.6 Interval Estimation and Testing

All the tests and confidence intervals here are based on large-sample approximations,
primarily the Central Limit Theorem. See Section A.5 for basic definitions and results.
They are valid as the sample size n → ∞, but frequently perform well for samples that
are only fairly large. How big is big enough? This is a legitimate question, and the honest
answer is that it depends upon the distribution of the data. In practice, people often just
apply these tools almost regardless of the sample size, because nothing better is available.
Some do it with their eyes closed, some squint, and some have their eyes wide open.

The basic result comes from the research of Abraham Wald (give a source) in the 1950s.

As the sample size n increases, the distribution of the maximum likelihood estimator θ̂n
approaches a multivariate normal with expected value θ and variance-covariance matrix
Vn(θ). It is quite remarkable that anyone could figure this out, given that it includes
cases like the Gamma, where no closed-form expressions for the maximum likelihood
estimators are possible. The theorem in question is not true for every distribution, but it
is true if the distribution of the data is not too strange. The precise meaning of “not too
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strange” is captured in a set of technical conditions called regularity conditions. Volume
2 of Kendall’s advanced theory of statistics [63] is a good textbook source for the details.

If θ is a k × 1 matrix, then Vn(θ) is a k × k matrix, called the asymptotic covariance
matrix of the estimators. It’s not too surprising that it depends on the parameter θ,
and it also depends on the sample size n. Using the asymptotic covariance matrix, it is
possible to construct a variety of useful tests and confidence intervals.

Fisher Information

The fact that Vn(θ) depends on the unknown parameter will present no problem; substi-

tuting θ̂n for θ yields an estimated asymptotic covariance matrix. So consider the form
of the matrix V.

Think of a one-parameter maximum likelihood problem, where we differentiate the log
likelihood, set the derivative to zero and solve for θ; the solution is θ̂. The log likelihood
will be concave down at θ̂, but the exact way it looks will depend on the distribution
as well as the sample size. In particular, it could be almost flat at θ̂, or it could be
nearly a sharp peak, with extreme downward curvature. In the latter case, clearly the log
likelihood is more informative about θ. It contains more information. One of the many
good ideas of R. A. F. Fisher was that the second derivative reflects curvature, and and
can be viewed as a measure of the information provided by the sample data. It is called
the Fisher Information in his honour.

Now with increasing sample size, nearly all log likelihood functions acquire more and
more downward curvature at the MLE. This makes sense – more data provide more
information. But how about the information from just one observation? If you look at
the second derivative of the log likelihood function,

∂2`

∂θ2
=

∂2

∂θ2
ln

n∏
i=1

f(di; θ) =
n∑
i=1

∂2

∂θ2
ln f(di; θ),

you see that it is the sum of n quantities. Each observation is contributing a piece
to the downward curvature. But how much? Well, it depends on the particular data
value xi. But the data are a random sample, so in fact the contribution is a random
quantity: ∂2

∂θ2
ln f(Xi; θ). How about the information one would expect an observation

to contribute? Okay, take the expected value. Finally, note that because the curvature
is down at the MLE, the quantity we are discussing is negative. But we want to call
this “information,” and it would be nicer if it were a positive number, so higher values
meant more information. Okay, multiply by −1. This leads to the definition of the Fisher
Information in a single observation:

I(θ) = E

[
− ∂2

∂θ2
ln f(Di; θ)

]
. (A.32)

The information is the same for i = 1, . . . , n, and the Fisher Information in the entire
sample is just nI(θ).



A.6. ESTIMATION AND INFERENCE 595

It was clear that Fisher was onto something good, because for many problems where
the variance of θ̂ can be calculated exactly, it is one divided by the Fisher Information.
Subsequently Cramér and Rao discovered the Cramér-Rao Inequality, which says that for
any statistic T that is an unbiased estimator of θ,

V ar(T ) ≥ 1

nI(θ)
.

That’s impressive, because to have a small variance is a great property in an esti-
mator; it means precise estimation. The Cramér-Rao inequality tells us that in terms
of variance, one cannot do better than an unbiased estimator whose variance equals hte
reciprocal (inverse) of the Fisher Information, and many MLEs do that. Subsequently,
Wald15 showed that under some regularity conditions, the variances of maximum likeli-
hood estimators in general attain the Cramér-Rao lower bound as n→∞. Thus, to learn
the asymptotic variance of θ̂, you do not need an explicit formula for θ̂. All you need is
the Fisher Information. Also, in terms of variance nothing can beat maximum likelihood
estimation, at least for large samples. So if the distribution of the data is known so you
can write down the likelihood, it is difficult to justify any method of estimation other
than maximum likelihood.

Calculating the expected value in (A.32) is often not too hard because taking the log
and differentiating twice results in some simplification; it’s a source of many fun homework
problems. But still it can be a chore, especially for multiparameter problems, which will
be taken up shortly. For larger sample sizes, the Law of Large Numbers (Section A.5)
guarantees that the expected value can be approximated quite well by a sample mean, so
that

I(θ) = E

(
− ∂2

∂θ2
ln f(D1; θ)

]
≈ 1

n

n∑
i=1

− ∂2

∂θ2
ln f(Di; θ).

This is sometimes called the observed Fisher Information.
Multiplying the observed Fisher Information by n to get the approximate information

in the entire sample yields

n∑
i=1

− ∂2

∂θ2
ln f(Di; θ) =

∂2

∂θ2

n∑
i=1

− ln f(Di; θ) =
∂2

∂θ2

(
− ln

n∏
i=1

f(Di; θ)

)
.

That’s just the second derivative of the minus log likelihood.
The parameter θ is unknown, so to get the estimated Fisher Information in the whole

sample, substitute θ̂. The result is

∂2

∂θ2

(
− ln

n∏
i=1

f(Di; θ̂)

)
.

That’s the second derivative of minus the log likelihood, evaluated at the maximum like-
lihood estimate. And, it’s a function of the sample data that is not a function of any

15Need a reference
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unknown parameters; in other words it is a statistic. If you have already carried out the
second derivative test to check that you really had a maximum, all you need to do to
estimate the variance of θ̂ is take the reciprocal of the second derivative and multiply by
−1. It is truly remarkable how neatly this all works out.

Generalization to the multivariate case is very natural. Now the parameter is θ =
(θ1, . . . , θk)

> and the Fisher Information Matrix is a k × k matrix of (expected) mixed
partial derivatives, defined by

I(θ) =

[
−E

(
∂2

∂θi∂θj
f(D1;θ)

)]
, (A.33)

where the boldface Di is an acknowledgement that the data might also be multivariate.
To estimate the Fisher information matrix, one may simply put a hat on θ in A.33.

