Student Number _____

STA 431 Quiz 2

1. (3 points) Let \mathbf{A} be a real, symmetric, positive definite matrix. Show that the eigenvalues of \mathbf{A} are all strictly positive. Start with the definition $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$.

2. (3 points) Although eigen*vectors* are always non-zero, it is possible for an eigen*value* to equal zero. Let **A** be a square matrix, not necessarily symmetric, and let (λ, \mathbf{x}) be an (eigenvalue, eigenvector) pair with $\lambda = 0$. Show that **A** does not have an inverse.

3. (4 points) Let the $p \times 1$ random vector **x** have expected value μ and variance-covariance matrix Σ , and let **A** be an $m \times p$ matrix of constants. Using the definition of a variance-covariance matrix on the formula sheet and familiar properties of expected value, derive the variance-covariance matrix of **Ax**.