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Summary

Rotation is what makes exploratory factor analysis results
understandable.

R’s stand-alone varimax function can also be used to rotate
principal components.

The result is a set of uncorrelated linear combinations of the
variables that explain exactly the same amount of variance as the
original components, but are easier to interpret.
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Setting

Standardized data vector z is k × 1

cov(z) = Σ

Σ = CDC>

y = C>z ⇐⇒ z = Cy

cov(y) = D
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Standardize and Select Principal Components
Standardize first for convenience

cov(y) = D

Let y2 = D−
1
2 y

cov(y2) = Ik

cor(d,y) = cov(z,y2)

= cov(z,D−
1
2 y)

= cov(z,D−
1
2 C>z)

= cov(z, z)
(
D−

1
2 C>

)>
= ΣCD−

1
2

= CDC>CD−
1
2

= CD
1
2
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cor(z,y) = CD
1
2 is a good matrix

Square all the elements and get components of variance.

Squared correlations add to one for each row.

Squared correlations add to eigenvalues for each column.
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Squared correlations add to one for each row.
cor(z,y) = CD

1
2

Look at diagonal elements of

CD
1
2

(
CD

1
2

)>
= CD

1
2D

1
2C>

= CDC>

= Σ = cov(z)

Diagaonal elements are all ones.
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Squared correlations add to eigenvalues for each column
cor(z,y) = CD

1
2

Look at diagonal elements of(
CD

1
2

)>
CD

1
2 = D

1
2C>CD

1
2

= D
1
2D

1
2

= D

Eigenvalues.
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Select First p principal Components
Probably those with eigenvalues greater than one

z = Cy

= CD
1
2 D−

1
2 y

= CD
1
2︸ ︷︷ ︸

k×k

y2︸︷︷︸
k×1

= ( L︸︷︷︸
k×p

| M︸︷︷︸
k×(k−p)

)

(
f

g

)
← p× 1

← (k − p)× 1

= Lf + Mg

= Lf + e
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z = Lf + e

It looks like a factor analysis model.

f contains the first p principal components, standardized.

cov(f) = Ip.

L contains the first p columns of cor(d,y) = CD
1
2 .

Recalling

z = (L | M)

(
f

g

)
= Lf + Mg

= Lf + e,

have cov(f , e) = O.

Results for factor analysis apply:
Components of variance explained by f are squared correlations.
Communalities (explained variance of each variable) are not affected
by rotation.

9 / 13



Rotate

z = Lf + e

= L R>R f + e

= (LR>) (Rf) + e

= L2f
′ + e,

where L2 is the “rotated factor matrix,” and f ′ are the rotated
principal components.
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z = L2f
′ + e

cov(f ′) = Ip, so the rotated components are still uncorrelated.

cov(z, f ′) = L2 is a matrix of correlations.

You can examine L̂2 to determine what the rotated factors mean
in terms of the original variables.

Rotation affects how much variance each component explains, but
not the total amount of variance explained.

Rotation does not affect the amount of explained variance for each
variable.
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In Practice it’s Very Simple

Extract sample principal components. and decide how many to
keep.

Put the ones you decide to keep in Yn×p.

Apply a varimax rotation to estimated cor(D,Y). This is L̂2.

If you like the result,

Standardize the principal components in Y, using n in the
denominator. Call the result W. The rows of W are approximately
f1, . . . fn.
Compute WR>, where R> is the rotation matrix located by
varimax.
The rows are the rotated sample principal components.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The LATEX source
code is available from the course website:
http://www.utstat.toronto.edu/brunner/oldclass/431s23
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