If calculating the expected values is too much of a pain, one may replace the expected
value by a sample mean as well as replacing θ with θ̂. The result is

J (θ̂) =

[
∂2

∂θi∂θj

(
− ln

n∏
q=1

f(Dq; θ̂)

)]
=

[
∂2

∂θi∂θj

(
−`(θ̂)

)]
. (A.34)

I(θ̂) is sometimes loosely called the “expected” Fisher information, and J (θ̂) is some-
times called the “observed” Fisher information, even though it would be more accurate to
call it the estimated observed Fisher information. They are both excellent large-sample
estimates of I(θ) in (A.33).

In the one-dimensional case, one divided by the estimated Fisher Information is the
(estimated) asymptotic variance of the maximum likelihood estimator. In the multi-
parameter case, the estimated Fisher Information is a matrix, and the corresponding esti-
mated asymptotic variance-covariance matrix is its inverse. Assume that the true Fisher
information matrix is being estimated by J (θ̂), and denote the estimated asymptotic

covariance matrix by V̂n. In that case we have

V̂n = J (θ̂n)−1. (A.35)

Now comes the really good part. Comparing Formula (A.34) for the Fisher Information to
Formula (A.29) for the Hessian, we see that they are exactly the same. And the Hessian

evaluated at θ̂ is a by-product of the numerical search for the MLE 16.
So to get a good estimate of the asymptotic covariance matrix, minimize minus the log

likelihood, tell the software to give you the Hessian, and calculate its inverse by computer.
The theoretical story may be a bit long here, but what you have to do in practice is quite
simple.

Continuing with the Gamma distribution Example A.6.2, the Hessian is

16At least for generic numerical minimization routines like R’s nlm. Some specialized methods like
iterative proportional fitting of log-linear models and Fisher scoring (iteratively re-weighted least squares)
for generalized linear models maximize the likelihood indirectly and do not require calculation of the
Hessian.
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> gammasearch$hessian

[,1] [,2]

[1,] 36.68932 13.127271

[2,] 13.12727 6.222282

and the asymptotic covariance is just

> Vhat = solve(gammasearch$hessian); V

[,1] [,2]

[1,] 0.1111796 -0.2345577

[2,] -0.2345577 0.6555638 .

The diagonal elements of V̂ are the estimated variances of the sampling distributions
of α̂ and β̂ respectively, and their square roots are the standard errors.

> SEalphahat = sqrt(Vhat[1,1]); SEbetahat = sqrt(Vhat[2,2])

In general, let θ denote an element of the parameter vector, let θ̂ be its maximum likelihood
estimator, and let the standard error of θ̂ be written Sθ̂. Then Wald’s Central Limit
Theorem for maximum likelihood estimators tells us that

Z =
θ̂ − θ
Sθ̂

(A.36)

has an approximate standard normal distribution. In particular, for the Gamma example

Z1 =
α̂− α
Sα̂

and Z2 =
β̂ − β
Sβ̂

may be treated as standard normal.

Confidence Intervals

These quantities may be used to produce both tests and confidence intervals. For example,
a 95% confidence interval for the parameter θ is obtained as follows.

0.95 ≈ Pr{−1.96 ≤ Z ≤ 1.96}

= Pr

{
−1.96 ≤ θ̂ − θ

Sθ̂
≤ 1.96

}
= Pr

{
θ̂ − 1.96Sθ̂ ≤ θ ≤ θ̂ + 1.96Sθ̂

}
This could also be written θ̂ ± 1.96Sθ̂ .

If you are used to seeing confidence intervals with a
√
n and wondering where it went,

recall that SX = S√
n
. The

√
n is also present in the confidence interval for θ, but it is

embedded in Sθ̂.
Here are the 95% confidence intervals for the Gamma distribution example:
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> alphahat = gammasearch$estimate[1]; betahat = gammasearch$estimate[2]

> Lalpha = alphahat - 1.96*SEalphahat; Ualpha = alphahat + 1.96*SEalphahat

> Lbeta = betahat - 1.96*SEbetahat; Ubeta = betahat + 1.96*SEbetahat

> cat("\nEstimated alpha = ",round(alphahat,2)," 95 percent CI from ",

+ round(Lalpha,2)," to ",round(Ualpha,2), "\n\n")

Estimated alpha = 1.81 95 percent CI from 1.15 to 2.46

> cat("\nEstimated beta = ",round(betahat,2)," 95 percent CI from ",

+ round(Lbeta,2)," to ",round(Ubeta,2), "\n\n")

Estimated beta = 3.81 95 percent CI from 2.22 to 5.4

Notice that while the parameter estimates may not seem very accurate, the 95% confidence
intervals do include the true parameter values α = 2 and β = 3.

Z-tests

The standard normal variable in (A.36) can be used to form a Z-test of H0 : θ = θ0 using

Z =
θ̂ − θ0

Sθ̂
.

So for example, suppose the data represent time intervals between events occurring in
time, and we wonder whether the events arise from a Poisson process. In this case the
distribution of times would be exponential, which means α = 1. To test this null hypoth-
esis at the 0.05 level,

> Z = (alphahat-1)/SEalphahat; Z

[1] 2.417046

> pval = 2*(1-pnorm(abs(Z))); pval # Two-sided test

[1] 0.01564705

So, the null hypothesis is rejected, and because the value is positive, the conclusion is
that the true value of α is greater than one17.

17The following basic question arises from time to time. Suppose a null hypothesis is rejected in favour
of a two-sided alternative. Are we then “allowed” to look at the sign of the test statistic and conclude
that θ < θ0 or θ > θ0, or must we just be content with saying θ 6= θ0? The answer is that directional
conclusions are theoretically justified as well as practically desirable. Think of splitting up the two-
sided level α test (call it the overall test) into two one-sided tests with significance level α/2. The null
hypotheses of these tests are H0,a : θ ≤ θ0 and H0,b : θ ≥ θ0. Exactly one of these null hypotheses will be
rejected if and only if the null hypothesis of the overall test is rejected, so the set of two one-sided tests
is fully equivalent to the overall two-sided test. And directional conclusions from the one-sided tests are
clearly justified.

On a deeper level, notice that the null hypothesis of the overall test is the intersection of the null
hypotheses of the one-sided tests, and its critical region (rejection region) is the union of the critical



A.6. ESTIMATION AND INFERENCE 599

When statistical software packages display this kind of large-sample Z-test, they usu-
ally just divide θ̂ by its standard error, testing the null hypothesis H0 : θ = 0. For
parameters like regression coefficients, this is usually a good generic choice.

A.6.7 Wald Tests

The approximate multivariate normality of the MLE can be used to construct a larger class
of hypothesis tests for linear null hypotheses. A linear null hypothesis sets a collection
of linear combinations of the parameters to zero. Suppose θ = (θ1, . . . , θk)

> is a k × 1
vector. A linear null hypothesis can be written

H0 : Lθ = h,

where L is an r × k matrix of constants, with rank r, r ≤ k. As an example let θ =
(θ1, . . . θ7)>, and the null hypothesis is

θ1 = θ2, θ6 = θ7,
1

3
(θ1 + θ2 + θ3) =

1

3
(θ4 + θ5 + θ6) .

This may be expressed in the form Lθ = h as follows:

 1 −1 0 0 0 0 0
0 0 0 0 0 1 −1
1 1 1 −1 −1 −1 0




θ1

θ2

θ3

θ4

θ5

θ6

θ7


=

 0
0
0

 .

Recall from Section A.4 of this appendix that if X ∼ Nk(µ,Σ), and L is an r × k
constant matrix of rank r, then

CX ∼ Nr(Lµ,LΣL>)

and

(CX− Lµ)>(LΣC>)−1(LX− Lµ) ∼ χ2(r).

Similar facts hold asymptotically — that is approximately, as the sample size n ap-
proaches infinity. Because (approximately) θ̂n ∼ Nk(θ, V̂n),

Lθ̂n ∼ Nr(Lθ,LV̂nL
>)

regions of the one-sided tests. This makes the two one-sided tests a set of union-intersection multiple
comparisons, which are always simultaneously protected against Type I error at the significance level of
the overall test. Performing the two-sided test and then following up with a one-sided test is very much
like following up a statistically significant ANOVA with Scheffeé tests. Indeed, Scheffé tests are another
example of union-intersection multiple comparisons. See [30] for details.
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and
(Lθ̂n − Lθ)>(CV̂nL

>)−1(Lθ̂n − Lθ) ∼ χ2(r).

So, if H0 : Lθ = h is true, we have the Wald test statistic

Wn = (Lθ̂n − h)>(CV̂nL
>)−1(Lθ̂n − h) ∼ χ2(r), (A.37)

where again,

V̂n = J (θ̂)−1 =

[
∂2

∂θi∂θj

(
−`(θ̂)

)]−1

.

Here is a test of H0 : α = β for the Gamma distribution example. A little care must
be taken to ensure that the matrices in (A.37) are the right size.

> # H0: C theta = 0 is that alpha = beta <=> alpha-beta=0

> # Name C is used by R

> CC = rbind(c(1,-1)); is.matrix(CC); dim(CC)

[1] TRUE

[1] 1 2

> thetahat = as.matrix(c(alphahat,betahat)); dim(thetahat)

[1] 2 1

> W = t(CC%*%thetahat) %*% solve(CC%*%Vhat%*%t(CC)) %*% CC%*%thetahat

> W = as.numeric(W) # it was a 1x1 matrix

> pval2 = 1-pchisq(W,1)

> cat("Wald Test: W = ", W, ", p = ", pval2, "\n")

Wald Test: W = 3.245501 , p = 0.07161978

We might as well define a function to do Wald tests in general. The function returns
a pair of quantities, the Wald test statistic and the p-value.

> WaldTest = function(C,thetahat,h=0) # H0: C theta = h

+ {

+ WaldTest = numeric(2)

+ names(WaldTest) = c("W","p-value")

+ dfree = dim(C)[1]

+ W = t(C%*%thetahat-h) %*% solve(C%*%Vhat%*%t(C)) %*% (C%*%thetahat-h)

+ W = as.numeric(W)

+ pval = 1-pchisq(W,dfree)

+ WaldTest[1] = W; WaldTest[2] = pval

+ WaldTest

+ } # End function WaldTest

Here is the same test of H0 : α = β done immediately above, just to test out the
function. Notice that the default value of h in H0 : Lθ = h is zero, so it does not have to
be specified. The matrix CC has already been created, and the computed values are the
same as before, naturally.
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> WaldTest(CC,as.matrix(c(alphahat,betahat)))

W p-value

3.24550127 0.07161978

Here is a test of H0 : α = 2, β = 3, which happen to be the true parameter values.
The null hypothesis is not rejected.

> C2 = rbind(c(1,0),

+ c(0,1) )

> WaldTest(C2,as.matrix(c(alphahat,betahat)),c(2,3))

W p-value

1.3305497 0.5141322

Finally, here is a test of H0 : α = 1, which was done earlier with a Z-test.

> WaldTest(t(c(1,0)),as.matrix(c(alphahat,betahat)),1)

W p-value

5.84210645 0.01564708

> Z; pval

[1] 2.417045

[1] 0.01564708

> Z^2

[1] 5.842106

The results of the Wald and Z tests are identical, with Wn = Z2. In general, suppose the
matrix L in H0 : Lθ = h has just a single row, and that row contains one 1 in position
j and all the rest zeros. Take a look at Formula (A.37) for the Wald test statistic. Pre-

multiplying by L in CV̂n picks out row j of V̂n, and post-multiplying by L> picks out
column j of the result, so that CV̂nL

> = v̂j,j, and inverting it puts it in the denominator.

In the numerator, (Lθ̂n − h)>(Lθ̂n − h) = (θ̂j − θj,0)2, so that Wn = Z2. Thus, squaring
a large-sample Z-test gives a Wald chisquare test with one degree of freedom.

A.6.8 Likelihood Ratio Tests

Likelihood ratio tests fall into two categories, exact and large-sample. The main examples
of exact likelihood ratio tests include are the standard F -tests and t-tests associated with
regression and the analysis of variance for normal data. Here, we concentrate on the
large-sample likelihood ratio tests.

Consider the following hypothesis-testing framework. The data are D1, . . . , Dn. The
distribution of these independent and identically distributed random variables depends
on the parameter θ, and we are testing a null hypothesis H0.

D1, . . . , Dn
i.i.d.∼ Pθ, θ ∈ Θ,

H0 : θ ∈ Θ0 v.s. HA : θ ∈ Θ ∩Θc
0,
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For example, let D1, . . . , Dn
i.i.d.∼ N(µ, σ2). The null hypothesis is H0 : µ = µ0 v.s. versus

HA : µ 6= µ0. The full parameter space is Θ = {(µ, σ2) : −∞ < µ < ∞, σ2 > 0} and
the restricted parameter space is Θ0 = {(µ, σ2) : µ = µ0, σ

2 > 0}. The full and restricted
parameter spaces are shown in Figure A.2.

Figure A.2: Full versus reduced parameter spaces for H0 : µ = µ0 versus HA : µ 6= µ0

µ

σ2

µ
0

In general, the data have likelihood function

L(θ) =
n∏
i=1

f(di; θ),

where f(di; θ) is the density or probability mass function evaluated at di. Let θ̂ denote the
usual Maximum Likelihood Estimate (MLE). That is, it is the parameter value for which

the likelihood function is greatest, over all θ ∈ Θ. Let θ̂0 denote the restricted MLE. The
restricted MLE is the parameter value for which the likelihood function is greatest, over
all θ ∈ Θ0. This MLE is restricted by the null hypothesis H0 : θ ∈ Θ0. It should be clear
that L(θ̂0) ≤ L(θ̂), so that the likelihood ratio.

λ =
L(θ̂0)

L(θ̂)
≤ 1.

The likelihood ratio will equal one if and only if the overall MLE θ̂ is located in Θ0. In
this case, there is no reason to reject the null hypothesis.

Suppose that the likelihood ratio is strictly less than one. If it’s a lot less than one,
then the data are a lot less likely to have been observed under the null hypothesis than
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under the alternative hypothesis, and the null hypothesis is questionable. This is the basis
of the likelihood ratio tests.

If λ is small (close to zero), then ln(λ) is a large negative number, and −2 lnλ is a
large positive number.

Tests will be based on

G2 = −2 ln

(
maxθ∈Θ0 L(θ)

maxθ∈Θ L(θ)

)
= −2 ln

(
L(θ̂0)

L(θ̂)

)
= −2 lnL(θ̂0)− [−2 lnL(θ̂)]

= 2
(
−`(θ̂0)− [−`(θ̂)]

)
. (A.38)

Thus, the test statistic G2 is the difference between two −2 log likelihood functions. This
means that to carry out a test, you can minimize −`(θ) twice, first over all θ ∈ Θ, and
then over all θ ∈ Θ0. The test statistic is the difference between the two minimum values,
multiplied by two.

If the null hypothesis is true, then the test statistic G has, if the sample size is large,
an approximate chisquare distribution, with degrees of freedom equal to the difference of
the dimension of Θ and Θ0. For example, if the null hypothesis is that 4 elements of θ
equal zero, then the degrees of freedom are equal to 4. If the null hypothesis imposes
r linearly independent linear restrictions on θ (as in H0 : Lθ = h), then the degrees of
freedom equal r, the number or rows in L. Another way to obtain the degrees of freedom
is by counting the equal signs in the null hypothesis.

The p-value associated with the test statistic G2 is Pr{X > G2}, where X is a
chisquare random variable with r degrees of freedom. If p < α, we reject H0 and call the
results “statistically significant.” The standard choice is α = 0.05.

Many null hypotheses are linear statements of the form H0 : Lθ = h, but some are
not.

Example A.6.4 A Non-linear Null Hypothesis

Suppose you wanted to test H0 : σ2 = µ2 based on a normal random sample. The
restricted MLE is fairly easy to find numerically (see Example A.6.1), and it seems like
the degrees of freedom should equal one because the null hypothesis has one equals sign.
Can this be justified formally?

The original proof published in 1938 by Wilks [70] applies to linear null hypotheses,
and if you look at high-level textbooks like the Advanced Theory of Statistics [63], you
will find only Wilks’ proof, without modification. A way around this that often works
is to use the Invariance Principle of Section A.6.5. Suppose the null hypothesis is that
one or more non-linear functions of θ equal zero. If you can, make those functions part
of a function that is one-to-one, and then re-parameterize. Your null hypothesis is now a
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linear null hypothesis in the new paraameter space. Wilks’ theorem applies, and you are
done. Furthermore, you don’t have to literally re-parameterize. A glance at the proof of
the Invariance Principle confirms that the likelihood ratio test statistic is the same under
the original and re-parameterized models. Thus, the degrees of freedon equals he number
of equals signs in the null hypothesis, period.

For Example A.6.4, let θ′1 = σ2 − µ2 and θ′2 = µ. The function is one-to-one, because
µ = θ′2 and σ2 = θ′1 + θ′22 . The null hypothesis is H0 : θ′1 = 0. That’s is a linear null
hypothesis, so by Wilks’ Theorem, the test statistic has a chi-squared distribution with
df = 1.

Sometimes this lovely trick does not work. In a regression, it is easy to test the null
hypothesis that β1 and β2 are both zero; this is a linear null hypothesis. But suppose that
you want to test the null hypothesis that β1 or β2 (or maybe both) are equal to zero. This
is reasonable and attractive, because the alternative is that they are both non-zero, and
it would be nice to have a single test for this. The null hypothesis is H0 : β1β2 = 0, which
is non-linear. Furthermore, any function that yields θ′1 = β1β2 = 0 can’t be one-to-one,
because recovering β1 or β2 would potentially involve dividing by zero. Thus, while it
would be perfectly possible to obtain the restricted MLE θ̂0 numerically and calculate the
likelihood ratio statistic, its distribution under the null hypothesis is mysterious (to me,
anyway). So, transforming a non-linear null hypothesis into a linear one by a one-to-one
re-parameterization is a method that often works, but not always.

To illustrate the likelihood ratio tests, consider (one last time) the Gamma distribution
Example A.6.2. For comparison, the likelihood ratio method will be used test the same
three null hypotheses that were tested earlier using Wald tests. They are

• H0 : α = 1

• H0 : α = β

• H0 : α = 2, β = 3

For H0 : α = 1, the restricted parameter space is Θ0 = {(α, β) : α = 1, β > 0}.
Because the Gamma distribution with α = 1 is exponential, the restricted MLE is θ̂0 =
(1, d). It is more informative, though, to use numerical methods.

To maximize the likelihood function (or minimize minus the log likelihood) over Θ0,
it might be tempting to impose the restriction on θ, simplify the log likelihood, and write
the code for a new function to minimize. But this strategy is not recommended. It’s time
consuming, and mistakes are possible. In the R work shown below, notice how the function
gmll1 is just a “wrapper” for the unrestricted minus log likelihood function gmll. It is a
function of β (and the data, of course), but all it does is call gmll with α set to one and
β free to vary.

> gmll1 <- function(b,datta) # Restricted gamma minus LL with alpha=1

+ { gmll1 <- gmll(c(1,b),datta)

+ gmll1

+ } # End of function gmll1
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> mean(D) # Resticted MLE of beta, just to check

[1] 6.8782

The next step is to invoke the nonlinear minimization function nlm. The second
argument is a (vector of) starting value(s). Starting the search at β = 1 turns out to be
unfortunate.

> gsearch1 <- nlm(gmll1,1,datta=D); gsearch1

$minimum

[1] 282.6288

$estimate

[1] 278.0605

$gradient

[1] 0.1753689

$code

[1] 4

$iterations

[1] 100

The answer g1search$estimate=278.0605 is way off the correct answer of d = 6.8782, it
took 100 steps, and the exit code of 4 means the function ran out of the default number
of iterations. Starting at the unrestricted β̂ works better.

> gsearch1 <- nlm(gmll1,betahat,datta=D); gsearch1

$minimum

[1] 146.4178

$estimate

[1] 6.878195

$gradient

[1] -1.768559e-06

$code

[1] 1

$iterations

[1] 7

That’s better. Good starting values are important! Now the test statistic is easy to
calculate.
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> Gsq = 2 * (gsearch1$minimum-gammasearch$minimum); pval = 1-pchisq(Gsq,df=1)

> Gsq; pval

[1] 8.772448

[1] 0.003058146

Let us carry out the other two tests, and then compare the Wald and likelihood ratio test
results together in a table.

For H0 : α = β, the restricted parameter space is Θ0 = {(α, β) : α = β > 0}.

> gmll2 <- function(ab,datta) # Restricted gamma minus LL with alpha=1

+ { gmll2 <- gmll(c(ab,ab),datta)

+ gmll2

+ } # End of function gmll2

> abstart = (alphahat+betahat)/2

> gsearch2 <- nlm(gmll2,abstart,datta=D); gsearch2

Warning messages:

1: NaNs produced in: log(x)

2: NA/Inf replaced by maximum positive value

$minimum

[1] 144.1704

$estimate

[1] 2.562369

$gradient

[1] -4.991384e-07

$code

[1] 1

$iterations

[1] 4

> Gsq = 2 * (gsearch2$minimum-gammasearch$minimum); pval = 1-pchisq(Gsq,df=1)

> Gsq; pval

[1] 4.277603

[1] 0.03861777

This seems okay; it only took 4 iterations and the exit code of 1 is a clean bill of health.
But the warning messages are a little troubling. Probably they just indicate that the
search tried a negative parameter value, outside the parameter space. The R function
nlminb does minimization with bounds. Let’s try it.

> gsearch2b <- nlminb(start=abstart,objective=gmll2,lower=0,datta=D); gsearch2b

$par
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[1] 2.562371

$objective

[1] 144.1704

$convergence

[1] 0

$message

[1] "relative convergence (4)"

$iterations

[1] 5

$evaluations

function gradient

7 8

Since nlminb gives almost the same restricted α̂ = β̂ = 2.5624 (and no warnings), the
warning messages from nlm were probably nothing to worry about.

Finally, for H0 : α = 2, β = 3 the restricted parameter space Θ0 is a single point and
no optimization is necessary. All we need to do is calculate the minus log likelihood there.

> Gsq = 2 * (gmll(c(2,3),D)-gammasearch$minimum); pval = 1-pchisq(Gsq,df=1)

> Gsq; pval

[1] 2.269162

[1] 0.1319713

The top panel of Table A.1 shows the Wald and likelihood ratio tests that have been
done on the Gamma distribution data. But this is n = 50, which is not a very large
sample. In the lower panel, the same tests were done for a sample of n = 200, formed by
adding another 150 cases to the original data set. The results are typical; the χ2 values
are much closer except where they are far out on the tails, and both test lead to the same
conclusions (though not always to the truth).

Like the Wald tests, likelihood ratio tests are very flexible and are distributed ap-
proximately as chi-square under the null hypothesis for large samples. In fact, they are
asymptotically equivalent under H0, meaning that if the null hypothesis is true, the differ-
ence between the likelihood ratio statistic and the Wald statistic goes to zero in probability
as the sample size approaches infinity.

Since the Wald and likelihood ratio tests are equivalent, does it matter which one you
use? The answer is that usually, Wald tests and likelihood ratio tests lead to the same
conclusions and their numerical values are close. But the tests are only equivalent as
n→∞. When there is a meaningful difference, the likelihood ratio tests usually perform
better, especially in terms of controlling Type I error rate for relatively small sample
sample sizes.
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Table A.1: Tests on data from a gamma distribution with α = 2 and β = 3

n = 50
Wald Likelihood Ratio

H0 χ2 p-value χ2 p-value
α = 1 5.8421 0.0156 8.7724 0.0031
α = β 3.2455 0.0762 4.2776 0.0386
α = 2, β = 3 1.3305 0.5141 2.2692 0.1320

n = 200
α = 1 34.1847 5.01e-09 58.2194 2.34e-14
α = β 0.9197 0.3376 0.9664 0.3256
α = 2, β = 3 1.5286 0.4657 1.2724 0.2593

Table A.2: Wald versus likelihood ratio: Type I error in 10,000 simulated datasets

n
Test 50 100 250 500 1000
Wald 1180 1589 1362 0749 0556

Likelihood Ratio 0330 0391 0541 0550 0522

Table A.2 below contains the most extreme example I know. For a particular structural
equation model with normal data (details don’t matter for now), ten thousand data sets
were randomly generated so that the null hypothesis was true. This was done for several
sample sizes: n = 50, 100, 250, 500 and 1, 000. Using each of the 50,000 resulting data
sets, the null hypothesis was tested with a Wald test and a likelihood ratio test at the
α = 0.05 significance level. If the asymptotic results held, we would expect both tests to
reject H0 500 times at each sample size.

So for this deliberately nasty example, the Wald test requires n = 1, 000 before it
settles down to something like the theoretical 0.05 significance level. The likelihood ratio
test needs n = 250, and for smaller sample sizes it is conservative, with a Type I error
rate somewhat lower than 0.0518. In general, when the Wald and likelihood ratio tests
have a contest of this sort, it is usually a draw. When there is a winner, it is always the
likelihood ratio test, but the margin of victory is seldom as large as this.

Exercises A.6.8

A.6.1) Let Y1, . . . , Yn be a random sample from a distribution with density f(y) = 1
θ
e−

y
θ

for y > 0, where the parameter θ > 0. We are interested in testing H0 : θ = θ0.

18This suggests that the power will not be wonderful for smaller sample sizes, in this example. But
keeping Type I error rates below 0.05 is the first priority.
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(a) What is Θ?

(b) What is Θ0?

(c) What is Θ1?

(d) Derive a general expression for the large-sample likelihood ratio statistic G2 =

−2 log `(
̂̂
θ)

`(θ̂)
.

(e) A sample of size n = 100 yields Y = 1.37 and S2 = 1.42. One of these
quantities is unnecessary and just provided to irritate you. Well, actually it’s
a mild substitute for reality, which always provides you with a huge pile of
information you don’t need. Anyway, we want to test H0 : θ = 1. You can do
this with a calculator. When I did it a long time ago I got G2 = 11.038.

(f) At α = 0.05, the critical value of chisquare with one degree of freedom is
3.841459. Do you reject H0? Answer Yes or No.

A.6.2) The label on the peanut butter jar says peanuts, partially hydrogenated peanut oil,
salt and sugar. But we all know there is other stuff in there too. In the United
States, the Food and Drug administration requires that a shipment of peanut butter
be rejected if it contains an average of more than 8 rat hairs per pound (well, I’m
not sure if it’s exactly 8, but let’s pretend). There is very good reason to assume
that the number of rat hairs per pound has a Poisson distribution with mean λ,
because it’s easy to justify a Poisson process model for how the hairs get into the
jars. We will test H0 : λ = λ0.

(a) What is Θ?

(b) What is Θ0?

(c) What is Θ1?

(d) Derive a general expression for the large-sample likelihood ratio statistic.

(e) We sample 100 1-pound jars, and observe a sample mean of Y = 8.57. Should
we reject the shipment? We want to test H0 : λ = 8. What is the value of
G2? You can do this with a calculator. When I did it a long time ago I got
G2 = 3.97.

(f) Do you reject H0 at α = 0.05? Answer Yes or No.

(g) Do you reject the shipment of peanut butter? Answer Yes or No.

A.6.3) The normal distribution has density

f(y) =
1

σ
√

2π
exp

{
−(y − µ)2

2σ2

}
.

Find an explicit formula for the MLE of θ = (µ, σ2). This example is in practically
every mathematical statistics textbook, so the full solution is available. But please
try it yourself first.
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A.6.4) Write an R function that performs a large-sample likelihood ratio test of H0 : σ2 = σ2
0

for data from a single normal random sample. The function should take the sample
data and σ2

0 as input, and return 3 values: G2, the degrees of freedom, and the
p-value. Run your function on the data in var.dat, testing H0 : σ2 = 2; see link to
the data on the course web page.

For this question, you need to bring a printout with a listing of your function
(showing how it is defined), and also part of an R session showing execution of the
function, and the resulting output.

A.6.5) For k samples from independent normal distributions, the usual one-way analysis of
variance tests equality of means assuming equal variances. Now you will construct
a large-sample likelihood ratio test for equality of means, except that you will not
assume equal variances. Write an R function to do it.

Input to the function should be the sample data, in the form of a matrix. The first
column should contain group membership (the explanatory variable). It is okay to
assume that the unique values in this column are the integers from 1 to k. The
second column should contain values of the normal random variates – the response
variable.

The function should return 3 values: G2, the degrees of freedom, and the p-value.
Run your function on the sample in kars.dat; see link to the data on the course
web page. This data set shows country of origin and gas mileage for a sample of
automobiles.

A.6.6) Let X1, . . . ,Xn be a random sample from a multivariate normal population with
mean µ and variance-covariance matrix Σ. Using the MLEs

µ̂ = X and Σ̂ =
1

n

n∑
i=1

(Xi −X)(Xi −X)>,

derive the large-sample likelihood ratio test G2 for testing whether the components
of the random vectors Xi are independent. That is, we want to test whether Σ is
diagonal. It is okay to use material from the class notes without proof.

A.6.7) Using R, write a program to compute the test you derived in the preceding question.
Your program should return 3 values: G2, the degrees of freedom, and the p-value.
Run it on the sample in fourvars.dat; see link to the data on the course web page.
Bring a printout listing your program and illustrating the run on fourvars.dat. Of
course it would be nice if your program were general, but it is not required. Note
that for this problem, numerical maximum likelihood is not needed. Both your
restricted and your unrestricted MLEs can and should be in explicit form.

A.6.9 The Bootstrap

Sometimes, the distribution of a statistic or vector of statistics can be tough to figure out.
You may not be able to do it at all. Or, maybe you could get an asymptotic answer using



A.6. ESTIMATION AND INFERENCE 611

the multivariate delta method, but it would be a big job requiring extensive paper and
pencil calculations followed by careful programming. The bootstrap, due to Efron [22], is
a computer-intensive method that can yield fairly automatic answers in such situations.

Let x = (X1, . . . , Xn) be a random sample from some distribution F . Let T = T (x) be
a statistic or vector of statistics. We need to know the distribution of T ; an approximate
answer will be good enough. You should not turn up your nose at the word “approximate.”
Bootstrap solutions are approximate in the same sense that a consistent estimator is
approximate.

The name “bootstrap” comes from the saying “Pull yourself up by your bootstraps.”
Figure A.3 shows a pair of boots19. The little loops at the back of the boots are the

Figure A.3: A pair of boots with bootstraps

bootstraps; if you hook your fingers in the loops, it’s easier to pull your boots on. Pulling
yourself up by your bootstraps is physically impossible, but it’s a metaphor for getting
the job done with the resources you have available, even though it may seem impossible.

To appreciate the statistical bootstrap, recall how the idea of a sampling distribution is
introduced in an elementary statistics class. One does not terrorize the students by refer-
ring to functions of a random variable. Instead, the sampling distribution is described as
follows. Imagine drawing repeated random samples from the same population. Either the
sampling is with replacement, or the population is so large that the distinction between
with and without replacement makes no difference. For each sample, calculate the statis-
tic. Make a relative frequency histogram of the values of the statistic. As the number of
samples increases, the histogram gets closer and closer to the sampling distribution of the
statistic.

So, select a random sample from the population. If the sample size is large, the sample
is similar to the population. Sample repeatedly from the sample with replacement; this
is called resampling. Calculate the statistic for every bootstrap sample. A histogram of
the resulting values approximates the shape of the sampling distribution of the statistic.

19This photograph was taken by Tarquin. It is licensed under a Creative Commons Attribution -
ShareAlike 3.0 Unported License. For more information, see the entry at the wikimedia site.

http://creativecommons.org/licenses/by-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-sa/3.0/deed.en_US
http://commons.wikimedia.org/wiki/File:Dr_Martens,_black,_old.jpg
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To visualize re-sampling, think of writing the n sample data values on marbles, putting
the marbles in a jar, and drawing n marbles with replacement. Naturally, there will
be some repeats; don’t worry about it. In many applications, you will be re-sampling
vectors of data values, like x1, x2, x3 and x4. In such cases, keep the values from a given
individual together20. Think of n strings of beads, with four beads on each string. You
randomly sample strings of beads. Of course, in practice all this is done by computer
using pseudo-random number generation, but the physical analogy may be helpful as a
way of understanding the process.

More formally, let x = (X1, . . . , Xn) be a random sample from some distribution F ,
possibly a multivariate distribution. T = T (x) is a statistic or a vector of statistics.
Form a “bootstrap sample” x∗ by sampling n values from x with replacement. Repeat
this process B times, obtaining x∗1, . . . ,x

∗
B. Calculate the statistic (or vector of statistics)

for each bootstrap sample, obtaining T ∗1 , . . . , T
∗
B. The relative frequencies of T ∗1 , . . . , T

∗
B

approximate the sampling distribution of T .

It works because the empirical distribution converges to the true distribution function.

F̂ (x) =
1

n

n∑
i=1

I{Xi ≤ x} a.s.→ E(I{Xi ≤ x}) = F (x)

Resampling from x with replacement is the same as simulating a random variable whose
distribution is the empirical distribution function F̂ (x). Suppose the distribution func-
tion of T is a nice smooth function of F . Then as n → ∞ and B → ∞, bootstrap
sample moments and quantiles21 of T ∗1 , . . . , T

∗
B converge to the corresponding moments

and quantiles of the distribution of T . If the distribution of x is discrete and supported
on a finite number of points, the technical issues are modest. For continuous distributions
with unbounded support it’s more challenging, but the conclusions still hold.

Estimating the covariance matrix of a vector of statistics

In structural equation modeling, it is quite common to have a vector of estimators that are
known to be consistent and asymptotically multivariate normal. An asymptotic variance-
covariance matrix is available provided that the observable data are multivariate normal,
but the normality assumption is either doubtful or demonstrably false. So constructing
tests and confidence intervals is not routine.

There are two main ways this situation can emerge. In the first scenario, the statis-
tics in question are nice explicit functions of the sample variance-covariance matrix of
the observable data. Even when the data are not normally distributed, Theorem A.1 on
page 564 establishes that the joint distribution of the sample variances and covariances is

20Well, if you were interested in testing independence of x1 and x2 from x3 and x4, you could put the
(x1, x2) pairs in one jar and the (x3, x4) pairs in another jar, and draw independently from the two jars
to assemble a set of four values. This is an example of bootstrapping under the null hypothesis, a very
nice way to construct tests that make no assumptions about the distribution of the data.

21The q quantile of a distribution is the point with q of the distribution at or below it, where 0 ≤ q ≤ 1.
Quantiles are like percentiles.
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asymptotically multivariate normal, and then by the multivariate delta method, differen-
tiable functions of those variances and covariances are approximately multivariate normal
too. The asymptotic variances and covariances of the sample variances and covariances –
and functions of them – are actually available and can be estimated consistently, but it’s
a big, unpleasant chore.

In the other scenario, the statistics in question are MLEs, but they are MLEs based
on the assumption that the observable data are multivariate normal – an assumption
that is questionable or worse. The good news is that by Theorem 5.1 and the “Corollary
to Huber’s corollary” (Expression 5.4 on page 432) in Chapter 5, these pseudo-MLEs
are consistent and have an asymptotic distribution that is multivariate normal. The bad
news is that the normal-theory estimates of the asymptotic variance-covariance matrix are
incorrect in general, though some exceptions are given in Chapter 5. Again, estimating
the right variance-covariance matrix is not out of the question, but it’s a big job involving
mathematical calculations and computer coding that might never be needed again.

It’s a lot easier using the bootstrap. The bootstrap provides a good picture of the
sampling distribution of that vector of statistics. The only feature of the sampling dis-
tribution that matters is their variance-covariance matrix. Proceed as follows. Draw B
bootstrap samples from the sample data, and for each one calculate the vector of statis-
tics. Assemble the results into a sort of data file, with B rows, and one column for each
statistic. Calculate the sample variance-covariance matrix of that. The result is an excel-
lent approximation of the asymptotic variance-covariance matrix that’s needed for tests
and confidence intervals.

Here is an example. In the United States, admission to university is sometimes based
partly on the Scholastic Aptitude Test, or SAT. In the old days there were two subtests,
Verbal and Math. The data file openSAT.data.txt22 has Verbal score, Math score and
first-year grade point average for a sample of 200 students. We first read the data and
look at the correlation matrix.

> sat = read.table("https://www.utstat.toronto.edu/brunner/openSEM/data/openSAT.data.txt")

> head(sat)

VERBAL MATH GPA

1 578 567 2.68

2 474 653 2.51

3 546 657 1.95

4 664 686 2.81

5 600 619 2.79

6 488 738 2.36

> cor(sat)

VERBAL MATH GPA

VERBAL 1.0000000 0.2751041 0.3224927

MATH 0.2751041 1.0000000 0.1941086

GPA 0.3224927 0.1941086 1.0000000

These correlations are not too impressive, but remember that the students were admit-
ted largely on the basis of having high SAT scores, so this is an example of how restricted

22This is a reconstructed data set based on a Minitab data set. I believe the Minitab data set is a
cleaned-up version of real data from Penn State University.
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range can weaken an observed correlation. Verbal score appears to be more highly corre-
lated with GPA than Math score, but is the difference statistically significant? This is a
meaningful but non-standard question.

By Theorem A.1 and the multivariate delta method, the asymptotic distribution of the
sample correlation coefficients is multivariate normal and centered on the true correlations.
For a Wald test and a confidence interval, all we need is an estimate of the covariance
matrix.

Now we’ll follow the recipe. Put the row numbers in a “jar.” Sample from the jar with
replacement, putting the rows into a bootstrap data set. Calculate the correlations. Do
this B times, saving the results in an array that will be called bootdata.

> # Bootstrap the correlations

> n = dim(sat)[1] # Sample size is the number of rows in the data file

> set.seed(9999) # Set random number seed so results can be duplicated.

> jar = 1:n; B = 1000

> bootdata = matrix(NA,B,3)

> colnames(bootdata) = c(’Verbal-Math’,’Verbal-GPA’,’Math-GPA’)

> for(j in 1:B)

+

+ rowz = sample(jar,size=n,replace=TRUE)

+ xstar = sat[rowz,]

+ kor = cor(xstar)

+ bootdata[j,1] = kor[1,2] # Correlation of Verbal with Math

+ bootdata[j,2] = kor[1,3] # Correlation of Verbal with GPA

+ bootdata[j,3] = kor[2,3] # Correlation of Math with GPA

+ # Next bootstrap sample

> head(bootdata)

Verbal-Math Verbal-GPA Math-GPA

[1,] 0.3020368 0.3171977 0.2320282

[2,] 0.3589208 0.2834930 0.2247893

[3,] 0.1572560 0.3590254 0.2988522

[4,] 0.1989407 0.3582051 0.0998772

[5,] 0.3165621 0.3644107 0.2394445

[6,] 0.2808987 0.2934830 0.1626899

The estimated covariance matrix we need is just the sample covariance matrix of these
bootstrapped statistics.

> Vhat = var(bootdata); Vhat # Asymptotic covariance matrix

Verbal-Math Verbal-GPA Math-GPA

Verbal-Math 0.0044099830 0.0002516633 0.001059281

Verbal-GPA 0.0002516633 0.0037209355 0.001182263

Math-GPA 0.0010592808 0.0011822628 0.004240506

To test for difference between the two correlations, we’ll use the Wtest function. The
present application isn’t quite a Wald test strictly speaking, but the theory applies.

> # Now use it

> # Test H0: Corr(Verbal,GPA) = Corr(Math,GPA)

> source("http://www.utstat.utoronto.ca/~brunner/Rfunctions/Wtest.txt")
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> # function(L,Tn,Vn,h=0) # H0: L theta = h

> LL = cbind(0,1,-1)

> estcorr = c(corsat[1,2],corsat[1,3],corsat[2,3])

> Wtest(L=LL,Tn=estcorr,Vn=Vhat)

W df p-value

2.94491891 1.00000000 0.08614802

So the difference between is not statistically significant at the 0.05 level. How about a
confidence interval?

> # 95 percent CI for Corr(Verbal,GPA) - Corr(Math,GPA)

> estdiff = corsat[1,3]-corsat[2,3]; estdiff # Estimated difference between correlations

[1] 0.128384

> sediff = as.numeric(sqrt( LL %*% Vhat %*% t(LL) ))

> CI = c(estdiff - 1.96*sediff, estdiff + 1.96*sediff); round(CI,4)

[1] -0.0182 0.2750

Observe that the confidence interval includes zero, which must happen since the hypothesis
of zero difference was not rejected. It absolutely must happen because squaring the z
statistic corresponding to the confidence interval yields the Wald chi-square.

Bootstrapping MLEs In structural equation modeling it is common practice to esti-
mate the model parameters with normal theory maximum likelihood, even if there is no
particular reason to believe that the data are normally distributed. Fortunately, almost
regardless of the distribution of the sample data, the resulting estimators are consistent
by Theorem 5.1, and have asymptotically normal distributions by Corollary 5.4 on page
432. The normal theory estimates of the variances and covariances of the estimators might
not be correct (see Chapter 5), but that problem is neatly solved by bootstrapping the
pseudo-MLE’s and estimating their variance-covariance matrix, exactly as in the exam-
ple above. In lavaan, the se="bootstrap" option does the trick. Here are a couple of
examples.

boot = lavaan(fullmod, data=X, se="bootstrap")

fit3 = cfa(model3,data=simdat, se="bootstrap")

Quantile Bootstrap Confidence Intervals An alternative to normal-theory confi-
dence intervals are the quantile confidence intervals, which use more information about
the exact shape of the sampling distribution out on the tails. Suppose Tn is a consistent
estimator of θ, and the distribution of Tn is approximately symmetric around θ. Then
the lower (1−α)100% confidence limit for θ is the α/2 sample quantile of T ∗1 , . . . , T

∗
B, and

the upper limit is the 1− α/2 sample quantile. For example, the 95% confidence interval
ranges from the 2.5th to the 97.5th percentile of T ∗1 , . . . , T

∗
B.

Symmetry is a requirement that is often ignored when computing quantile bootstrap
intervals. The distribution of Tn symmetric about θ means for all d > 0, P{Tn > θ+d} =
P{Tn < θ − d}. See Figure A.4.
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Figure A.4: A symmetric distribution

 

 

θθ − d θ + d

Select d so that P{Tn > θ + d} = P{Tn < θ − d} equals α/2. Then

1− α = P{θ − d < Tn < θ + d}
= P{Tn − d < θ < Tn + d}

To use this result, an estimate of d is required.
There are two natural estimates. Letting Qα/2 denote the true α/2 quantile of the

distribution of Tn,

1− α = P{θ − d < Tn < θ + d} = P{Qα/2 < Tn < Q1−α/2}.

The estimates should satisfy

θ̂ − d̂1 = Q̂α/2 ⇒ d̂1 = Tn − Q̂α/2

θ̂ + d̂2 = Q̂1−α/2 ⇒ d̂2 = Q̂1−α/2 − Tn,

where Tn has been used to estimate θ, and Q̂α/2 and Q̂1−α/2 are the bootstrap quantiles.
Then, take 1 − α = P{Tn − d < θ < Tn + d} and plug in the estimates of d1 and d2.

Using d̂1 on the left yields

Tn − d̂1 = Tn − (Tn − Q̂α/2) = Q̂α/2

Using d̂2 on the right yields

Tn + d̂2 = Tn + (Q̂1−α/2 − Tn) = Q̂1−α/2,

so that the (1− α)100% bootstrap quantile confidence interval is(
Q̂α/2, Q̂1−α/2

)
. (A.39)

There are indications that the coverage of this interval can approach 1 − α faster with
increasing sample size than a confidence interval based on the central limit theorem. See
Chapter 22 of Efron and Tibshirani [23].

To test hypotheses like H0 : θ = θ0, one can simply check whether the (1 − α)100%
quantile confidence interval for θ includes θ0, and reject the null hypothesis at significance
level α if it does.
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Justifying the Assumption of Symmetry All this depends on the statistic Tn having
a distribution that is approximately symmetric. When the distribution of the estimator
is not symmetric about the parameter being estimated, quantile confidence intervals are
unjustified and often quite inaccurate. Ignoring this point has led to confusion ans suspi-
cion about the bootstrap, especially among non-statisticians. So how does one justify the
assumption of symmetry, particularly when the distribution of Tn is elusive? The easiest
answer is asymptotic normality. Smooth functions of asymptotic normals are asymptoti-
cally normal, and this includes maximum likelihood estimators as well as functions of the
sample moments. Of course the normal distribution is symmetric, and this justifies the
use of quantile confidence intervals. Here is an illustration using the SAT data.

> # Now a quantile confidence interval

> difcorr = bootdata[,2]-bootdata[,3]

> difcorr = sort(difcorr)

> # 0.025 * 1000 = 25, so go midway between number 25 and number 26,

> # And midway between number 974 and 975

> LowerQuant = (difcorr[25]+difcorr[26])/2

> UpperQuant = (difcorr[974]+difcorr[975])/2

> qCI = c(LowerQuant,UpperQuant) # 95% Quantile interval

> round(qCI,4)

[1] -0.0281 0.2704

This confidence interval is very similar to the one directly based on asymptotic normality.
Again, it provides no evidence that the correlation between Verbal SAT and first-year
GPA is different from the correlation between Math SAT and first-year GPA.
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